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Supercomputers have recently become a crucial tool for the quantum field the-
orist. Applied to the formalism of lattice gauge theory, numerical simulations
are providing fundamental quantitative information about the interactions of
quarks, the fundamental constituents of those particles which experience nu-
clear interactions. Perhaps most strikingly, these simulations have provided
convincing evidence that the interquark forces can prevent the isolation of these
constituents.

Quarks are the primary constituents of particles subject to the strong nuclear
force. Their basic interactions are believed to follow from a generalization of
the gauge theory of electromagnetism. Instead of a single photon, this theory
involves eight spin-1 quanta, referred to as gluons. Furthermore, these eight
gluons are themselves charged with respect to one another. This introduces
subtle nonlinear effects which appear even in the pure glue theory.

One particularly important consequence of these nonlinearities is that the
quark interactions weaken at small separations. This phenomenon, known as
“asymptotic freedom”, is essential to many of the successes of the simple quark
model. As long as the quarks remain near each other, their interactions are
small.

In contrast, the behavior of the gauge fields changes dramatically as the
quarks are pulled apart. The experimental nonobservance of free quarks has led
to the conjecture of the phenomenon of “confinement”, wherein interquark forces
increase and remain strong as quarks are pulled apart to arbitrary separations.
In this picture, it requires an infinite amount of energy to separate a single
quark from the other constituents of a physical particle. This explains why free
quarks are not produced in nature.

Standard field-theoretical tools are severely hampered in the regime of large
distances where these effects come into play. Perturbation theory, the historic
mainstay of quantum field theory, begins with free particles and then treats their
interaction as a small correction. With confinement, however, the fundamen-
tal constituents become increasingly strongly interacting as their separation is
increased. In this domain the conventional perturbative approach fails totally.

Lattice gauge theory, originally formulated by K. Wilson, provides a novel
framework for calculations in this regime. This approach replaces the relativistic
continuum of space and time with a discrete space-time lattice. The quarks move
through this scaffolding by a sequence of discrete hops between nearest-neighbor
sites. The gluon fields lie on the bonds connecting these sites.

This lattice is a mathematical trick, introduced for calculational purposes
only. It should not be taken as requiring a crystalline basis for physical space.
At the end of any calculation, one should consider a continuum limit, wherein
the lattice spacing is extrapolated to zero. In this limit observable quantities,
such as the masses of particles and the forces between them, should approach
their physical values.

The lattice artifice, however, has several advantages. First, by replacing an
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infinite number of space-time points in any given volume by a finite number, the
field-theoretical system becomes mathematically considerably simpler and bet-
ter defined. Continuum quantum field theories are notorious for the appearance
of formally infinite quantities. These divergences involve short-distance singu-
larities and must be exorcised by a renormalization procedure. A space-time
lattice provides a particularly convenient regulator of such divergences. Indeed,
the lattice spacing represents a minimum length and singularities arising from
wavelengths shorter than this distance are automatically excluded.

Second, this formulation makes no assumptions on calculational schemes to be
applied. Other techniques for controlling the singular behavior of a field theory
are usually formulated directly in terms of some calculational method. For
example, conventional discussions of renormalization regulate the divergences
only after they are encountered in the perturbative expansion. On the lattice
the theory is mathematically well defined at the outset.

Finally, the lattice formulation gives a system particularly well suited to nu-
merical simulation. While there are several analytic techniques which have been
applied to the strongly interacting lattice gauge problem, numerical simulations
by Monte Carlo techniques currently dominate the field. These simulations have
given compelling evidence that the confinement phenomenon does indeed occur
in the standard gauge theory of the nuclear force. In addition, the approach
is now giving quantitative predictions for long-range hadronic properties not
accessible to more traditional theoretical methods.

In the Wilson approach, the gauge degrees of freedom are represented by
matrices, one of which is associated with each lattice bond. To describe the
physical theory of quarks, these are 3× 3 unitary matrices with determinant 1;
thus, they are elements of the group SU(3). The interactions of these degrees
of freedom are most concisely summarized in the “action”

S = −1
3

∑
p

Re TrUp .

Here the sum is over all elementary squares, or “plaquettes”, p, and Up is the
product of the link variables around the plaquette in question. The latter rep-
resents the flux of the gauge fields through the corresponding tile. For slowly
varying fields, the above sum reduces to the conventional gauge-theory action
as the lattice spacing goes to zero.

The numerical techniques used for lattice gauge simulations are borrowed
directly from statistical mechanics. Indeed, there is a deep mathematical re-
lationship between quantum field theory and classical statistical mechanics in
four dimensions. In this relationship, the strength of the quark coupling to the
gauge fields corresponds directly to temperature and the action S corresponds
to the classical energy. Thus, a study of confinement and long-distance quark
interactions is equivalent to a study of a high-temperature statistical model.

In the Monte Carlo approach to studying such a lattice system, one attempts
to create an ensemble of field configurations with a Boltzmann-like distribution
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where the probability for any given configuration C takes the form

P (C) ∝ e−βS(C) .

Here β is proportional to the inverse of the gauge coupling squared. Thus one
wants configurations typical of “thermal equilibrium”.

The procedure begins with the storage of some initial values for all the lat-
tice fields in the computer memory. These are then updated with pseudorandom
changes on the field variables, thus mimicking thermal fluctuations. The struc-
ture of such a program is quite simple. On the outside is a set of nested loops
overall the system variables. These loops surround calls to the random number
generator, so as to simulate a thermal coupling to these degrees of freedom.
The field changes are constructed with a bias toward lower values of S so as to
obtain the appropriate thermal weighting of configurations.

Having the values of all fields at his disposal, the physicist is free to calculate
any quantity of interest. There will, of course, be statistical errors coming from
the thermal fluctuations. In addition, there will be errors coming from the req-
uisite extrapolation to the continuum limit and from the practical requirement
of working with a finite volume. It is attempts to reduce these uncertainties
that have driven the theorists to the most powerful computers available.

Despite the inevitable uncertainties, several important results have been ex-
tracted. Perhaps the most dramatic of these is the measurement of the confine-
ment force and how it relates to the weaker interactions of the quarks at short
distances. Then there are successful studies of the mass spectra of the bound
states of quarks. These calculations are being refined to give information on
the distributions of the quarks and on the strong-interaction effects on other
processes, such as weak decays.

In addition, there have been quantitative studies of physics at temperatures
sufficiently high that strongly interacting particles are created by thermal fluc-
tuations. Here lattice gauge calculations have provided strong evidence that the
vacuum undergoes a phase transition at a temperature of kT ∼ 200 MeV. This
transition is from a phase of ordinary matter, made up of quarks bound into the
familiar nuclear particles, to a new plasma phase where the quarks and their
attendant gluon fields form a thermal gas. Indeed, the lattice approach gives
the best estimates for the temperature of the transition to this phase, which
will be looked for in future accelerator experiments.

Until recently, the bulk of the numerical simulations in lattice gauge theory
considered the full dynamics of the gauge fields but only included the quarks
as fixed sources. In this way the confinement potential has been mapped out.
A more refined approach allows the primary “valence” quarks to carry kinetic
energy, but still ignores the creation of matter–antimatter quark pairs by quan-
tum fluctuations. Most of the hadronic spectrum calculations have been done
in this approximation.

Thus far, only limited results have been obtained beyond this valence ap-
proximation. To proceed in this direction, one must allow for the possibility
of unlimited numbers of virtual quarks being created by quantum fluctuations.
The most difficult part of the problem is the inclusion of the effects of the
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Pauli exclusion principle in the simulations. The development of algorithms to
treat the dynamical quarks appropriately forms an area of intense current re-
search. Promising new schemes combine Monte Carlo methods with ideas from
molecular-dynamics simulations and stochastic processes.

In conclusion, computer simulations of lattice gauge theory provide a powerful
tool for the study of nonperturbative phenomena. The technique provides a
first-principles approach to calculating particle properties as well as details of
the phase transition to a quark gluon plasma.

See also: Gauge Theories; Hadrons; Quarks; Strong Interactions.
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