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Introduction

Physical observables in QFT calculated in path integral formu-

lation. Schematically,

〈O〉 =
1

Z

∫
d[U]O(U) exp (−i g S(U))

If coupling g is small, expand exponential. 〈O〉 is calculated

to some prescribed order in the coupling, gn. Use Feynman

diagrams.



If coupling is not small (low energy QCD) can’t expand expo-

nential. Or if bound states required can’t use PT. Just do the

whole integral. Use lattice/numerical monte-carlo techniques.

Either way, integrals are in general divergent: ∞ number of de-

grees of freedom (fields) that can take values from −∞ to +∞.

Must make them finite → regularize. Many ways to do this, but

must be careful not to destroy symmetries of the original theory

(at least they must be recovered when the regulator is removed)



Non-perturbative regularization

Discretize the continuum action on a four-dimensional (Euclidean)

space-time lattice with spacing a. [K.G. Wilson, 1974]
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• Long dist (low energy) physics
is insensiitve to a (scaling)

• Path integrals finite: finite
number of degrees of freedom
(sites)

• Momentum cut-off
pmax ∼ 1/a



Do this in a gauge invariant way

Replace continuum vector potential (Gluon fields), Aµ = Aaµ λ
a

with

Aµ(x) → Uµ(x) = e−igaAµ(x)

The “link” Uµ(x) is an element of the group SU(N), with gauge

transformation g(x)

Uµ(x) → g(x)Uµ(x) g(x+ µ̂)† Uµ(x), g(x) ∈ SU(N)

So a path-ordered product of link fields transforms like

g(x)Uµ(x)Uµ(x+ µ̂) · · ·Uν(y) g(y+ ν̂)†



If the path is a closed loop, e.g.

g(x)Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν(x) g(x)
†

And we take the trace, it is

gauge invariant. Generally

true that the trace of (any)

closed path-ordered product

of links is gauge invariant.
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Treating the fermions is (naively) straightforward. Transcribe

the continuum field ψ(x) to the lattice site x.

ψ(x) → ψlatt
x

Under a gauge transformation,

ψlatt
x → g(x)ψlatt

x

ψ̄latt
x → ψ̄latt

x g−1(x)



Construct the action.

Work in Euclidean space: analytically continue t → iτ (Wick

rotate) so metric is

diag(1,1,1,1) and not diag(-1,1,1,1).

Covariant and contravariant indices mean the same thing.



Fermions first.

For a single flavor

Sf =
∫
d4x ψ̄(x)(/D+m)ψ(x)

→ ψ̄xMxy ψy

ψ is now a 12 component vector (3 colors × 4 spins) at each
site on the lattice.

fermion matrix is a 12× 12 matrix each pair of n.n. sites

Mxy =
∑
µ
γµ
Uµ(x) δx+aµ̂,y − U

†
µ(x− µ̂) δx−aµ̂,y

2
+ amδx,y

Factors of the links make the lattice action gauge-invariant.

A large, sparse matrix: (L4 × 12) × (L4 × 12). Can invert it in
O(12× L4) operations, not O((12× L4)2)



Gluon action

Sg =
∫

d4x

(
1

4
FµνFµν

)
→ Slattg =

6

g2

∑
sites

∑
µ>ν

(RTr2µν)

Which you can check by expanding

lim
a→0

Uµ(x) = 1− igaAµ(x) + · · ·

and neglecting terms of O(a2) and higher.

At this point, the lattice action, Sf + Sg, has all the symmetries

of the continuum, except Euclidean (Lorentz) invariance which

is broken down to (invariance under) the Hypercubic group H(4).



The continuum limit, a→ 0 (remove the regulator).

Adjust bare coupling, 6/g2, and quark mass(es) am to give some

observable its physical value, say MN/Mρ. Move toward a=0,

g,m → 0 keeping MN/Mρ fixed. Predict all other (ratios of)

physical observables on this (renormalization “group”) trajectory.

MN/Mρ = const

6/g2

am



How do we know this works?
Answer: asymptotic freedom of QCD: non-trivial continuum
limit

For sufficiently small g, solution of the QCD β function (physics
does not depend on the lattice spacing (regulator)) reads:

aΛQCD = (g2 γ0)
−γ1/(2γ20) exp (−1/(2γ20 g

2)(1 +O(g2))

On lattice then, in the asymptotic scaling regime, all observables
scale this way, so in particular, ratios of physical observables (e.g.
MN/Mρ, or anythingelse you can think of) are independent of the
lattice spacing→ the renormalization group trajectory.



In practice, the scaling regime is hard to access:

“critical slowing down”: as a → 0 lattice correlation lengths

diverge. Physics is scale invariant. Continuum limit is a 2nd

order phase transition.

Instead, simulate at several values of 6/g2 (modest lattice spac-

ings) and several quark masses at each lattice spacing.

Extrapolate in quark mass to desired physical point, then ex-

trapolate to a → 0 in leading discretization error, i.e. linear or

quadratic in a.



Monte Carlo Simulation

Back to the path integral

〈O〉 =
1

Z

∫
d[ψ̄, ψ,U]O(ψ̄, ψ, U) exp (−i S(ψ̄, ψ, U))

Analytically continue (Wick rotate) to Euclidean space-time so
the integrand behaves sensibly:

〈OE〉 =
1

ZE

∫
d[ψ̄, ψ,U]OE(ψ̄, ψ, U) exp (−SE(ψ̄, ψ, U))

(Now drop all “E” subscripts)

Fermion integrals are Gaussian, do them analytically.

〈O〉 =
1

Z

∫
[dU ]O(U) det(M(U))nfe−Sg(U)



det(M(U))nfe−Sg is an ordinary probability weight: do the in-

tegral over gauge fields numerically by Monte Carlo simulation

(stat. mech. in d+1 dimensions).

Use importance sampling to generate an ensemble of gauge field

configurations (O(100− 1000) independent ones):

• 1 configuration = set of link variables over entire lattice

• update algorithm: choose links randomly

• algorithm must satisfy detailed balance and ergodicity



• generate configurations with probability det(M(U))nfe−Sg

• Observables become simple averages over configurations.

Simulation with det(M(U)) (dynamical fermions) is costly.

det(M(U)) = 1 is the quenched approximation, i.e., no virtual

quark loops in the vacuum (mq →∞).



Fermion discretizations
(why not naive fermions?)

ψ̄/Dψ → ψ̄γµ(ψ(x+ µ̂)− ψ(x− µ̂))/2a

Glatt(p) =
iγµ sin(apµ)∑
µ sin2(apµ)

→
iγµapµ∑
µ(apµ)2

.

Glatt(p) has a pole at each corner of the Brilloiun zone:

pµ = (π/a,0,0,0), (0,π/a,0,0),. . . ,(π/a,π/a,π/a,π/a)

Lattice theory corresponds to 2d fermion flavors instead of one.



These extra fermions are called doublers. Appeared because of

the inherent periodicity of the lattice.

Minkowski space dispersion relation (E = |p|)

light fermion light fermion

0 π

Even worse for the Standard model, the doublers appear in pairs

with opposite chirality–theory is vector-like(Nielsen-Niyomiya

No-Go theorem). Deep connection to gauge- invariance.



Must get rid of the doublers.

1. Wilson fermions. Add an irrelevant term to the action

SW =
a

2
ψ̄ ∂2ψ

∼
1

a

∑
µ

1− cos(pµ)

Like a mass term. Doubler mass ∼ 1/a, and they decouple.

light fermion

π0



Problems with Wilson Fermions:

• Chiral symmetry (of QCD) is explicity broken, badly broken.
(flavor symmetry is still exact, as in the continuum)

• Chiral limit 6= mq → 0.

• Complicated fine tuning (operator mixing) of observables
required for correct chiral behavior.

• Errors are O(a): slow approach to the continuum (can be
improved to O(an) n = 2 now, big job)

All problems solved as a→ 0



2. Kogut-Susskind.

Spin diagonalization. Throw away 3/4 of components: 16 Dirac

fermions = 64 componets → 16. One component “spinor” on a

lattice site.

Exact remnant chiral symmetry, so mq → 0 is the chiral limit

Can reconstruct 4 Dirac fermions from components in 24 hyper-

cube. In the continuum limit this is a theory of 4 degenerate

quarks. For a 6= 0 flavor, spin, and space-time symmetries are

mixed.

Take fractional power of fermion determinant to simulate real

QCD (2+1 flavor).



Problems with Kogut-Susskind fermions

• Have to take fractional powers of the determinant!

• Flavor symmetry is broken: one light pion instead of 16−1 =
15

• Relation to continuum operators can be very difficult to work
out

• Errors are O(a2) but are unusually large because of flavor
symmetry violation. Again, slow approach to continuum.
Can be improved: now the state-of-the-art for dynamical
fermion simulations (a2-tad).



3. Ginsparg-Wilson fermions.

Discovered in 1987 (then forgotten) the most chiral symmetry

that a lattice theory can have

γ5D+Dγ5 = aDRγ5D

γ5D
−1 +D−1 γ5 = aRγ5

Meanwhile, domain wall fermions (DWF) (Kaplan 1992) and

later overlap fermions (Neuberger 1997) were discovered. Worked

for vector gauge theories. Hasenfratz rediscovered the G-W rela-

tion, and it was soon realized that DWF and overlap are examples

(with R = 1/2).



G-W fermions Remove the doublers while (essentially) preserving

full SU(Nf)L × SU(Nf)R chiral symmetry of the continuum at

non-zero lattice spacing.

We (RBC) use domain wall fermions (Shamir 1993)

1 2 Ls/2 Ls... ...

������� q(R)

1 2 Ls/2 Ls... ...

mf

������� q(R)

Errors are O(a2)



Problems with Ginsparg-Wilson fermions

• Expensive!

• 1st large-scale dynamical fermion simulation done here at
BNL (and Columbia University). Light (up and down) quark
mass 1/2 to 1 times mstrange (need to reduce by 10). Volume
is not large (∼ (2fm)3), and only one lattice spacing.

• Took almost 2 years on our own supercomputer (QCDSP)!

Continuum-like properties → approach to continuum is faster

New computer(s) coming: QCDOC (×20 faster, 5 TFlops/sustained)



Masses and Matrix elements from Euclidean space correlation
functions.

Consider the pseudo-scalar meson (pion) 2-point correlation func-
tion

J5(t) =
∑
~x

ψ̄(x, t) γ5ψ(x, t) e~p·~x

Sum over ~x projects onto the state with momentum ~p

The zero momentum correlation function reads

C(t) =
∑
x
〈0|ψ̄(x, t) γ5ψ(x, t) ψ̄(0,0) γ5ψ(0,0)|0〉

Wick contract fields into quark propagators

C(t) =
∑
~x

Tr
[
M−1

0;x,t γ5M
−1
x,t;0γ5

]



What’s it good for?

Use time-translation operator U = exp (−H t) and insert a com-
plete set of states (H is the QCD Hamiltonian, and the states
are eigenstates of H) (in Euclidean space there is no i in U)

C(t) =
∑
x
〈0|eH tψ̄(x) γ5ψ(x) e−H tψ̄(0) γ5ψ(0)|0〉

=
∑
x
〈0|eH tψ̄(x) γ5ψ(x) e−H t

∑
n

|n〉〈n|
2EnV

ψ̄(0) γ5ψ(0)|0〉

=
∑
n
〈0|ψ̄ γ5ψ |n〉〈n|ψ̄ γ5ψ|0〉

e−En t

2EnV

lim
t→∞

=
|〈0|ψ̄ γ5ψ|π〉|2

2mπ
e−mπ t

Fit yields physical particle mass and matrix element.



or the nucleon 3 point correlation function,

〈χN(p′, t′)
∑
x
ei~q·~x[ψ̄q(x, t)Γµψq(x, t)]χ

†
N(p,0)〉 →∑

s,s′
〈0|χN(p′, s′)|p′, s′〉〈p′, s′|Γµ(q)|p, s〉〈p, s|χ†N(p, s)|0〉 ×

e−E t−E
′ (t′−t)

2E 2E′

where t′ � t� 0, ~q = ~p′ − ~p, and χN is the nucleon interpolating

operator

Euclidean space continued LSZ reduction formula that relates

(the Fourier transform of) Minkowski space Greens functions to

S-matrix elements. Exponentials pick them out instead of poles.



This always works for single-particle states (like nucleon matrix

elements).

For multi-paritcle states (i.e. non-leptonic decays) this is much

more difficult



Accessing the chiral limit, mq → 0

Ideally, adjust the quark masses in our simulations until observ-

ables (masses, decay constants, ...) match their physical values

e.g ., adjust mu and md until the pseudo-scalar meson mass is

mπ = 135 MeV. Knowing the value of the light quark masses,

we can predict the proton mass, neutron mass, fπ, etc.



Not so simple. The chiral limit, m→ 0 is difficult.

• “cost” of quark propagator M−1: #iterations ∼ 1
m

• Compton wavelength of the pion 1
mπ

→∞ as mq → 0,

so must take V →∞ to avoid finite volume effects

• Instead, work at unphysical (larger) mq and extrapolate to

the physical regime (chiral limit). Use Chiral Perturbation

Theory as a guide.



Chiral Perturbation Theory (S. Weinberg)

Low energy effective field theory of QCD. Systematic expansion

in p2, around p2 = 0 (chiral limit). (Pseudo-) Goldstone bosons

are the only degrees of freedom left.

L(2)
QCD =

f2

8
tr[∂µΣ

†∂µΣ] +
f2B0

4
tr[χ†Σ + Σ†χ]

Σ = exp

[
2iφaλa

f

]
Σ → VLΣV

†
R (under a chiral transformation)

Σ is the unitary chiral matrix field (VL,R ∈ SU(Nf)), λ
a are pro-

portional to the Gell-Mann matrices with tr(λaλb) = δab, φ
a are

the real pseudoscalar-meson fields, and f is the meson decay

constant in the chiral limit. χ = (mu,md,ms)diag



To lowest order

m2
π = B0(mu +md)

m2
K = B0(md +ms)

. . .

At this order, we can work with mesons made from degenerate

quarks, so the quark masses corresponding to the physical mesons

are

ml =
mu +md

2

ms/2 =
md +ms

2



Can go to higher order in χPT (O(p4))

RBC nf = 2 dynamical quark simulation:

0 0.01 0.02 0.03 0.04

m
val

0

0.05

0.1

0.15

M
ps

2

0 0.01 0.02 0.03 0.04 0.05
m

f

0.08

0.1

0.12

f ps

fK/fπ = 1.194(12) (statistical error only)



Operator Renormalization

In lattice QCD calculations, we often calculate matrix elements

of local operators generated by an Operator Product Expansion

(OPE) of a non-local operator (usually a product of two cur-

rents). e.g. DIS, or non-leptonic Weak decay of hadrons.

We do this out of necessity since the physical processes can not

be calculated purely perturbatively or non-perturbatively.

Aphys =
∑
n
Cn(µ) 〈f |On(µ)|i〉

Aphys and states do not depend on scale µ



Define finite, renormalized operator at scale µ

O(µ) = ZO(aµ)O(a)

ZO(aµ) can be computed:

• In lattice perturbation theory

• Non-perturbatively (RI-MOM) (mimic perturbation theory

∼ very high order perturbative calculation)

• perturbative matching to MS, or whatever scheme is used

to compute Cn(µ)



Lattice complications:

Broken symmetries (Lorentz, chiral symmetry, flavor, ...) =⇒
operator mixing

Non-perturbative renormalization (NPR) required when mixing

with lower dimensional operators occurs. These are power di-

vergent in the lattice spacing a−(d−d′) instead of the usual loga-

rithmic divergence log(aµ) ( ... domain wall fermions)



To calculate ZO compute Landau gauge off-shell matrix elements

of O(a) between quark and/or gluon states
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P
P

TrVO(p2)Γ
∣∣∣
p2=µ2

ZO
Zq

= 1

• VO(p2) the amputated vertex

constructed from the full non-pert

quark propagator

• Γ a projector
This defines the MOM scheme. Extrapolate to mf → 0 and we

have the RI scheme (Regularization Independent).

Martinelli et.al. Nuc.Phys.B445 81 (1995)



Zs(µ2) (ψ̄ψ) renormalization

factor, and divided by 3-loop

perturbative running.

RBC (2001).
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Statistical and Systematic errors

• Finite sample of configurations: statistical errors

• Finite volume

• non-zero lattice spacing

• chiral limit

• quenched approximation

Lattice Gauge Theory provides a first principles framework to
solve QCD, with (in principal) arbitrary precision


