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Overall Plan

February 22: Motivation and numerical methods

February 27: Lattice gauge theory, e.g., QCD

March 1: CKM Matrix elements
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Motivations for Lattice Field Theory

Lattice field theory is a rigorous way to define quantum field theory, perhaps the only
way. Those who aim to “construct” quantum field theory start with a lattice. Their
problem then starts out mathematically well-defined (see below), and they try (with
the renormalization group) to maintain control over the continuum limit.

Field theory on a lattice is formally the same as classical statistical mechanics. Thus,
it provides a new toolkit to carry out practical calculations. E.g., at long distances
perturbation theory (the high-energy theorist’s favorite tool) breaks down for quantum
chromodynamics (QCD).

Indeed there are several problems in high-energy physics, nuclear physics, and as-
trophysics where non-perturbative information from QCD is needed. Lattice QCD
calculations give matrix elements in B decays, information on proton structure, and
the equation of state as the universe cools from a quark-gluon soup to hadrons.

Lattice QCD 1 Theoretical Motivation Andreas S. Kronfeld
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Flavor and Hadron-Collider Physics
There are two places in particle physics where lattice calculations are (or will be)
especially important: quark flavor physics and hadron-hadron collisions. Both will
help us infer whether there are new phenomena at play in experiments.

At the right we have a plot of

the theoretical uncertainty in the

gluon density of the proton vs. x.

High mass particles need large x
partons and must be seen above

background.

Moments of such functions can be

calculated in lattice QCD, thereby

constraining the large x behavior.

Lattice QCD 1 Physics Motivation Andreas S. Kronfeld

3



Flavor Physics

CKM unitarity triangle, early 2006

Limit on Bs mixing frequency ∆ms

Watch the orange band!

Why is the ring still so BIG?

Lattice QCD 1 Before Bs Mixing Andreas S. Kronfeld
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Flavor Physics

CKM unitarity triangle, March 2006

Two-sided bound on ∆ms

Experimental uncertainty 10%

Why is the ring still so BIG?
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Flavor Physics

CKM unitarity triangle, April 2006

Measurement of ∆ms

Experimental uncertainty 1%

Why is the ring still so BIG? QCD
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Quantum Chromodynamics
Quantum chromodynamics (QCD) is the modern theory of the strong interactions: the
force that binds quarks and gluons into hadrons, and, in the end, nuclear physics.

“QCD is easily described.” The Lagrangian has 1+n f free parameters:

LQCD =
1

2g2 trFµνFµν−∑
f

q̄ f (/D+m f )q f ,

with gauge coupling (or strong coupling) g2 and quark masses m f .

SU(3): Dµ = ∂µ +Aa
µta, Fµν = [Dµ,Dν] = ∂µAν−∂νAµ +[Aµ,Aν]

ta
i j: 3×3 traceless anti-Hermitian matrices, ta† =−ta.

q j
f : transform under 3 representation of SU(3).

Set the parameters with 1+n f experimental measurements; predict everything else.

Different conventions for factors of i. Perturbative QCD: Aµ → gAµ.
Lattice QCD 1 QCD Andreas S. Kronfeld
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Asymptotic Freedom

Renormalized coupling g2(Q) decreases as the momentum scale Q increases:

0
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0.3

1 10 10
2

µ GeV

α s(
µ)

PDG 2006

⇒ perturbative QCD at

short-distances/high energies.

Renormalized QCD remains logically sound at the highest energies.

Lattice QCD 1 QCD Andreas S. Kronfeld
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Long Distances—Color Singlets

At long distances QCD does not

break down.

Perturbation theory does. =⇒

Quarks and gluons are confined

into color singlets:

mesons q̄i
f qi

g,

baryons εi jkqi
f q j

gqk
h,

glueballs FF and FFF ,

hybrids q̄qF , deuterons, etc.

pentaquarks udds̄u?

Non-perturbative methods needed to understand long-distance QCD.

Lattice QCD 1 QCD Andreas S. Kronfeld
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Non-Perturbative Tools

There are some general purpose tools: unitarity, analyticity, symmetry . . . .

Renormalization group tools: separate long- and short-distance dynamics, solve each
part separately. Or solve one part and take the other from experiment.

Three decades ago, Kenneth Wilson returned from a scientific excursion into con-
densed matter physics. He had taken ideas of renormalization field theory as gifts,
and returned with their tool-kit, including strong coupling expansions.

These tools exploited the formal similarity between the functional integral of quantum
field theory and the partition function of statistical mechanics.

Fields on a lattice are obvious in crystals. The trick was to do the same for gauge
theories such as QCD.

Lattice QCD 1 Lattice Field Theory as a Souvenir Andreas S. Kronfeld
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Path Integrals, Functional Integrals
Richard Feynman devised a path integral formulation of quantum mechanics:

〈xT |Q(x,T )|x0〉=
Z

DxQ(x)eiS

where S is the classical action for a path from xt to x0. We’ll define Dx later today.

The analogous expression for gauge field theory is the functional integral

〈0|Q(q, q̄,A)|0〉=
1
Z

Z
∏

µ,a,x
dAa

µ(x) ∏
α, f ,i,x

dqi
f ,α(x) ∏

α, f ,i,x
dq̄i

f ,α(x)Q(x)eiS

where gauge bosons A carry a Lorentz index µ & a color index a, and (anti-)quarks q
(q̄) carry a Dirac index α, flavor index f , & color index i.

In field theory, the spacetime coordinate x is a label. But what does a product over x
mean? x is a 4-vector of real numbers!!!

Make x discrete, and see if a continuum limit can be defined.

Lattice QCD 1 What the #&@% is a Functional Integral?! Andreas S. Kronfeld
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Lattice Field Theory

Lattice field theory (e.g., for a magnet)

associates the degrees of freedom with

the sites, links, etc., of a lattice.

For particle physics it is a (Euclidean)

space-time lattice.

Wilson’s idea was that the lattice fields

represent aggregate degrees of freedom

of the neighborhood of the sites (etc.).

Mathematical advantages: lattice pro-

vides ultraviolet cutoff from the outset;

functional integral is well-defined.

a

L = N
S
a

L
4 =

 N
4a

Lattice QCD 1 If you have to break the rules, be discrete Andreas S. Kronfeld
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What does the lattice do to the field theory?
In the spatial directions, let L = Na be the physical size of the box. Then

continuum a→ 0 continuum a→ 0
infinite volume L→ ∞ ⇐= finite volume (L finite)

Nd.o.f. is uncountably infinite Nd.o.f. is infinite, but countable

⇑

lattice (a non-zero) lattice (a non-zero)
infinite volume L→ ∞ finite volume (L finite)

Nd.o.f. is infinite, but countable Nd.o.f. is finite

No divergences if Nd.o.f. is finite, i.e., if a non-zero and L finite.

Ultraviolet and infrared divergences do not appear in physical quantities.

IR: must happen if theory is sensible.

UV: Renormalization: g2
0 = g2

0(a), m0 = m0(a), such that physics is a independent.

Lattice QCD 1 Fields on a Lattice Andreas S. Kronfeld
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Numerical Lattice Field Theory
With the lattice formulation there are many things you could do: strong coupling ex-
pansions, abstract renormalization arguments, etc.

But usualy when people say “lattice QCD,” they mean a numerical approach, in which
the path integral is evaluated on a computer.

It practice that is not enough. QCD is a multi-scale problem: the scale of non-
perturbative physics, ΛQCD, is 250–2500 MeV; the u, d, and s quarks have mass
smaller than this, and the c (?), b, and t quarks have mass larger than this.

In practice, the computer generates a lot of “data,” and we exploit other tools to help
us understand the effects of a > 0, L < ∞, mq > md, mb ∼ a−1.

To “analyze the data” we use effective field theories, conceptually similar to the effec-
tive 4-quark Hamiltonian, HQET,. . . . N.B., HQET was invented to handle a−1 ∼ mb.

Lattice QCD 1 That’s All? Andreas S. Kronfeld
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Numerical Methods
The numerical work mystifies many people, but it is easy to learn the basic concepts
using quantum mechanics.

For the rest of this lecture, we will see how this is done. By the end, you should be
able to write a program to compute energy levels in quantum mechanics.

Consider the propagator in quantum mechanics, with Hamiltonian H = p2/2m+V (x):

〈x(T )|x(0)〉= 〈xT |e−iĤT |x0〉= ∑
n
〈xT |n〉e−iEnT 〈n|x0〉,

To derive the path integral, split the time T into many little intervals δ = T/N. Then

〈xT |e−iĤT |x0〉=
Z N−1

∏
i=1

dxi

N−1

∏
i=0

〈xi+1|e−iĤδ|xi〉,

repeatedly inserting 1 =
R

dxi|xi〉〈xi|.

Lattice QCD 1 Numerical Quantum Mechanics Andreas S. Kronfeld
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We would like to derive an expression for

〈xi+1|e−iĤδ|xi〉 ≈ 〈xi+1|e−iV̂ (x)δ/2e−ip̂2δ/2me−iV̂ (x)δ/2|xi〉=

e−iV (xi+1)δ/2〈xi+1|e−ip̂2δ/2m|xi〉e−iV (xi)δ/2.

With analysis, this is possible through analytical continuation

〈xi+1|e−p̂2a/2m|xi〉=
√

m
2πa

e−m(xi+1−xi)2/2a.

with a = ε+ iδ, ε→ 0+.

For numerical work, the analytical continuation is not feasible. We simply make do
with propagation through imaginary time.

This “Euclidean field theory” is common in mathematical physics, for the same reason.
It is better to work with well-defined expressions, and continue as a last resort.

Minkowski has metric diag(−1,1,1,1); Euclidean has metric diag(+1,1,1,1).

Lattice QCD 1 Numerical Quantum Mechanics Andreas S. Kronfeld
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Then one has (for imaginary time, T →−iT )

〈xT |e−ĤT |x0〉= lim
N→∞

Z
DxN exp

(
a

N−1

∑
i=0

Li

)
, DxN =

N−1

∏
i=1

dxi

√
m

2πa
,

where the limit is taken with T fixed, a = T/N.

The (discrete time) Lagrangian is

Li =−1
2m
(

xi+1− xi
a

)2
− 1

2V (xi+1)− 1
2V (xi),

which one recognizes as a discrete approximation to the kinetic energy and the aver-
age of the potential energy over two times.

In numerical work, one uses a sequence of Ns and extrapolates.

As we shall discuss in subsequent lectures, one has theoretical control over the ex-
trapolation, even for field theory where issues of renormalization must be addressed.

Lattice QCD 1 Numerical Quantum Mechanics Andreas S. Kronfeld
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More on Path Integrals

Let us look some more at the (imaginary time, T →−iT ) propagator

〈xT |e−ĤT |x0〉= lim
N→∞

Z
DxN e−S({xi}N), DxN =

N−1

∏
i=1

dxi

√
m

2πa
,

S = a
N−1

∑
i=0

[
1
2m
(

xi+1− xi
a

)2
+V (xi)

]
.

The left-hand side obeys a composition law when tacking two paths together:

〈xT ′+T |e
−Ĥ(T ′+T )|x0〉=

Z
dxT 〈xT ′+T |e

−ĤT ′|xT 〉〈xT |e−ĤT |x0〉

So does the right-hand side:Z
DxN′+N e−S({xi}N′+N) =

Z
dxN

Z
DxN′ e−S({xi}N′)

Z
DxN e−S({xi}N),

even without taking the limit of infinite N, N′.

Lattice QCD 1 Composing Paths Andreas S. Kronfeld
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Furthermore, an operator Q̂ = Q(x̂) =
R

dx|x〉Q(x)〈x|, acting at time t, 0 < t < T ,

〈xT |e−Ĥ(T−t)Q(x̂)e−Ĥt|x0〉=
Z

Dx Q(xt)e−S({xi})

and similarly for several operators inserted at various different times.

In field theories, we do not have just 1 degree of freedom. We have zillions.

It is impractical to study the dependence of the wave function on all of them.

So let us set xT = x0 and integrate over x0, yielding the “partition function”

Z =
Z

Dx e−S =
Z

dx〈x|e−ĤT |x〉, Dx =
N−1

∏
i=0

dxi

√
m

2πa
,

now with N integrations.

Lattice QCD 1 Partition Function Andreas S. Kronfeld
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The parallel with statistical mechanics can be pursued further by introducing

〈Q(xt)〉=
1
Z

Z
Dx Q(xt)e−S({xi})

〈Q1(xt1)Q2(xt2)〉=
1
Z

Z
Dx Q1(xt1)Q2(xt2)e−S({xi})

〈Q1(xt1)Q2(xt2)〉c = 〈Q1(xt1)Q2(xt2)〉−〈Q1(xt1)〉〈Q2(xt2)〉
The clash of the notation 〈•〉 with Dirac notation is unfortunate, but conventional.

For large T Proofs as exercises: use 1 = ∑n |n〉〈n| ruthlessly.

Z
large T→ e−E0T

〈Q(xt)〉
large T→ 〈0|Q(x̂)|0〉

gives you the vacuum energy E0 and vacuum expectation value (vev).

Not miraculous. The same manipulations enter scattering theory, with propagators
out to T (1− iε), T → ∞.

Lattice QCD 1 Correlation Functions or Correlators Andreas S. Kronfeld
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For large T (and t1− t2 = ja) Proof as exercise.

〈Q1(xt1)Q2(xt2)〉c
large T→ ∑

n6=0
〈0|Q1(x̂)|n〉〈n|Q2(x̂)|0〉e−(En−E0) ja

+ ∑
n6=0

〈0|Q2(x̂)|n〉〈n|Q1(x̂)|0〉e−(En−E0)(T− ja),

gives you the excited-state energies E0 and vacuum → 1-particle matrix elements.

For large ja and/or T − ja Proof as exercise.

〈Q1(xt1)Q2(xt2)〉c
large T→ 〈0|Q1(x̂)|1〉〈1|Q2(x̂)|0〉e−(E1−E0) ja

+ 〈0|Q2(x̂)|1〉〈1|Q1(x̂)|0〉e−(E1−E0)(T− ja),

thus isolating properties of the first excited-state |1〉.

If (by symmetry or clever design) Qi(x̂)|1〉= 0, then |n〉, n≥ 2, can be isolated.

So, if you know how to compute the path integrals numerically, a fit to the T depen-
dence of Z give E0, and the j dependence of 2-point correlators gives En−E0.

Lattice QCD 1 Correlation Functions → Masses Andreas S. Kronfeld
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Hadron Masses

In field theory (e.g., QCD), En−E0 is what we identify with a particle’s energy. If the
3-momentum is zero, that yields the rest mass.

It’s worth writing it in particle-physics notation.

The operator Π+ = d̄γ5u annihilates π+ (and all its radial excitations); similarly, the
operator Π− = ūγ5d annihilates π−. For large times T and x4 [x = (x,x4)]Z

d3x〈Π+(x)Π−(0)〉c →〈0|Π̂+|π+
0 〉〈π

+
0 |Π̂

−|0〉exp
[
−mπ+x4

]
+ 〈0|Π̂−|π−0 〉〈π

−
0 |Π̂

+|0〉exp
[
−mπ−(T − x4)

]
,

is how we compute the pion mass, and similarly for any other hadron mass.

Replace Π− with A−4 = ūγ4γ5d, and then 〈0|Â−4 |π
−〉=: fπmπ appears.

Lattice QCD 1 Correlation Functions → Hadron Masses Andreas S. Kronfeld
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Monte Carlo Integration for QM

Choose C random configurations of {xi|i = 0, . . . ,N−1}, denoting individual config-
urations as {xi}(c), c = 0, . . . ,C−1. Then

Z =
Z

Dxe−S = lim
C→∞

( m
2πa

)N/2C−1

∑
c=0

exp
[
−S
(
{xi}(c)

)]
,

Z
Dx f ({xi})e−S = lim

C→∞

( m
2πa

)N/2C−1

∑
c=0

f ({xi}(c))exp
[
−S
(
{xi}(c)

)]
.

An estimate of the left-hand side is achieved for C finite.

From now on we use finite C, and omit the normalization factor (m/2πa)N/2, which
drops out of correlation functions.

This method is hopeless for large N. S is extensive, many configurations have S∼ N;
they are a waste of time.

Lattice QCD 1 Monte Carlo Andreas S. Kronfeld
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The remedy is called importance sampling.

Don’t choose all configurations with equal weight, choose them with weight e−S.

This is possible because S is real and bounded below. Hence imaginary time!

Then

1
Z

Z
Dx f ({xi})e−S ≈ 1

C

C−1

∑
c=0

f ({xi}(c)).

converging to be exact as C → ∞. C = # of configurations in ensemble.

Quantum theory has been reduced to the design of random number generators,

for many variables, with distribution e−S.

Lattice QCD 1 Monte Carlo with Importance Sampling Andreas S. Kronfeld
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Necessary vs. Sufficient for Monte Carlo
The aim of any algorithm is to generate a transition rule T ({x} → {y}) so that the
probability density is (eventually) P({x}) ∝ e−S({x}).

Start with an initial distribution P({x},0). The transition rule T ({x} → {y}) changes
the distribution from P({x},c) to T ({x}→ {y}) independent of c.

P({x},c+1) = P({x},c)−
Z

DyP({x},c)T ({x}→ {y})

+
Z

DyP({y},c)T ({y}→ {x})

The steady state (if it exists) has P({x},c) independent of c.Z
DyP({x})T ({x}→ {y}) =

Z
DyP({y})T ({y}→ {x}) necessary

P({x})T ({x}→ {y}) = P({y})T ({y}→ {x}) sufficient

The last (unintegrated) condition is called detailed balance. It is easier to solve.

Lattice QCD 1 Detailed Balance Andreas S. Kronfeld
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A Simple Method

Perhaps the simplest method to generate the

desired distribution is the Metropolis method.

Requires only e−S ≥ 0.

Visit each xi in turn, and follow the flow chart.

rand() ∈ [0,1)

Choose r to accept ∼ 40–50% of updates.

For more complicated (sets of) degrees of free-

dom only the proposed update must change.

May also update xi several times, before pro-

ceeding to i+1.

Start Metropolis

Propose new value for x
y = x + r*(2*rand() - 1);

S(y) > S(x)?

exp(S(x) - S(y)) < rand()?

YES

return x

YES

return yNO

return yNO

Lattice QCD 1 Metropolis Method Andreas S. Kronfeld
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Metropolis and Detailed Balance
We now check the Metropolis satisfies detailed balance, re-written

T ({x}→ {y})
T ({y}→ {x})

!=
P({y})
P({x})

= e−[S({y})−S({x})] = e−∆S

Three cases:

S({y}) = S({x})
always accept

both T s = 1
e−∆S = 1

S({y}) > S({x})
0 < e−∆S < 1

“accept if R≤ e−∆S”

accepts fraction e−∆S

T ({x}→ {y}) = e−∆S

T ({y}→ {x}) = 1

S({y}) < S({x})
0 < e∆S < 1

T ({x}→ {y}) = 1
T ({y}→ {x}) = e∆S

In all three cases, Metropolis satisfies detailed balance.

Lattice QCD 1 Detailed Balance Andreas S. Kronfeld
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Statistical Uncertainties

With Monte Carlo integration, there are statistical errors that fall as C−1/2.

Let the average in the finite ensemble be written

f ({xi}) :=
1
C

C−1

∑
c=0

f ({xi}(c)).

so f ({xi}) estimates 〈 f ({xi})〉.

The central limit theorem says that f ({xi}) fluctuates around 〈 f ({xi})〉 with variance

σ
2 ( f ) =

1
C−1

[
f 2− f 2

]
.

(Think of repeating a Monte Carlo of C configurations many times, and drawing the
histogram of f .)

Lattice QCD 1 Statistical Uncertainties Andreas S. Kronfeld
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Indeed, statistical fluctuations are correlated

σ
2( fi, f j

)
=

1
C−1

[
fi f j− fi f j

]
.

For example, ft = Q(xt)Q(x0) and ft+u.

In field theory, we can gain some intuition about the fluctations, because

fi f j− fi f j ≈ 〈 fi f j〉−〈 fi〉〈 f j〉.

In practice, similar quantities (like successive times of a correlation function) fluctuate
together.

Statistical errors often cancel somewhat when forming ratios and differences.

Exercise: What is “easier” (statistically)—the mass (gap) (or energy) E1−E0, or the
overlaps 〈0|Q1|1〉〈1|Q2|0〉?

Lattice QCD 1 Correlated Statistical Uncertainties Andreas S. Kronfeld
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Lattice QCD 1 First two level in SHO Andreas S. Kronfeld

30



Statistical Errors for Masses, etc.
Usually we are interested in energies or quantum-mechanical matrix elements.

For example, the energy difference can be extracted from

meff(t) =− ln
〈Q1(xt+1)Q2(x0)〉c
〈Q1(xt)Q2(x0)〉c

Independent of t ⇔ one state dominates.

Logarithm does not commute with 〈•〉.

To estimate the statistical error on meff, we really need many ensembles.

In the bootstrap method, new pseudo-ensembles are generated from the original, by
drawing configurations at random, allowing repeats.

Bootstrap can be wrapped around an arbitrarily complicated analysis.

Lattice QCD 1 Bootstrap Andreas S. Kronfeld
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Summary

From this simple example, several general features emerge.

Energy levels (aka masses) and simple matrix elements are straightforward: no com-
plication from imaginary time whatsoever.

Excited states are more complicated than the lowest-lying state (of given quantum
numbers).

The complications of numerical methods for field theory stem from the zillions of vari-
ables (and also from fermions).

Statistical errors and discretization errors are (in principle) always reducible by brute
force: increase C and N; CPU time ∝ CN.

Lattice QCD 1 Summary Andreas S. Kronfeld
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