EMMA Lattice

J. Scott Berg Brookhaven National Laboratory EMMA Design Review 4 January 2007

Goals of EMMA

- Must understand goals to understand lattice design
- Study linear non-scaling FFAGs under particular circumstances
 - Rapid acceleration
 - Relativistic energies
 - Main application currently: muon acceleration
- Two important characteristics of non-scaling FFAG lattices
 - Rapid acceleration through many resonances
 - Unique longitudinal dynamics: "serpentine acceleration"

Goals of EMMA Serpentine Acceleration

Goals of EMMA

- EMMA is not simply a demonstration machine
- We want to test our understanding of the underlying dynamics
 - How does emittance growth depend on which resonances we cross?

4

- How does longitudinal behavior change with machine parameters
 - ***** RF frequency
 - ***** Energy where machine is isochronous
- Coupling of transverse and longitudinal motion
- What effect do errors have on performance
 - ★ Magnet position
 - ★ Field strength
 - ★ RF phase errors

Basic Lattice Parameters Motivation

- Performance parameters driving basic design
 - Would like 500 cell-turns for reasonable longitudinal parameters (a = 1/12)
 - * More cell-turns means more cells, shorter cells
 - Want achievable fields in magnets (target was 0.2 T)
 - Want magnets with a "reasonable" length-to-width ratio
 - Cost and available space

Basic Lattice Parameters

- Energy range: 10–20 MeV kinetic energy
 - Machine size, magnet fields prevent going higher
- Combined-function doublet cells
 - Generally give most cell-turns
- 42 cells
 - Fewer cells would require
 - * Fields that are probably too high
 - * Magnets which are very short compared to their aperture
 - More cells increase cost, circumference
- RF Frequency: 1.3 GHz
 - Higher frequency gives fewer cell-turns for given number of lattice cells
 - Lower frequency too large

Baseline Lattice Design

- This is our demo lattice: it tries to model the real machine
 - Avoid $\nu_x 2\nu_y = 0$ resonance, which we tend to cross slowly
 - Avoid $\nu_x \nu_y = 0$ resonance to avoid linear coupling
 - Get horizontal tune high to achieve performance (500 cell-turns at a = 1/12, 20 kV per lattice cell)
 - Initial pole-tip estimates are comparable for both magnets
 - Time of flight same at low and high energy
 - Synchronized to 1.3 GHz RF
 - Long drift has space for cavity
- Use displaced quadrupoles to get combined function (engineering considerations)
- This lattice determines the geometry

Baseline Configuration Tune Footprint

Baseline Configuration Time of Flight

Baseline Configuration Lattice Parameters

- Assuming a longitudinally rectangular field profile
- Hard-edge end fields, assuming a multipole end field profile
- Layout is a sequence of connected line segments
 - Bend by half magnet angle at entrance and exit
- Displacement is distance of quad center from line

Long drift Short drift **D** length D angle **D** displacement D gradient F length F angle F displacement F gradient

210.000 mm

- 55.452 mm
- 70.921 mm
- 215.333 mrad
 - 33.306 mm
 - -4.892 T/m
 - 58.221 mm
- -65.733 mrad
 - 8.459 mm
 - 6.650 T/m

Lattice Cell Layout

Alternate Configurations

- Try to accomplish study goals
 - Pass through different sets of resonances
 - Study range of longitudinal dynamics parameters
- Vacuum chamber remains in place
- Only allowed lattice changes
 - Horizontal displacement of magnets
 - Change in magnet gradients
 - Change in RF frequency
- Different configurations will determine vacuum chamber size, magnet and cavity apertures

Alternate Configurations Passing Through Different Resonances

- Focus on resonances to third order
 - Skew quad driven
 - Upright sextupole driven
 - * We have upright sextupole, since we're off-axis in the magnet
- Vary how we cross these, or on which side we're on
 - Stay between $\nu_x \nu_y = 0$ and $\nu_x 2\nu_y = 0$, vary whether we cross $3\nu_x = 1$ and $\nu_x + 2\nu_y = 1$
 - Go above $\nu_x \nu_y = 0$
 - Make ν_x as high as practical, ν_y as low as practical

Alternate Configurations Tune Footprints

Alternate Configurations Passing Through Different Resonances

- Configurations above $\nu_x \nu_y = 0$
 - Require significant aperture increases
 - * Low tunes increase horizontal aperture
 - * High tunes increase vertical aperture
 - Less interesting in the situations EMMA is studying
 - * They tend to have larger horizontal apertures
 - * It is difficult to make them isochronous
 - I suggest that we ignore these when determining apertures
- Configuration between $\nu_x \nu_y = 0$ and $\nu_x 2\nu_y = 0$ and below $3\nu_x = 1$ then determines aperture
 - Avoids all resonances driven to lowest order by sextupole
 - Thus important to keep

Alternate Configurations Passing Through Different Resonances

- Longitudinal dynamics gets modified as well
- Path length changes
 - RF frequency must be adjusted
- Range of time of flight (min to max) changes
 - \bullet Need more or less voltage to get same a
 - Number of turns to accelerate changes

Passing Through Different Resonances Time of Flight

Alternate Configurations Longitudinal: Vary Synchronized Energy

- Change the energies that are synchronized to the RF
- Changes the longitudinal dynamics (varies *b*)
 - More or less longitudinal phase space acceptance
 - More or less longitudinal phase space distortion
- Useful in commissioning: running at fixed energy
 - Running with cavities off will give beam loading problems
- Requires that the RF frequency be varied
- No effect on aperture

Vary Synchronized Energy Time of Flight

Alternate Configurations Longitudinal: Vary Centering of ToF Curve

- Move the energy for the minimum of the time of flight curve
- Time at low and high energy will now be different
- Looking at variations in longitudinal phase space behavior
- Extremes: place minimum at 14 MeV and 16 MeV
 - Going further requires increasing apertures significantly
- Considered doing this for different lattices
 - Lattice below $3\nu_x = 1$
 - * Increased aperture significantly
 - * Already largest aperture
 - * Thus, not proposing to try this
 - Only considering for high-tune lattices
- As before, must adjust RF frequency and voltage, increase apertures

Vary Centering of ToF Curve Time of Flight

Required Quad Parameters for Configurations

- D Quad (dimensions in mm)
 - Vacuum chamber: horizontal [-8.297,16.030], half height 11.722
 - Quad center displacement: [28.293,51.823], baseline 33.306
 - Maximum horizontal quad coordinate: -60.120
 - Maximum gradient: -5.041 T/m
- F Quad
 - Vacuum chamber: horizontal [-19.737,22.218], half height 8.874
 - Quad center displacement: [6.172,12.429], baseline 8.459
 - Maximum horizontal quad coordinate: -32.166
 - Maximum gradient: 6.799 T/m

- Cavity aperture: horizontal [-17.164,21.265], half height 11.128
- Frequency tunability range: [1.297457,1.301423] GHz
 - Allows running different b in different configurations
 - Allows running at fixed frequency over entire energy range
- RF voltage
 - Assuming one cavity every third cell
 - To achieve a = 1/6 in all symmetric configurations: 159 kV/cavity
 - More is desirable, up to 360 kV

