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A METHOD FOR COMPUTING NONEQUILIBRIUM CHANNEL FLOW
OF A MULTICOMPONENT GASEQUS MIXTURE
IN THE NEAR-EQUILTBRIUM REGION

By Walter E. Pearson and Barrett S. Baldwin, Jr.
Ames Research Center

SUMMARY

A method for computing one-dimensional, steady, nonequilibrium channel
flow of an arbitrary mixture of diatomic and monatomic gases is presented.
The method assumes the chemical and vibrational nonequilibrium rate processes
are not coupled. The numerical formulation permits accurate evaluation of all
variables appearing in the rate eqguations, and it precludes the necessity for
computing expressions which become indeterminate in the near-equilibrium
region.

INTRODUCTION

The flow of a multicomponent gaseous mixture which is influenced by
thermochemical noneguilibrium has proven to be difficult to predict in the
near-equilibrium region. In the analysis of a flow of this kind, the equa-
tions which describe the fluid dynamical processes must be solved simlta-
neously with equations which describe the nonequilibrium rate processes.

These rate equations take the form of a coupled system of nonlinear differen-
tial equations, and in order to proceed toward a prediction of the flow, it is
necessary to use numerical methods.

A numerical solution of the equations that govern the flow is possible in
principle, but has not been demonstrated to be practical for all cases that
may arise. Farly investigators found excessive amounts of computation neces-
sary in order to achieve numerical stability in the near-equilibrium regions
(refs. 1, 2, 3). The instability arises in part from the necessity for eval-
uating expressions which, as equilibrium is approached, become indeterminate
in the sense that theilr straightforward calculation leads to large numerical
errors. Several methods (refs. h, 5, 6) that have been of practical value
were devised for the approximate numerical integration of such so-called
"stiff equations,™ although they did not entirely remove the underlying cause
of the difficulties. In these early studies, the interest was centered pri-
marily on the physics of the problem, and the numerical difficulties were
regarded as an inconvenience.

Recently, three new methods have appeared that greatly reduce the comput-
ing time in the near-equilibrium regions of the flow (refs. T, 8, 9). These
later papers indicate a growing interest in the mathematical problem which,
evidently, has not been solved satisfactorily.



The nature of the problem may be defined by recalling that regions requir-
ing special treatment are frequently encountered in numerical calculations.
These are usually regions in which some physical quantity spproaches an asymp-
totic value. A standard remedy is to find a closed-form solution of a simpli-
fied set of equations that apply in the asymptotic region. A difficulty at
first appears to preclude the use of this device in the present problem. The
trouble arises from the fact that the equations are nonlinear over extensive
near-equilibrium regions so that a closed-form solution cannot be found. The
method, however, can be applied if the equations are linearized independently
in each small step of the numerical calculation, as was done by Morettil
(ref. 8). At first, it appears unwieldy to incorporate such a procedure in a
numerical integration program, but the resulting reduction in computing time
gives good reason to do so (refs. 8, 9, 10). Also, such a linearization pro-
cedure provides the only method available at present for computing accurately
the so-called reaction variables that appear in the rate equations.

The present method differs from that of Moretti (ref. 8) in that accurate

evaluation of the reaction variables is included. To accomplish this, consider-

able manipulation of the original rate eguations is necessary. However, upon
completion of these steps, a system of equations is obtained that applies for
equilibrium, near-equilibrium, or nonequilibrium flows. The method to be pre-
sented is based on the reguirement that means be found for computing, as accu-
rately as might be specified, all quantities appearing in the equations. This
requirement was previously employed in conJunction with a simplified model for
air (ref. 10) and has been discussed in connection with more general reacting

systems (ref. 11).

Specifically, this report contains a method for computing one-dimensional,
steady, nonequilibrium channel flow. The method pertains to an arbitrary
milticomponent mixture of ideal diatomic and monatomic gases, free from trans-
port effects and from interaction between the chemical and vibrational non-
equilibrium rate processes. The numerical formilation makes unnecessary the
computation of expressions which become numerically indeterminate in the near-
equilibrium region, but it requires the solution of an eigenvalue problem at
each field point of the one-dimensional flow.

The numerical difficulties inherent to calculating the eigenvalues of an
arbitrary matrix are well known. However, with the numerical formulation of
this report, the matrix in question is similar, at every field point, to a
real symmetric matrix which is easily constructed. This fact is used to
greatly simplify the computational problem.

SYMBOLS
A matrix of coefficients (see eq. (Al))
AL inverse of matrix A
AT transpose of matrix A



Ax) cross-sectional area of the channel at point x

D(t) diagonal matrix with diagonal elements e;Ait (i =1,2, . . ., r)
D.(t) diagonal matrix with diagonal elements i%-(i =1, 2, « « o5 1)

E matrix whose column vectors are the eigenvectors of matrix A

epj3 energy of dissociation per mole of species j

e internal energy per mole of species

Ej combined rotational, electronic, and translational energies per mole

of species
e vibrational energy per mole of a given species

EV(T) equilibrium vibrational energy Pper mole of a given specles at
temperature T

ev3 vibrational energy per mole of species

f natural vibrational frequency for a given molecular species assuming
it is a classical harmonic oscillator

H matrix (see eq. (38c))
h enthalpy per unit mass of the gas mixture
hi j element in the ith row and Jjth column of the matrix H

(see eq. (38c))

ho Planck's constant

I identity matrix

k Boltzmann's constant

k1 backward rate coefficient of the ith reaction
kei forward rate coefficient of the dith reaction
Ki(T) equilibrium constant of the ith reaction

kn,n+l probability that a molecule vibrating in the nth energy level will
make a transition to the (n + 1)th level in unit time

M matrix (see eq. (38b))
b% chemical formuils of species

mj 5 element in the ith row and Jjth colum of matrix M



Avogadrot's number
total number of atoms of element k 1in species

Ppressure

rate of production of species Mj by the 1ith reaction per unit
volume

universal gas constant

number of chemical reactions

number of chemical species

temperature

time

see equation (27) and explanation thereafter
speed of flow

see equation (27) and explanation thereafter
distance along the axis of the channel
constant appearing in equation (LO)

integer equal to vi' - Vi

integer equal to vij - Vij

concentration of the Jjth species in moles per unit mass of the gas
mixture

increment in eyj during the interval At
increment in T Jduring the interval At
incremental interval of time

increment in 73 during the interval At

increment in p during the interval At

increment in X5 during the interval At

energy of the nth vibrational level of a molecule

diagonal matrix whose elements are the eigenvalues of the matrix A




e

N ith eigenvalue of the matrix A

Mn nunber of molecules of a given species which are in the nth vibra-
tional energy level
s
vi integer egual to j{: Vij
J=1
s
vyt integer equal to j{: vij
J=1
vy stoichiometric coefficient of species Mj on the left side of chem-
J ical equation i
vi. stoichiometric coefficient of species Mj on the right side of chem-
J ical equation 1
o] density of gas mixture
g sum of all species concentration coefficients, 73 (5 = L, 2, ..., s)
Tj vibrational relaxation time for the Jth species
X1 reaction variable (see eq. (5))
f column vector whose elements are ¥X; (i =1, 2, « « », r)
Subscript
( )o used to indicate the numerical value of the quantity taken at the

beginning of the interval At
ANATYSTIS

Although they have been developed elsewhere, the basic equations for non-
equilibrium channel flow will be derived here. This derivation will provide
a background for the numerical method used in their solution.

Chemical Rate Equations

It is assumed that s chemical species, M: (3 =1, 2, . . ., s) are
involved in r chemical equations. These equations are represented by



S S

kes . .
Z vigy = Z viMy (=12, ..., 1) (L
j:l t j=l

where vij and vij are stoichiometric coefficients, the My are the chemical

formulas of the species, and kfi and kpi are the forward and backward rate
coefficients, respectively, of the ith reaction.

The ith reaction produces a quantity of species Mj at the rate Qjj

(moles/unit volume/unit time). For a fluid without gradients of concentration,
pressure, or temperature, the law of mass action leads to the following
expression for Qi j

Vij vl

!
Y SR SVEC I 1§01
Q]_J = BlJ(kfip j=173 kbip jgly‘j (2)

In this equation, 73 (moles/unit mass) is the molar concentration of species

Mj (3=1,2, ..., 8), p is the fluid density, and
S 5]
1 t 1
vy = Vij o vy = vij o and PBijy = vijy - Vij
j:l j:l

Tt is assumed that equation (2) holds for a flowing gas.

The equilibrium constant for concentrations of the ith reaction, Ki(T)
is a known function of the temperature, T, and at equilibrium,

kes(T)

E;;@ff (1i=1,2, .. ., 71)

K;(T) =

It will be assumed that this relationship holds when the reaction is not in
equilibrium as well.

The total rate of change of 73 is given by

dyj
pdtzzQij (jzl,2,...,s)

r
1=

1



Thus

r
d7j Vs 8 Vi v! s Vil
P = Z Bij<kfio in 7117“ - kbip 1 71 (3 =1, 2 > S)
1=1 1=1
i=1 (3)
These equations can be written
T
dy vi-y/ 5y,
— . Z B; sKpip L <an77, 1Z> X4 (3 =1,2, . . ., 8) (L)

where the dimensionless variables ¥Xi are defined by

p L1 71 (i = 1, 2, -« ., 1) (5)

and B4 = vi - vy (See ref. 3.) In near-equilibrium regions, the Xj
approach zero, and they cannot be computed accurately from equations %5)
Their accurate evaluation is essential if equations (4) are to be used, since

the dyj/dt cannot be set equal to zero in near-equilibrium regions. In the

method to be developed here, equations (4) will not be evaluated numerically,

but the method is capable of producing accurate values of the ¥Xi 1if they are
desired. When equations (5) are differentiated with respect to time, there is
obtalned a set of relations between the ¥X; (1 =1, 2, . . ., r), the 7.
(5 = . « ., 8), and the fluid dynamlcs varlables p and T. J

S
axi 1 Bll d7z Blz
at~ = T Ki(T) o L7

A (D@ E AT

St LEE e

Equations (6) are useful because they contain no forms which become indeter-
minate at some point in the flow field, including the near-equilibrium region.



Equations (4), (5), and (6) can be combined to obtain another set of
equations which will also be used in the computation of the flow.

r
axs '
dT .
d_t]; = = Z ajiXy + F(Tin) at + G(D:Xi) % (i = 1,2, -+ <, 1) (7)
1=1
where
513313 v,-1 § V13 i-1, 2
J s 9+« e Ir
ai; = (1 - X1)<Z ><kflp i jl;Il7j > <1 =1, 2, . . ., I'>
and
dK.
F(T,X1) = (1 - Xl)[ﬁT‘:l l) (1 =1, 2, , T)
B
G(p,x1) = (X1 - 1) 7%) (1 =1, 2, ., T)

Vibrational Rate Equations

It is assumed that the molecules of the gaseous mixture are free to
vibrate only at a discrete set of energy levels

ey = <% " %)kbf (n=0,1,2 ...

where h, 1is Planck's constant and f 1s the natural frequency for the
species in question assuming it is a classical harmonic oscillator. It is
further assumed that changes in energy can occur only between adjacent levels.

The probability that a molecule vibrating in the nth level will make a
transition to the (n + 1)th level in a unit time is designated by kn 1’
With this notation, ko 1 and kl o are the probabilities of excitation’ and
de-exc¢itation per wnit’ time, respectlvely, between the ground state and the
first excited energy level. Let pp be the number of molecules in the nth
vibrational energy level. Then

dipy
= - En-1,nMn-1 - ¥n,n-iMn + Knt+i,nMn+r - kn,n+1“n (8)



In reference 12 it is developed that
} -hof'
ko,1 = ka0 exp<kT (9)

where k is the Boltzmann constant. For other energy levels

“hof
kn,n+1 = kn+:|_,n exp RT

and from the gquantum-mechanical study of transition probabilities
kp,n-1 = nkj,0 (10)

If equation (8) is combined with equations (9) ana (lO), it is possible to
obtain

dp,

d_—'t,— = kl,o (l’l + l)p.n_l_l - Iy, + [exp >:][I1|J.n 1 (n + l)u ]} (ll)

Let Ny be Avogadro's number, and

If ey 1s used to denote the vibrational energy above the ground (n = o)
state of a given species, per mole of species

o]
N Nhf
v = T €nHn = Nty

n=o0 n=0

Therefore

o
dev  Nohof d“n
dt
n=1

When equation (11) is combined with this last equation, it is possible to
manipulate the resulting expression into the form



de Nohof
o2 a2 - o )| 02
1

=) -

The expression
Nohot

o ()] -2

is defined to be the vibrational energy, per mole of species, corresponding to
equilibrium conditions at temperature T. Also, the relaxation time, T, is

defined by the relation
~hof
- kl,o[l - exXp TT‘ﬂ (13)

With these definitions, equation (12) can be written in a more compact form.

&v(T) =

Q=

dey [ev(T) - ev]
at T

(14)

Since k;,o 1is a function of density, temperature, and chemical species, T
is a function of these variables. It is customary to write, for the jth
chemical species, the vibrational nonequilibrium eguations in the form

deyy [Bvi(T) - eyy]
at Tj(p,T) (j =1, 2, . . .,

(15)

[ 4]
~—

The vibrational energy of species J 1s related to the total internal energy
per mole, ej, of species j by the equation

ej = éj + evj + €Dj (16)

where éj(T) is a function of temperature which expresses the rotational,
electronic, and translational energies per mole of species Jj. The term €p3>

a constant, is the energy of dissociation per mole of species j.

10



Fluid Dynamical Egquations

Since the flow under consideration is to be one-dimensional and steady,
all quantities used in its description are functions of a single independent
variasble. The channel is presumed to be described by some function of x,
the distance along the axis of the channel from some fixed point. However,
the flow variables will be considered as functions of time, t. In the conser-
vation equations which follow, the speed of the flow is represented by u, the
pressure by p, the cross-sectional area of the channel by A, and the enthalpy
per unit mass by h. The conservation equations are

Mass pUA = cy (17)
. L.
Energy Fu +h=cs (18)
dp
Momentum %'uz + 5= Ca (19)

The numbers c¢i, Ca, and cg are constants of integration.

Tt is assumed that either a function A(x) or a function p(x) is given.
When A(x) is given, the cross-sectional area of the channel is prescribed;
when p(x) is given, the pressure is a known function along the channel.

For a mixture of gases composed of s speciles, the thermal equation of

state is
S
D = Z 75)oRT (20)
j=1

In this equation, R is the universal gas constant. In later equations, the
notation

S
7y =0

J=1

will be used. Thus

By differentiating equation (21) with respect to time, and using

11



it is found that

S
urdp _gr tdo T \' ¥y
P ax-attToat T a (22)

Equation (22) is useful when p(x) is specified. When A(x) is given
instead, equation (22) can be adapted by using the equations for conservation
of mass and momentum. To this end, the conservation of mass equation can be

written

dp du dA
(wa) ==+ (oh) gz + (ow) g5 = O (23)
and from the conservation of momentum
du 142
dx p dx "
or du 1 dp
& = P& (24)

When equations (23) and (2L4) are combined, there is obtained

dp dp = PU® ga

R e

dx dt A dx
Finally, by substituting the right side of equation (25) for dp/dx in equa-
tion (22), it is seen that

(25)

s
3 2o\ dp
ulaa _ar T/ _up 27__& (26)
Mo dx 4t P P /at " o /., dt
J=1
This equation will be useful when A(x) is specified.
In general
S ay
ar T .__dp T J _
awtelw s/ omw oV (27)
j=1

When A(x) is specified, U = [1 = (u2/oRT)] and V = (u3/ARo)(dA/dx). When
p(x) is specified, U = 1 and V = (uT/p)(dp/dx).

12
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Equation (27) is one of the two fluid dynamical equations which will be
used in the numerical solution of the nonequilibrium flow. The other such
relation is derived from the equations for conservation of energy and momentum.

The specific enthalpy, h, is given by

P
h=e+ o

For a mixture of s chemical species, the internal energy, €, per unit mass
is
5

e = Z 7JeJ

j=1

s
= e, +
h }2 7JeJ

J:l

Therefore

el kel

(28)

When this equation is differentiated with respect to time, there is obtained
s s 4
dn _ P,V e 1 ar 2 (29)
at - 73 at jat Teat e at

When the equations for the conservation of energy and momentum are differen-
tiated and then combined, it is possible to show that

1 dp
at = P at (30)
From equation (16),

de = dé . de._ -
J J vJ .
T it o (J =1,2, « « ., 8)

and since déj/dT is a known function of T, it is convenient to write

d.ej d.'éJ aT + devj (
at —ar at T av J

=1,2, « . ., s) (31)

13




When equations (29), (30), and (31) are combined, there results

s s 5
dg3\ g dey; dY5  oRT dp

ZVja‘T— d—t+27j dt+zeja—'—p—a€=0 (32)

J=1 J=1 J=1

Equation (32) together with equation (27) will be used with the equations of
the nonequilibrium rate processes in the numerical procedure which is to be

described.

NUMERICAIL: PROCEDURE

For one-dimensional channel flow, the field points can be stationed along
a line which extends the length of the channel. The variables p, T, 73, and
evj (j =1, 2, « « ., s) from which all other flow variasbles can be obtained
must be computed at each of these stations.

As a fluid element moves downstream from one station to the next, an
interval of time At elapses, and there are corresponding increments Ap, AT,
ij, and Aeyj. Let it be assumed that the fluid element is at a given station
at time to and at the next downstream station at time (to + At). Then

p(to + &at) = p(to) + Ap
T(to + At) = T(tg) + AT
75(to + at) = 75(t0) + &y ; (3=1,2, « .., s)

1, 2, « « ., 8)

evj(to + At) evj(to) + Aey (3

The computational problem is to find numerical values for the increments Ap,
AT, Oy, and Aeys when numerical values of the flow variables are known at
the upstream station. ©Since values for all guantities are assumed known at
the beginning of the interval (to, to + At), there is no loss in generality
in taking t, = O and denoting values at the beginning of the interval by the
subscript o. Thus

p(At) = pg + Ap

T(At) = Tg + AT
vi(at) = (r35)o + 095 (3=1,2, « . ., s)
evj(ﬁ¢) = (evj)o + Aeyy (3=1,2, « « «, 8)

1L




Computation of the Increments Aevj

As a consequence of the assumption that vibrational and chemical relaxa-
tion rates are not coupled, an expression for the Aeyj (3 =1,2, « « +, 8)

can be found independently of the increments A4Yj. Since p and T are func-
tions of time, equations (15) can be written

devs (&vy - evidg .
< > (Tj)o (3 =1, 2, « « «, 8)

It might be presumed, then, that the increment Aeyj could be computed from

(83 - evﬂ

Aears = =1, 2, o o
v (T —J (3 ) S ; 8)

However, use of these equations are not practical because of the behavior of
the right-hand side in the near-equilibrium region of the flow. In the near-

equilibrium region, l/Tj is very large while (§Vj - evj) is very small. This
makes an accurate evaluation of AevJ impossible even for smgll At. Apart
from this, the use of (evJ - eVJ) over the entire interval, At, is of ques-
tionable validity. The quantities T3, &vj, and eyj can be described as
slowly varying in the near-equilibrium region, because their change during a
short-time interval is small enough that their value during the interval can
be approximated by a constant. On the other hand,(éQJ - evj) can change by

several times its own magnitude during a small interval of time when the
upstream station is in the near-equilibrium region.

A means of avoiding these numerical difficulties is provided by the

behavior of &yj. ©Since it 1s a slowly varying function, d€§j/dt can be con-

sidered constant over an interval At. Likewise, T can be considered con-

stant over the interval. J

With this in mind, the following equations are derived from equations (15).
a8y _devy /vy~ ey N Aoy (5=1, 2 )
gt At - T3 at ST S e ®

These can also be written

1 ,— deévj .
dt (eVJ - eVJ) = ;3 (evj - evj) + at (J =1, 2, « « ., s) (33)
Over the interval At, T3 = (73), and
agyy By
at At

15



Hence, over this interval, equations (33) become linear differential equations
with constant coefficients. Their solution is found to be

[Evi(t) - eys(8)] = A—i—z—j (T5) + [(Evj - evilo - (T5), AZtJjI {eXP[" (TJL)OJ }

(3=1,2, « v« ., 85)

where 0 < ¢t < At. From this solution, the increment in (Eﬁj - evj) corre-~
sponding to At can be found

— AT — AEV'W
A(Evg - evy) = exp[_ ]_l}[(e"e')—('r-) —d =1, 2, « o o, 8
V3T eV (_TJ.)O vi-evilo 3o Tat | (3 > = > 8)
(3ka)
Equations (34a) show that as (73j)y = O (equilibrium is approached), the
increments A(Eyj - evj) - - (8yy - evJ) There is no difficulty in computing

these increments in the near-equllibrlum region by means of equations (3&&)
The increments Aeyj can now be determined accurately.

Aevj = A‘é‘vj - A(‘é’vj - evj) (j = l) 2, . e ey S)

_ a8y 3\ /AT dev .
AeVJ=<dT \At N T OAT (3=1,2, . .., s)

These last two sets of equations are combined with equations (3ka) to give

o - (58, o -] - [ - e - (50, ]

(J =1, 2, . . . S) (31&’)

and

Computation of the Increments AX4

When the increments AevJ (j = 1, 2, . . ., s) have been found by the
method Just outlined, there remain the (s + 2) increments Ap, AT, and A7 3
(5 = 1, 2, . . ., 8) yet to be computed. These will be found by solving a

system of (s + 2) linear equations in which the variables are the (s + 2)
increments in gquestion. However, these equations contain the increments AOX4
(i =1, 2, . . ., r) taken by the variables Xi during the interval At. It
will be shown that upon solution of an eigenvalue problem, each AXi becomes
a linear function of Ap and AT.

16



The variables X4 (i = 1, 2, . . ., r) satisfy the coupled system of rate
equations (7)
r
dX
Z ajiXy + F(T, xl) L, G(p,%1i) dt
where
B]_JB],J —l 5 V3 i=1, 2
J > & > T
= (1 - %) Z <kflp JH17 > <Z =1, 2, - . I'>
dKy
F(T,%1) = (1 - xg[K (T)] >
[ Bi
G(p,x1) = ~(1 - x1) o

With the exception of X3 itself, all the variables which appear in the coef-
ficients aj7, F(T,Xi), and G(p,Xi) are assumed to be slowly varying in the
sense that they change by only a small percentage of their magnitude during

an interval At. Hence, they will be approximated by a constant value over
this interval. 1In the near-equilibrium region, however, the variables Xi

(i =1, 2, . . ., r) can change by several times their own magnitude during
the interval. This magnitude must be small because X4i - O as equilibrium is
approached. However, in any region of channel flow, including the near-
equilibrium region,(l - X1i) can change by only a small percentage of its value
during a small interval of time. This fact allows the coupled, first-order
system, equatlons(T), te be "linearized" by taking the coefficients to be con-
stant over the interval At. Equations (7) are then written

r
FE= - ) a0 ) ¢ olerls 32
1=1

(1=1,2, ..., r) (0=2t=2at)y (39

When the constants N3 are defined through the equation

[F(T,%1)] [a(psx1)]
Nj_’—i——gxt—l_)—o-AT'*'—_%tl—gAp (i:l,2,...,r)

the differential equations (35) can be written in vector form

Y (36)

L7



where

X1 Ny (211)g (312)0 e oo (aar)y
Xg No (a‘Zl)o (a‘22)o c ot (a‘ZI')O
.)_z = : s ﬁ = : ’ and A =
Xr Ny \(aTl)o (ar2), -+« (arr),
Although numerical values cannot be assigned to Ni (i =1, 2, . « «, r) until

AT and Ap have been found, this must not obscure the fact that each N;i can
be considered to be a constant over the interval At.

It f(t) is a vector function which satisfies the differential equa-
tion (36) such that Xo = X(0), then each &Xy (i =1, 2, . . ., r) is deter-
mined by the equation

X = X(at) - X(0)

Consequently, a general solution must be found for equation (36).

Toward this end, a transformation will be used to replace equation (36)
with an uncoupled system. Theorem 3 in the appendix shows that such a trans-
formation exists. This theorem states that there are eigenvectors, 71i
(i=1,2, ..., r), of the matrix A which are linearly independent at every
point in the flow. A simplified method for finding the eigenvalues and eigen-
vectors of A 1s provided by theorems 1 and 2 in the appendix.

If E 1is the matrix whose ith column is the eigenvector Hi which
corresponds to the eigenvalue A{ of A, then E is nonsingular since its
column vectors are linearly independent (see ref. 13). Moreover,

A=EAE?L

where A 1is the diagonal matrix whose diagonal elements are the eigenvalues
of A.

A1
A2

A = diag (7\1’ 7\2’ e o oy 7\r) =

18



Equation (36) can be written

= (EAEY)X + N

18,

or

=-AE X + BTN

L
218

-1l

Setting ¥ = B X yields

a2y

= AV + BTN (37)

Equation (37) is an uncoupled system because A 1s a diagonal matrix of
constants.

If $(t) is a general solution of equation (37) then

X(t) = E¥(t)

is a general solution of equation (36).

- The general solution, $(t), is found by obtaining a general solution
Wh(t) of the homogeneous equation
ay
-
ac =

then adding to it any particular solution, :If’p(t) of the equation (37).

Y(t) = () + up(%)
The solution, $h(t), of the homogeneous equation is easily verified to be

Vn(t) = p(t)¢
where
e'?\]_t

02 e "'7\2t

11

g - and D(t)

"7\rt
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A particular solution, ﬁb(t) of equation (37), can be obtained by solving
- - 12
0= - Wp + E7°N

This gives

-

Vp = Da(t)ETN

where the diagonal matrix Dj can take two possible forms. If all the
eigenvalues of A are nonzero

- : 1 1 1
D,(t) = A" = diag 7\1’7\2,...,7\_1‘.

The possibility that some of the eigenvalues may vanish, however, cannot
be excluded. This will happen, for example, when there are more chemical
equations than distinct chemical species. Each eigenvalue of A which
vanishes must have its reciprocal in D;(t) replaced by t. For example, if
the second and rth eigenvalues vanish, Dl(t) takes the form

Di(t) = diag <§%—, t, %; 3 e e e i%j: ’ {)
Finally,
¥(6) = Yp(e) + ¥g(t)
- D(+)C + DL (4)ET'W
Therefore

X(t) = [ED(+)1C + [ED1(t)E™*IN
It is possible to determine the constants Ci, Cz, . . ., Cp from the
equation
- - —> -1 -
Xo = X(0) = [ED(0)IC + [ED1(0)E™ "IN

From the definition of D(t), it is seen that D(0) = I, the identity matrix.
Consequently,

¢ =E%, - [D(0O)E LN
and this yields

X(t) = ED(t){E'li’o - [Dl(O)E_l]ﬁ} + [ED1(t)E™ 1N (38a)
The increments, AXi (i =1, 2, . . ., r), for the interval At are found

from

A= X(at) - %o

20



Therefore

1

- [Ep(at)E™Y - IIX, + [ED1(at)E™ - ED(at)D1(0)E "IN

For a fixed value of At, the diagonal matrices D(At) and D;(At) become
matrices with constant elements. For purposes of notation, let

-1

[ED(AL)E ™ - I] = M = mj; (i, 3=1,2, « « o, 1) (38p)

and.

[ED1(at)E™ - ED(at)D1(0)E™"] = H = by (1, 5 =1, 2, « « oy 1)

(38c)
Then

-

—> =
DX = MXq + HN
In terms of the increments Ap and AT, this is written
r r r
AV S m; 5(X3), Z 3 AT + hij —xg | &P
j:l J =1 j:l

(1=1,2, ...,7r) (39

Computation of the Increments Ap, AT, and ij

With equations (6) and (39) combined there is obtained

r

1 dKy F(T;XZ _B_a . ¢(p,%q), N
Ki(T) 4T - + ay 11— 2|40
© =1 1=1
S [3 T
1
}: 7Ji 7§ = @i }Z miz(Xy),  (1=1,2, . « ., 1)
J=1 1=1
(ko)
where
K, (T)
CLi = ———
Bl S BZLJ
73
J o]
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The two linear equations below are easily obtained from equation (27) and a
combination of equations (32) and (3Lb)

AT + <§>O i Ly s + <U %)O Np = (V)O At (h1)

j=1

5 o0 (), - (58) G o 5] - )] - (),

J=1

Equations (40), (1), and (42) comprise a system of (r + 2) linear equations
in the (s + 2) unknowns AT, Ap, and Ay: (j =1, 2, . . ., s). If it were
possible that r = s and that equations (40) form a linearly independent set,
these (s + 2) equations can be solved for the increments in question. However,
both conditions cannot be satisfied simuiltaneously, and supplementary linear
equations in the variables AT, Ap, and Ay: (j =1, 2, . . ., s) are needed.
These supplementary equations can be cobtained, just as in equilibrium from
atom conservation equations.

The system of equations (L0) always contains a linearly independent subset
which can be determined by reference to the original chemical equations (1).
The chemical equations (1) can be ordered so that each succeeding equation,
after the first, contains a chemical species not appearing in any of the
previous equations. If this ordering exhausts all of equations (l), there will
be some number, say ri (where ry < r), of equations (MO) which is linearly
independent. This linearly independent subset of equations can be determined
before any computation is begun, and the required atom conservation equations
can be adJjoined.

In the s species, there are a fixed number, m, of different elements.
Let nkj be the total number of atoms of element k (k =1, 2, .. ., m)
in species j. The total number of atoms of element k must be constant so

that
s

arj
ngj 7 = O (k =1, 2, . . ., m)
j=1

When dy./dt is replaced by ij/Am and both sides of this equation are
multiplied by At, there is obtained
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From these m linear equations, the required supplementery equations can be
obtained.

It should be noted that equations (hO) were derived independently from
the fluid dynemical equations (17), (18), and (19). They can be used, there-
fore, in conjunction with other sets of fluid equations which arise in, for
example, three-dimensional flow, or unsteady flow.

CONCLUDING REMARKS

In order to compute accurately the nonequilibrium channel flow of a
milticomponent gaseous mixture, a numerical formulation is needed which
applies to the equilibrium and near-equilibrium regions of the flow as well as
the nonequilibrium region. The needed formulation is obtainable when a proper
choice has been made for the dependent variables, and the rate equations in
these variables are linesgrized over small intervals of time. By a properly
chosen transformation, these rate equations can also be uncoupled, and the
problem of obtaining expressions for the reaction variables reduces to solving
a system of linear, uncoupled, first-order differential equations. The solu-
tion 1s, of course, easily obtained. However, in order to determine the
needed transformation, it is necessary to solve an eigenvalue problem. It has
been found that the needed transformation exists for all regions of the chan-
nel, and a method has been developed which reduces the eigenvalue problem to
finding the eigenvalues of a symmetric matrix. This greatly simplifies the
computational problem because numerical methods for finding eigenvalues of a
general matrix are unrelisble in their accuracy.

The integration procedure used in reference 1O can be regarded as a
special application of the present method. In that work matrix methods were
not required because of the low rank of the system. The method is presently
being applied to a more general case. It appears that the necessary matrix
manipulations can be performed accurately, and without adding greatly to the
computing time per case experienced in reference 10.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 28, 1965
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APPENDIX A
PROPERTIES OF THE MATRIX A

The r X r matrix A = [aj;] of equation (36) has its elements defined
in equations (7).

Bi Bz v,-1s Y1
aig = (1 - Xi)g }Z J =) (k0 L S ! (a1)
- e}
e}

This can be written
aj; = Pibi1dg

where

i vy-1 B V4
Py = (l = xl)o: q; = (K_mp i 313173 >

(@]
S
Bi15P13
4 J
J:.l (@]

It is seen that bsij = byi and hence the matrix B = [biz] is an T X r real

and

symmetric matrix. Since Xi < 1, it follows that pi >0 (i =1,2, . . ., r).
Likewise, from its definition, q; >0 (2 =1, 2, . . ., r).
Let P = diag (p1, P2, - - -, Pr) and Q = diag (92, @25 - - -, 9z). Then,

from the construction of P, B, and Q, it follows that
= PBQ

Both P and @ are diagonal positive definite real matrices and B 1is real
symmetric.

Theorem 1.

Let A = PBQ where B is real symmetric and where P and @ are real,
diagonal, and positive definite.

1,2, .. ., r

I

P = diag (p1, P2, - - -5 Pp) 5 Py >0, i

Q diag(‘ll)%:"':qr); q1 > 0, i=1,2, .. .,

2h



Ik

Then, the eigenvalues of A are the same as the eigenvalues of a real symmet-
ric matrix

F = DBD
where
D = diag (JP1d1, JPalss - - - 5 Prdy)
Proof:

Since P and Q@ are diagonal with rank r, each has an inverse. It is
possible, then, to define a matrix

-1 - .
5 = PQ o diag (Pl/Ql) p2/92: L ] pr/qr)
Also, let
T = QBQ
Then -1 -1
A =PBQ = PQ QBQ =8 T
Now
AT - a] = AT - s717] = [871]1[As - T]
where
S = diag (a1/p1, a2/P2, - - -5 9,/Pp)
Consequently
IAT - 4] = |87 - |as - T

From the definition of S~%, it is seen that |8™%| # 0. Tms |AI - A] = O if
and only if IAS - Tl = 0. This shows that the eigenvalues of A are pre-
cisely the roots of |%S - Tl = 0.

Now define the matrix R Dby

R = diag (/pi/a1,JP2/a2, - - -5 Pn/an)

This definition is made so that RSR = I. Consequently

[R] - [ns - T}. |R] = AT - RTR

Again, |R| # 0O so that the roots of IKS - TI = 0 are the eigenvalues of the
matrix

F = RIR

This shows that the eigenvalues of F are the same as the eigenvalues of A.
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It will be shown that F is symmetric. Since R, Q, and B are all
symmetric,
RT-R, @'=q, and BT =3B

Then
FT = RT(qBQ)TRT = RTQTBTQTRT - RQBAR = F

Since R and Q are diagonal, they commute. Let

D =R = QR = (P1az, VPodss - - - 5N Pnin)

Then
F = DBD Q.E.D.

Theorem 2.

-

NPo/dss - - -»NPp/ap). If A is an eigenvalue of F and £ 1its correspond-
ing eigenvector, then 1 = RE 1is the eigenvector of A corresponding to A.

Let A and F_be the matrices of theorem 1, and let R = dilag ([pi /a1,

Proof:

Theorem 1 shows that N 1s an eigenvalue of both F and A. ©Since E
is the corresponding eigenvector of F

FE = (RABRR)E = AL
Thus
PQ 1R"1(RQBRQ)E = APQ IRIE

The matrices R and Q commute since they are both diagonal. Hence

(PBQ)RE = APQT*R™YE

Now PQ~IR™Ll = R, since PQ~1l = diag (P1/d1, Po/dss - - -, Pr/ap). Also
A = PBQ, so that the above equation is

ARE = ARE
Define 1 by N N
n = RE
Then
An = A
so that ﬁ is the eigenvector of A corresponding to A. Q.E.D.

26



Theorem 3.

The eigenvectors 17; (i =1, 2, . . ., r) of the matrix A = PBQ of
theorem 1 are linearly independent.

Proof: Let F = DBD be the matrix used in theorem 1. Since F is real
symmetric, there is a nonsingular matrix H such that

H'FH = diag (A1, Az, - - -5 A
where A1, A2, - . ., A are the eigenvalues of the matrix F. The possibil-
ity that some eigenvalues may have multiplicity greater than unity is not
excluded. Let L = diag (A1, Nasy - - .5 Ap)- Then
FH = HL
Denote the column vectors of H by El, Eé, ey E&. These column vectors

of H are the eigenvectors of F, for
FE; = NiE4 (1 =2,2, ..., 1)

It is to be noted that the Ei are linearly independent since H 1is non-
singular.

Now consider the matrix
G = RH

where

R = diag (Jpa/a1s Jp2/a2, - - -, JPr/ar)

The matrix G 1s nonsingular since it is the product of two nonsingular
matrices, R and H. Thus, its column vectors form a linearly independent set.
But the column vectors of G are

-

ni = RE;

The result of theorem 2 shows that these are the eigenvectors of A = PBQ.

Q.E.D.
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