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A METHOD FOR COMmTTING NONEQUILIBRIUM CHANNEL FLOW 

OF A MULTIC0"ENT GASEOUS MIXTURE 

I N  THE NEAR-EQUILIBRIUM l3EGION 

By Walter E. Pearson and Barrett S. Baldwin, Jr. 
Ames Research Center 

SUMMARY 

A method f o r  computing one-dimensional, steady, nonequilibrium channel 
flow of an a rb i t r a ry  mixture of diatomic and monatomic gases i s  presented. 
The method assumes the  chemical and v ibra t iona l  nonequilibrium r a t e  processes 
are not coupled. The numerical formulation permits accurate evaluation of a l l  
var iables  appearing i n  t h e  rate equations, and it precludes the necessi ty  f o r  
computing expressions which become indeterminate i n  the  near-equilibrium 
region. 

INTRODUCTION 

The flow of a multicomponent gaseous mixture which i s  influenced by 
thermochemical nonequilibrium has proven t o  be d i f f i c u l t  t o  predict  i n  the  
near-equilibrium region. I n  the  analysis  of a f l o w  of  t h i s  kind, t he  equa- 
t i o n s  which describe the  f l u i d  dynamical processes must be solved sirrmlta- 
neously with equations which describe the  nonequilibrium r a t e  processes. 
These r a t e  equations take t h e  form of a coupled system of nonlinear differen-  
t i a l  equations, and i n  order t o  proceed toward a prediction of the flow, it i s  
necessary t o  use numerical methods. 

A numerical solut ion of t h e  equations t h a t  govern the  flow i s  possible i n  
pr inciple ,  but has not been demonstrated t o  be p rac t i ca l  f o r  a l l  cases t h a t  
may a r i s e .  Early invest igators  found excessive amounts of computation neces- 
sary i n  order t o  achieve numerical s t a b i l i t y  i n  the  near-equilibrium regions 
(refs. 1, 2, 3 ) .  The i n s t a b i l i t y  arises i n  pa r t  from the  necessity f o r  eval-  
uating expressions which, as equilibrium i s  approached, become indeterminate 
i n  the  sense t h a t  t h e i r  straightforward calculat ion leads t o  large numerical 
errors. Several methods (refs. 4, 5, 6) t h a t  have been of p rac t i ca l  value 
were devised f o r  t he  approximate numerical integrat ion of such so-called 
"stiff equations,' ' although they d id  not en t i r e ly  remove the  underlying cause 
of the d i f f i c u l t i e s .  I n  these ea r ly  studies,  the i n t e r e s t  w a s  centered p r i -  
marily on the  physics of t h e  problem, and the  numerical. d i f f i c u l t i e s  were 
regarded as an inconvenience. 

Recently, three new methods have appeared t h a t  grea t ly  reduce t h e  comput- 
ing time i n  the  near-equilibrium regions of the  flow (refs. 7, 8, 9 ) .  
l a t e r  papers indicate  a growing i n t e r e s t  i n  t he  mathematical problem which, 
evidently, has not been solved sa t i s f ac to r i ly .  

These 



The nature of t he  problem m y  be defined by reca l l ing  t h a t  regions requir-  
ing special  treatment are frequently encountered i n  numerical calculations.  
These a re  usually regions i n  which some physical quantity approaches an asymp- 
t o t i c  value. A standard remedy i s  t o  f i n d  a closed-form solution of a sirrrpli- 
f i e d  set of equations t h a t  apply i n  the  asymptotic region. 
f i rs t  appears t o  preclude the  use of t h i s  device i n  the  present problem. The 
trouble arises from the  f a c t  t h a t  t he  equations are nonlinear over extensive 
near-equilibrium regions so  t h a t  a closed-form solution cannot be found. The 
method, however, can be applied if  the  equations a re  l inear ized independently 
i n  each small s tep  of the  numerical calculation, as w a s  done by Moretti 
(ref.  8 ) .  A t  f irst ,  it appears unwieldy t o  incorporate such a procedure i n  a 
numerical integrat ion program, but  t he  resu l t ing  reduction i n  computing time 
gives good reason t o  do so ( r e f s .  8, 9, 10).  A l s o ,  such a l inear iza t ion  pro- 
cedure provides the  only method avai lable  a t  present f o r  computing accurately 
the  so-called react ion var iables  tha t  appear i n  the  r a t e  equations. 

A d i f f i c u l t y  at 

The present method d i f f e r s  from tha t  of Moretti ( ref .  8)  i n  t h a t  accurate 
evaluation of  t he  react ion var iables  i s  included. To accomplish t h i s ,  consider- 
able manipulation of the  or ig ina l  r a t e  equations i s  necessary. However, upon 
completion of these steps, a system of equations i s  obtained tha t  appl ies  f o r  
equilibrium, near-equilibrium, or nonequilibrium flows. The method t o  be pre-  
sented i s  based on the  requirement t h a t  means be found f o r  computing, as accu- 
r a t e l y  as might be specified, a l l  quant i t ies  appearing i n  the  equations. This 
requirement w a s  previously employed i n  conjunction with a simplified model f o r  
a i r  ( r e f .  10) and has been discussed i n  connection with more general reacting 
systems (ref. 11). 

Specifically,  t h i s  report  contains a method f o r  computing one-dimensional, 
steady, nonequilibrium channel flow. The method per ta ins  t o  an a rb i t r a ry  
multicomponent mixture of  i dea l  diatomic and monatomic gases, f r e e  from t rans-  
port  e f f ec t s  and from interact ion between the  chemical and vibrat ional  non- 
equilibrium r a t e  processes. The numerical formulation makes unnecessary the  
computation of expressions which become numerically indeterminate i n  the  near- 
equilibrium region, but  it requires the  solut ion of an eigenvalue problem at 
each f i e l d  point of t he  one-dimensional flow. 

The numerical d i f f i c u l t i e s  inherent t o  calculat ing the  eigenvalues of an 
a rb i t r a ry  matrix are w e l l  known. 
t h i s  report, the  matrix i n  question i s  s i m i l a r ,  a t  every f i e l d  point,  t o  a 
real  symmetric matrix which i s  eas i ly  constructed. 
g rea t ly  simplify the computational problem. 

However, with the  numerical formulation of 

This f a c t  i s  used t o  

SYMBOLS 

A matrix of coeff ic ients  (see eq. (a)) 

A - l  inverse of matrix A 

AT transpose of m a t r i x  A 

2 



A b )  cross-sectional area of the  channel a t  point x 

D ( t )  diagonal matrix with diagonal elements e -Ait (i = 1, 2, . . ., r) 

j 

f 

H 

h 

h i  j 

M 

m i j  

L 
diagonal matrix with diagonal elements 7 (i = 1, 2, . . ., r )  A 1  
m a t r i x  whose column vectors are the  eigenvectors of matrix A 

energy of dissociat ion per mole of species j 

i n t e rna l  energy per mole of species j 

combined ro ta t iona l ,  e lectronic ,  and t r ans l a t iona l  energies per  mole 
of species j 

vibrat ional  energy per  mole of a given species 

equilibrium vibrat ional  energy per mole of a given species at 
temperature T 

vibra t iona l  energy per mole of species j 

natural  vibrat ional  frequency f o r  a given molecular species assuming 
it i s  a c l a s s i ca l  harmonic o s c i l l a t o r  

matrix (see eq. ( 3 8 ~ ) )  

enthalpy per u n i t  m a s s  of t he  gas mixture 

element i n  the  i t h  row and j th  column of the matrix H 
(see eq. ( 3 8 4  

Planck's constant 

i den t i ty  matrix 

Boltzmann's constant 

backward rate coef f ic ien t  of t h e  i t h  reaction 

forward rate coef f ic ien t  of the  i t h  reaction 

equilibrium constant of the i t h  reaction 

probabi l i ty  t h a t  a molecule vibrat ing i n  the  n th  energy level w i l l  
m a k e  a t r ans i t i on  t o  the (n + 1)th level in  u n i t  time 

matrix (see eq. (38b)) 

chemical formula of species j 

element i n  t he  i t h  row and j t h  column of matrix M 
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NO 

"k j 

P 

Qi j 

n 
r 

S 

T 

t 

U 

U 

v 
X 

ai 

P i  

P i  j 

Y j  

Aev j 

AT 

A t  

En 

A 

Avogadro ' s number 

t o t a l  number of atoms of element k i n  species j 

pres sure 

r a t e  of production of species M j  by the  i t h  react ion per  u n i t  
volume 

universal  gas constant 

number of? chemical reactions 

number of chemical species 

temperature 

time 

see equation (27) and explanation thereaf ter  

speed of flow 

see equation (27) and explanation the rea f t e r  

distance along the  ax is  of the channel 

constant appearing i n  equation (40) 

integer  equal t o  

integer  equal t o  

v i '  - v i  

v i j  - V i j  
1 

concentration of the  j t h  species i n  moles per u n i t  mass of the  gas 
mixture 

increment i n  ev j  during the  in t e rva l  A t  

increment i n  T during the  in t e rva l  A t  

incremental i n t e rva l  of time 

increment i n  y j  during the  i n O e m l  A t  

increment i n  p during the  in t e rva l  A t  

increment i n  X i  during the  in t e rva l  A t  

energy of the  n th  v ibra t iona l  l e v e l  of a molecule 

diagonal matrix whose elements a.re t he  eigenvalues of the  matrix A 
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i t h  eigenvalue of the  

number of molecules of 
t i o n a l  energy l e v e l  

matrix A 

a given species which a re  i n  the n th  vibra- 

integer  equal t o  

j =i 
S 

integer  equal t o  1 v i j  
j =i 

stoichiometric coef f ic ien t  of species M j  on the l e f t  s ide of chem- 
i c a l  equation i 

stoichiometric coef f ic ien t  of species M j  on the  r igh t  s ide of chem- 
i c a l  equation i 

density of gas mixture 

sum of a l l  species concentration coeff ic ients ,  y j  ( j  = 1, 2, . . ., s)  

v ibra t iona l  re laxat ion time f o r  t he  j t h  species 

react ion var iable  (see eq. (5 )  ) 

column vector whose elements are  Xi (i = 1, 2, . . ., r)  

Sub s c r i p t  

used t o  indicate  the  numerical value of the quantity taken a t  the 
beginning of the  in t e rva l  A t  

ANALYSIS 

Although they have been developed elsewhere, the  bas ic  equations f o r  non- 
equilibrium channel flow w i l l  be derived here. 
a background f o r  t he  numerical method used i n  t h e i r  solution. 

This derivation w i l l  provide 

Chemical Rate Equations 

It i s  assumed t h a t  s chemical species, M -  (j = 1, 2, . . ., S )  are ? involved i n  r chemical equations. These equations are  represented by 
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where V i j  and v i j  
formulas of t he  species, and k f i  and hi axe the  forward and backward rate 
coeff ic ients ,  respectively,  of the  i t h  reaction. 

are stoichiometric coeff ic ients ,  t h e  M j  are t h e  chemical 

The i t h  react ion produces a quant i ty  of species M j  at  the  r a t e  Q i j  

(moles/unit volume/unit t i m e ) .  
pressure, o r  temperature, the  l a w  of  mass act ion leads t o  the following 
expression for Qi j  

For a f lu id  without gradients of concentration, 

I n  t h i s  equation, y j  (moles/unit mass) i s  the  molar concentration of species 
M .  ( j  = 1, 2, . . ., s ) ,  p i s  t h e  f l u i d  density, and J 

j =1 j = i  

It i s  assumed tha t  equation (2) holds f o r  a flowing gas. 

The equilibrium constant for concentrations of the i t h  reaction, K i ( T )  
i s  a known function of t he  temperature, T, and at equilibrium, 

It will be assumed t h a t  t h i s  re la t ionship holds  when the  react ion i s  not i n  
equilibrium as w e l l .  

The t o t a l  rate of change of y i s  given by 3 

p 3 = f: Qij  d t  ( j  = 1, 2, . . ., s)  

i-1 
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Thus 

These equations can be  wri t ten 

where the dimensionless var iables  X i  are defined by 

and p i  = V I  - v i .  (See ref.  3.) I n  near-equilibrium regions, t h e  X 
approach zero, and they cannot be computed accurately f r o m  equations t 5 ) .  
Their accurate evaluation i s  e s sen t i a l  if  equations (4 )  are t o  be used, s ince 
the  dyj/dt  cannot be s e t  equal t o  zero i n  near-equilibrium regions. I n  the  
method t o  be developed here, equations (4) w i l l  not be evaluated numerically, 
but the  method i s  capable of producing accurate values of the  
desired. 

( j  = 1, 2, . . ., s) ,  and the  f l u i d  dynamics variables p and T. 

X i  if they a re  
When equations (5)  are d i f fe ren t ia ted  with respect t o  time, there  i s  

j obtained a s e t  of r e l a t ions  between the  Xi (i = 1, 2, . . r > J  the Y 

2 = 1  

Equations (6) are useful because they contain no forms which become indeter-  
minate a t  some point i n  the  flow f i e ld ,  including the  near-equilibrium region. 

7 



Equations (4), (5), and (6) can be combined t o  obtain another set of 
equations which w i l l  a l so  be used i n  the computation of t he  f l o w .  

where 

and 

G ( p , X i )  = ( X i  - 1)(g) (i = 1, 2, . . ., r)  

Vibrational Rate Equations 

It i s  assumed t h a t  t h e  molecules of  t he  gaseous mixture are free t o  
vibrate  only a t  a d iscre te  s e t  of energy levels 

where h, i s  Planck’s constant and f i s  the  na tura l  frequency f o r  the 
species i n  question assuming it i s  a c l a s s i c a l  harmonic osc i l la tor .  It i s  
fu r the r  assumed t h a t  changes i n  energy can occur only between adjacent levels. 

The probabi l i ty  t h a t  a molecule vibrat ing i n  the  n th  l eve l  w i l l  make a 
t r ans i t i on  t o  t he  (n + 1 ) t h  l eve l  i n  a u n i t  t i m e  i s  designated by &,n+l. 
With t h i s  notation, bYl and klYo 
de-excitation per u n i t  t i m e ,  respectively, between the ground state and the  
f i r s t  excited energy leve l .  L e t  Pn be the  number of molecules i n  the  n th  
v ibra t iona l  energy leve l .  Then 

are the probabi l i t i es  of exci ta t ion and 

8 



I n  reference 12 it i s  developed t h a t  

where k i s  the  Boltzmann constant. For other energy l eve l s  

and f r o m  the quantum-mechanical study of t r ans i t i on  probabi l i t i es  

If equation (8) i s  combined with equations (9) and (lo), it i s  possible t o  
obtain 

L e t  No be Avogadro's number, and 

N -  T h  
n=o 

If 
s t a t e  of a given species, per mole of species 

e, i s  used t o  denote the  v ibra t iona l  energy above t h e  ground ( n  = 0 )  

Nohof nCLn 
EnPn = N No 

ev = N 
n=o n=o 

Theref ore 

When equation (11) i s  combined with t h i s  last equation, it i s  possible t o  
manipulate the  resu l t ing  expression in to  the  form 

9 



I 

The expression 

i s  defined t o  be the  v ibra t iona l  energy, per  mole of species, corresponding t o  
equilibrium conditions a t  temperature T. Also,  t he  re laxat ion time, T ,  i s  
defined by the  r e l a t ion  

With these def ini t ions,  equation (12) can be wri t ten i n  a more compact form. 

Since kl,? 
i s  a function of these variables.  It i s  customary t o  write,  f o r  t he  j t h  
chemical species, the vibrat ional  nonequilibrium equations i n  the  fo rm 

i s  a function of density, temperature, and chemical species, T 

The vibrat ional  energy of species 
per  mole, ej ,  of species j by the  equation 

j i s  re la ted  t o  t he  t o t a l  in te rna l  energy 

where 
electronic,  and t r ans l a t iona l  energies per mole of species j. The t e r m  eDj, 
a constant, i s  the energy of dissociat ion per mole of species 

E j ( T )  i s  a function of temperature which expresses the rotat ional ,  

j .  

10 
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Fluid Dynamical Equations 

Since the  flow under consideration i s  t o  be one-dimensional and steady, 
a l l  quant i t ies  used i n  i t s  descr ipt ion are  functions of a s ingle  independent 
variable.  The channel i s  presumed t o  be described by some function of 
t he  distance along t h e  ax is  of the channel f r o m  some f ixed point.  However, 
the  flow variables w i l l  be considered as functions of time, t. In  the  conser- 
vation equations which follow, the speed of the flow i s  represented by u, t h e  
pressure by p, the cross-sectional area of the channel by A, and the enthalpy 
per  u n i t  mass by h. The conservation equations a re  

x, 

Mass 

Energy 

Momentum 

puA = c 1  

$ u 2  + h = c2 

5 u2 + J “ c 3  

The numbers cl, c2, and c3 are  constants of integration. 

It i s  assumed t h a t  e i t h e r  a function A ( x )  o r  a function p(x) i s  given. 
When 
when 

A(x) i s  given, the  cross-sectional area of the channel i s  prescribed; 
p(x)  i s  given, the  pressure i s  a known function along the channel. 

For a mixture of gases composed of s species, t he  thermal equation of  
s t a t e  i s  

In  t h i s  equation, 62 i s  the  universal  gas constant, I n  l a t e r  equations, t h e  
not a t  ion 

yj = 0 
j=i 2 

w i l l  be used. Thus 

p = a p R T  

By d i f fe ren t ia t ing  equation (21) with respect t o  time, and using 

11 



it i s  found t h a t  

Equation (22) i s  usefu l  when p(x) i s  specif ied.  When A ( x )  i s  given 
instead, equation (22) can be adapted by using the equations f o r  conservation 
of mass and momentum. To t h i s  end, t he  conservation of mass equation can be 
wr i t ten  

and from the  conservation of momenta 

o r  

When equations (23) and (24) are combined, there  i s  obtained 

dp PU2 - u -  + - -  - -  
dx d t  A dx 

Finally,  by subs t i tu t ing  the  r igh t  s ide of equation (25) f o r  
t i o n  (22), it i s  seen tha t  

dp/dx i n  equa- 

This equation w i l l  be usefu l  when A ( x )  i s  specified.  

I n  general 

j= 1 

When A ( x )  i s  specLied, U = [l - (u2/ciRT)] and V = (uS/Pno>(~ 
p(x) i s  specified, U = 1 and V = (uT/p)(dp/dx). 

/ax). When 
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Equation (27) i s  one of the two f l u i d  dynamical equations which w i l l  be 
used i n  the  numerical solut ion of t he  nonequilibrium flow. 
r e l a t ion  i s  derived from the  equations f o r  conservation of energy and momentum. 

The other  such 

The spec i f ic  enthalpy, h, i s  given by 

For a mixture of s chemical species, t he  in t e rna l  energy, e, per u n i t  mass 
i s  

e =  2 Yjej 
j =1 

Theref ore 

h = 2 y j e j  + P p 

j:1 

When t h i s  equation i s  d i f fe ren t ia ted  with respect t o  t i m e ,  there  i s  obtained 

j = i  j =I 

When t h e  equations f o r  t h e  conservation of energy and momentum are  differen-  
t i a t e d  and then conibined, it i s  possible t o  show tha t  

From equation (16), 

de j  d s j  devj + -  ( j  = 1, 2, . . ., s)  - - -  - 
d t  d t  d t  

and since dSjj/dT i s  a 

de j 
d t  - 
- -  

known function of T, it i s  convenient t o  write 



When equations (29), ( 3 O ) ,  and (31) are combined, there r e s u l t s  

Equation (32) together with equation (27) w i l l  be used with the  equations of 
t he  nonequilibrium r a t e  processes i n  the  numerical procedure which i s  t o  be 
de scribed. 

NUMERICAL PROCEDURF: 

For one-dimensional channel flow, the  f i e l d  points  can be stationed along 
a l i n e  which extends the length of the  channel. 
evj ( j  = 1, 2, . . ., s) from which a l l  other  f l o w  var iables  can be obtained 
must be computed a t  each of these s ta t ions .  

The variables p, T, r j ,  and 

A s  a f l u i d  element moves downstream from one s t a t ion  t o  the next, an 
in t e rva l  of time A t  elapses, and there  are  corresponding increments Ap, AT, 
Ay j ,  and Aevj .  L e t  it be assumed t h a t  the f l u i d  element i s  at a given s t a t ion  
at time to and at the  next downstream s t a t ion  a t  t i m e  (to + A t ) .  Then 

The computational problem i s  t o  f i nd  numerical values f o r  the increments 
AT, A y j ,  and A e v j  when numerical values of the  f l o w  var iables  a re  known at  
the  upstream s ta t ion .  Since values f o r  a l l  quant i t ies  are assumed known at 
the beginning of the  in t e rva l  ( to,  to + A t ) ,  there  i s  no lo s s  i n  general i ty  
i n  taking 
subscript 0. Thus 

Ap, 

to = 0 and denoting values at  the  beginning of the  in t e rva l  by the  

P b t )  = Po + 4.3 

T ( A t )  = To + A T  

14 
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Computation of t he  Increments Aevj 

As  a consequence of the  assumption t h a t  vibrat ional  and chemical relaxa- 
t i o n  r a t e s  are  not coupled, an expression f o r  the 
can be found independently of the  increments Ayjo Since p and T are  func- 
t i ons  of time, equations (1.5) can be wr i t ten  

Aevj ( j  = 1, 2, . . ., S) 

It might be presumed, then, t h a t  the  increment Aevj could be computed from 

Aevj = [ ‘““ ,~ j~ , “ ’~At  ( j  = 1, 2, . ., s) 
However, use of these equations are not p rac t i ca l  because of the behavior of 
the  right-hand s ide i n  the  near-equilibrium region of the f l o w .  
equilibrium region, 1 / T j  

makes an accurate evaluation of Aevj impossible even f o r  s m a l l  A t .  Apart 
f r o m  t h i s ,  the  use of (Fvj - evj )o  
t ionable  va l id i ty .  The quant i t ies  73,  evj, and ev j  can be described as 
slowly varying in  the  near-equilibrium region, because t h e i r  change during a 
short-time in t e rva l  i s  small enough t h a t  t h e i r  value during the  in t e rva l  can 
be approximated by a constant. 
several  times i t s  own magnitude during a s m a l l  i n t e rva l  of time when the  
upstream s t a t ion  i s  i n  the near-equilibrium region. 

I n  the near- 
i s  very large while (&j - evj) i s  very small. This 

over the en t i r e  interval ,  A t ,  i s  of ques- - 

On the  other hand, (Fvj - evj) can change by 

A means of avoiding these numerical d i f f i c u l t i e s  i s  provided by the 
behavior of Fvj. Since it i s  a slowly varying function, dFvj/dt can be con- 
sidered constant over an in t e rva l  A t .  Likewise, T~ can be considered con- 
s tan t  over the in te rva l .  

With t h i s  i n  mind, the  following equations a re  derived f rom equations (15). 

These can a l so  be wr i t ten  

Over the  in t e rva l  At ,  T j  = ( T j ) ,  and 
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Hence, over t h i s  in te rva l ,  equations (33) become l i n e a r  d i f f e r e n t i a l  equations 
with constant coef f ic ien ts .  Their solut ion i s  found t o  be 

( j  = 1, 2, . ., s) 

where 
sponding t o  A t  can be found 

0 <_ t 5 A t .  From this solution, the  increment i n  (Fvj - evj corre- 

Equations (34a) show t h a t  as ( 7 j ) O  + 0 (equilibrium i s  approached), the  
increments 
these increments i n  the  near-equilibrium region by means of equations (34a). 
The increments Aevj can now be determined accurately.  

A(Fvj  - ev j )  + - (Fvj - evj)o.  There i s  no d i f f i c u l t y  i n  computing 

Aevj  = AFvj - A(Fvj - ev j )  ( j  = 1, 2, . . ., S )  

and 

These las t  two sets of equations a re  combined with equations (34a) t o  give 

( j  = 1, 2, . . ., S )  (34b) 

Computation of the  Increments n X i  

When the increments Ae,j ( j  = 1, 2, . . ., s)  have been found by the 
method j u s t  outlined, t he re  remain the  ( s  + 2) increments Ap, AT, and Ayj  
( j  = 1, 2, . . ., s )  ye t  t o  be computed. These w i l l  be found by solving a 
system of ( s  + 2) l i nea r  equations i n  which the  variables are the  ( s  + 2) 
increments i n  question. However, these equations contain the  increments nXi  
(i = 1 , 2, . . ., r) taken by the  var iables  X i  during the  in t e rva l  A t .  It 
w i l l  be shown t h a t  upon solut ion of an eigenvalue problem, each AXi becomes 
a l inear function of Ap and AT. 

16 



The variables  X i  (i = 1, 2, . . ., r) s a t i s f y  the  coupled system of rate 
equations (7)  

With the  exception of X i  i t se l f ,  all the var iables  which appear i n  the coef- 
f i c i e n t s  ail, F(T,Xi), and G ( p , X i )  are assumed t o  be slowly varying i n  the 
sense t h a t  they change by only a small percentage of t h e i r  magnitude during 
an in te rva l  At .  Hence, they w i l l  be approximated by a constant value over 
this  in te rva l .  I n  the near-equilibrium region, however, the  var iables  X i  
(i = 1, 2, . . ., r) can change by several times t h e i r  own magnitude during 
the  in te rva l .  This magnitude must be small because x i  + 0 as equilibrium i s  
approached. However, i n  any region of channel flow, including the near- 
equilibrium region, (1 - X i )  can change by only a small percentage of i t s  value 
during a small i n t e rva l  of t i m e .  
system, equations (7), t o  be "linearized" by taking the  coef f ic ien ts  t o  be con- 
stant over the  in t e rva l  A t .  Equations (7) are then wri t ten 

This f a c t  allows the  coupled, f i r s t - o r d e r  

2 -1 

(i = 1 , 2, . . ., r) (0 <_ t < , A t )  (35) 

When the  constants N i  are defined through the  equation 

[F(T,Xi) lo  [ G b , X i . )  lo  
A T +  A t  ~p (i = 1, 2, . . ., r) A t  N i  = 

t h e  d i f f e r e n t i a l  equations (35) can be wr i t ten  i n  vector form 



where 

A = diag ( A i ,  h2J - 7  A r )  = 

Although numerical values cannot be assigned t o  N i  ( i  = 1, 2, . . ., r)  u n t i l  
AT and Ap have been found, t h i s  must not obscure the  f a c t  t ha t  each N i  can 
be considered t o  be a constant over the in t e rva l  A t .  

A2 

If %(t) i s  a vec5or f y c t i o n  which satisfies the  d i f f e r e n t i a l  equa- 
t i o n  (36) such t h a t  XO = X ( O ) ,  then each mi (i = l, 2, . . ., r) i s  deter-  
mined by the  equation 

nx' = ?(At)  - Z(0) 

Consequently, a general  solut ion must be found f o r  equation (36). 

Toward t h i s  end, a transformation W i l l  be used t o  replace equation (36) 
with an uncoupled system. Theorem 3 i n  the  appendix shows t h a t  such a t rans-  
formation ex is t s .  
(i = 1, 2, . . ., r ) ,  of t he  matrix A which are  l i nea r ly  independent a t  every 
point i n  the  flow. A simplified method for finding the  eigenvalues and eigen- 
vectors of A i s  provided by theorems 1 and 2 i n  the  appendix. 

This theorem s t a t e s  t ha t  there  are eigenvectors, q i  

+ 
If E i s  the  matrix whose i t h  column i s  the  eigenvector v i  which 

corresponds t o  t he  eigenvalue A i  of A, then E i s  nonsingular since i t s  
column vectors are l i nea r ly  independent (see r e f .  13) .  Moreover, 

A = E A E-= 
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Equation ( 3 6 )  can be wr i t ten  

or 

Sett ing 3 = E-? y ie lds  

Equation ( 3 7 )  i s  an uncoupled system because 
constants. 

A i s  a diagonal matrix of 

If ;(t) i s  a general solut ion of equation ( 3 7 )  then 

?(t) = E;(t) 

i s  a general solut ion of equation (36). 
--f 

The general solution, $(t), i s  found by obtaining a general solution + 
$h( t )  of t he  homogeneous equation 

+ 
then adding t o  it any pa r t i cu la r  solution, $p(t) of the  equation ( 3 7 ) .  

The solution, $h(t) ,  of t he  homogeneous equation i s  eas i ly  ver i f ied  t o  be 
+ 
$h( t )  D(t)z 

where 



-3 

A pa r t i cu la r  solut ion,  qp( t )  of equation (37), can be obtained by solving 

This gives 

where the diagonal m a t r i x  D 1  can take two possible  forms. If a l l  the  
eigenvalues of A a re  nonzero 

The p o s s i b i l i t y  t h a t  some of the  eigenvalues may vanish, however, cannot 
be excluded. This will happen, f o r  example, when there  a re  more chemical 
equations than d i s t i n c t  chemical species. Each eigenvalue of A which 
vanishes must have i t s  reciprocal  i n  D l ( t )  replaced by t .  For example, if 
the second and r t h  eigenvalues vanish, D l ( t )  takes  the  form 

Final ly ,  

Theref ore 

It i s  possible t o  determine the constants C 1 ,  C2,  . . ., C r  f rom the 

Zo = Z(0) = [ED(O)I? + [EDl(O)E-lIs 

equation 

From the  def in i t ion  of 
Consequently, 

D ( t ) ,  it i s  seen t h a t  D(0) = I, the  iden t i ty  matrix. 

+ 
C = E - q 0  - [D1(O)E-l]$ 

and t h i s  yields  

(384 ?(t) = ED(t){E-l%o - [D1(O)E-']8} + [ED1(t)E -1 I N  + 

The increments, M i  (i = 1, 2, . . ., r), f o r  the  in t e rva l  A t  are  found 
from 

nx' = ?(At)  - 30 

20 



Theref ore 
-1 + 

A? = [ED(At)E-' - l]zO + [EDl(At)E-l - ED(At)Dl(O)E I N  

For a fixed value of At, the diagonal matrices D(At) and Dl(At) become 
matrices with constant elements. For purposes of notation, let 

LED(At1E-l - I] = M = mij (i, j = 1, 2, . . ., r) ( 38b 1 
and 

[EDl(At)E-' - ED(At)D,(O)E-'] = H = hij (i, j = 1, 2, . . ., r) 

Then 
= Go + HZ 

In terms of the increments Ap and AT, this is written 

Computation of the Increments Ap, AT, and AYj 

With equations (6) and (39) combined there is obtained 

where 
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The two l inea r  
conibination of 

equations 
equations 

AT + 

below are  eas i ly  obtained f r o m  equation (27) and a 
( 3 2 )  and (34b) 

Equations (401, (41), and (42) comprise a system of ( r  + 2) l i nea r  equations 
i n  the  ( s  + 2) unknowns 
possible tha t  r = s 
these ( s  + 2) equations can be solved f o r  the  increments i n  question. 
both conditions cannot be s a t i s f i e d  simultaneously, and supplementary l i nea r  
equations i n  the variables AT, Ap, and Ayj  ( j  = 1, 2, . . ., s)  a re  needed. 
These supplementary equations can be obtained, just as i n  equilibrium from 
atom conservation equations. 

AT, Ap, and Ayj ( j  = 1, 2, . . ., s ) .  If it were 
and tha t  equations (40) form a l i nea r ly  independent se t ,  

However, 

The system of equations (40) always contains a l i nea r ly  independent subset 
which can be determined by reference t o  the  o r ig ina l  chemical equations (1). 
The chemical equations (1) can be ordered so  t h a t  each succeeding equation, 
a f t e r  the f i r s t ,  contains a chemical species not appearing i n  any of  the 
previous equations. 
be some number, say r l  (where r l  < r), of equations (40) which i s  l i nea r ly  
independent. This l i nea r ly  independent subset of equations can be determined 
before any computation i s  begun, and the  required atom conservation equations 
can be adjoined. 

If t h i s  ordering exhausts a l l  of equations (l), there  w i l l  

I n  the s species, there  are a f ixed  number, m, of d i f f e ren t  elements. 
L e t  nkj 
i n  species j .  The t o t a l  number of  atoms of element k must be constant so  
t h a t  

be the  t o t a l  number of atoms of element k (k = 1, 2, . . ., m) 
S 

When dy./dt i s  replaced by A7j/At and both s ides  of t ,h is  equation are 
multiplied by A t ,  there  i s  obtained 

J 
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S 
c 

From these m l i n e a r  equations, t h e  required supplementary equations can be 
obtained . 

It should be noted t h a t  equations (40) were derived independently from 
t h e  f l u i d  dynamical equations (l7), (18), and (19). 
fore ,  i n  conjunction with other sets of f l u i d  equations which arise in ,  f o r  
example, three -dimensional f l o w ,  or unsteady flow. 

They can be used, there-  

CONCLUDING RFSIARKS 

I n  order t o  compute accurately the  nonequilibrium channel flow of a 
multicomponent gaseous mixture, a numerical formulation i s  needed which 
applies t o  the  equilibrium and near-equilibrium regions of the f l o w  as w e l l  as 
the  nonequilibrium region. The needed formulation i s  obtainable when a proper 
choice has been made f o r  the  dependent variables,  and the  rate equations i n  
these var iables  a re  l inear ized over s m a l l  in te rva ls  of t i m e .  By a properly 
chosen transformation, these r a t e  equations can a l so  be uncoupled, and the 
problem of obtaining expressions for t he  react ion variables reduces t o  solving 
a system of l i nea r ,  uncoupled, f i r s t -order  d i f f e r e n t i a l  equations. The solu- 
t i o n  i s ,  of course, e a s i l y  obtained. However, i n  order t o  determine the  
needed transformation, it i s  necessary t o  solve an eigenvalue problem. It has 
been found t h a t  t he  needed transformation e x i s t s  f o r  a l l  regions of t h e  chan- 
nel,  and a method has been developed which reduces the  eigenvalue problem t o  
finding the eigenvalues of a symmetric matrix. This grea t ly  s implif ies  the  
computational problem because numerical methods f o r  f inding eigenvalues of a 
general matrix are unrel iable  in  t h e i r  accuracy. 

The integrat ion procedure used i n  reference 10 can be regarded as a 
special  appl icat ion of the present method. I n  tha t  work matrix methods were 
not required because of the low rank of the  system. The method i s  present ly  
being applied t o  a more general case. It appears t h a t  the necessary matrix 
manipulations can be performed accurately, and without adding grea t ly  t o  the  
computing time per  case experienced i n  reference 10. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Oct. 28, 1965 
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APPENDIX A 

PROPERTIES O F  THE MATRIX A 

The r x r m a t r i x  A = [ai11 of equation (36) has i t s  elements defined 
i n  equations (7).  

This can be w r i t t e n  

where 

and 

It i s  seen t h a t  biz = b2i  and hence the  matrix B = [b iz ]  i s  an r X r real 
symmetric matrix. Since X i  < 1, it follows t h a t  p i  > 0 (i = 1, 2, . . ., r). 
Likewise, from i t s  def in i t ion ,  qI > 0 ( 2  = 1, 2, . . ., r). 

Let P = diag (p l ,  p2, . . ., Pr) and Q = diag (ql, q2, . . ., &>. Then, 
from the construction of P, B, and Q, it follows t h a t  

A = PBQ 

Both P and Q are diagonal pos i t ive  d e f i n i t e  real  matrices and B i s  real 
symmetric. 

Theorem 1. 

L e t  A = PBQ where B i s  real symmetric and where P and Q a re  real, 
diagonal, and pos i t ive  de f in i t e .  

P = diag ( p i ,  92, . . ., pr) ; p i  > 0 , i = 1, 2, . . ., r 
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Then, the  eigenvalues of A are  the same as 
r i c  matrix 

where 

F = DBD 

Proof: 

Since P and Q are diagonal with rank 
possible,  then, t o  define a matrix 

the eigenvalues of a r e a l  symnet- 

r, each has an inverse.  It i s  

A l s o ,  l e t  
T = $BQ 

Then 

Now 

-1 -1 A = PBQ = PQ QBQ = S T 

[ A I  - A] = [ A I  - S-lT] = [S-lIIAS - T I  

where 

Consequently 

From the  de f in i t i on  of 
and only if I A S  - TI = 0. This shows tha t  the eigenvalues of A are  pre-  
c i se ly  the roots  of 

S- l ,  it i s  seen tha t  I S - l l  # 0. Thus ]AI - AI = 0 if 

] A S  - TI = 0.  

Now define the matrix R by 

This de f in i t i on  i s  made so t h a t  RSR = I. Consequently 

IRI * ] A S  - TI * IRI = IAI - RTRl 

Again, 1RI # 0 so t h a t  the  roo t s  of 
m a t r i x  

] A S  - TI = 0 are  the eigenvalues of the 

F = RTR 

This shows t h a t  the  eigenvalues of F axe the  same as the eigenvalues of A. 
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It w i l l  be shown that F is symmetric. Since R, Q, and B are a l l  

RT = R, QT = Q, and BT = B 
symme tr i e, 

Since R and Q are diagonal, they commute. Let 

Then 

Theorem 2. 

Let A and F be the matrices of theorem 1, and let R = diag (JG, 
)jTp27q2.r . . ,, Jxr). If A is an eigenvalue of F and 3 its correspond- 

+ -+ -~ 

ing eigenvector, then q = RE is the eigenvector of A corresponding to A. 

Proof: 

Theorem 1 shows that A is an eigenvalue of both F and A. Since 7 
is the corresponding eigenvector of F 

Thus 
PQ-~R-~(RQBRQ)~ = A F Q - ~ R - ~ ~  

The matrices R and Q commute since they are both diagonal. Hence 

(PBQ)R~ = APQ-~R-~? 
Now PQ-1R-l = R, since PQ-l = diag ( p ~ / q l ,  p2/%, . . ., pr/qr). Also 
A = PBQ, so that the above equation is 

M z  = ARZ 

Define by 

Then 

-+ 
7 = RI 

so that 5 is the eigenvector of A corresponding to A. Q.E.D. 
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Theorem 3. 
+ The eigenvectors vi (i = 1, 2, . . . , r)  of the  matrix A = PBQ of 

theorem 1 are l i n e a r l y  independent. 

Proof: L e t  F = DBD be the m a t r i x  used i n  theorem 1. Since F i s  r e a l  
symmetric, there  i s  a nonsingular m a t r i x  H such t h a t  

where A1, A2, . . . , A, a re  the  eigenvalues of the  matrix F. The poss ib i l -  
i t y  t h a t  some eigenvalues may have mul t ip l ic i ty  greater  than uni ty  i s  not 
excluded. L e t  L = diag (A1, h2, . . ., A,). Then 

FH = HL 
+ 4  + 

Denote the  column vectors of H by tl, 62, . . ., E r .  These column vectors 
of H are the eigenvectors of F, for 

+ -+ 
FEi = hiEi  

+ 
It i s  t o  be noted t h a t  t he  a re  l i nea r ly  independent since H i s  non- 
singular . 

where 

Now consider the  matrix 

The matrix G i s  nonsingular since it i s  the product of two nonsingular 
matrices, R and H. Thus, i t s  column vectors form a l inea r ly  independent s e t .  
But the  column vectors of  G are  

+ + 
V i  R S i  

The r e s u l t  of theorem 2 shows tha t  these are the eigenvectors of A = PBQ. 

Q.E.D. 
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