Diffraction From Powder (Polycrystalline) Samples and Structure Determination

Jim Rhyne Lujan Neutron Scattering Center Los Alamos National Lab.

Argonne School on Neutron and x-ray Scattering, September 2008

Neutron Scattering's Moment in the Limelight

Lecture Outline -- References

General Concepts

- Direct Lattice, Reciprocal Lattice, Lattice Types
- Diffraction Conditions (Bragg Law, Ewald Diagram)
- Polycrystals vs Single Crystals
- Scattering Cross-sections, amplitudes and form factors

References:

- Neutron Diffraction, G.E. Bacon, 5th edition, Oxford Press, 1975
- Theory of Neutron Scattering From Condensed Matter, S.W. Lovesey, Oxford Press 1984
- Introduction to the Theory of Neutron Scattering, G.L. Squires, Dover, 1996.
- Solid State Physics, N.W. Ashcroft, N.D. Mermin, Holt, Rinehart & Winston, 1976

General Properties of the Neutron

- The kinetic energy of a 1.8 Å neutron is equivalent to T = 293K (warm coffee!), so it is called a thermal neutron.
- The relationships between wavelength (Å) and the energy (meV), and the speed (m/s, mi/hr) of the neutron are:

 $E = 81.89 / \lambda^2$ and $v = 3960 / \lambda$

e.g. the 1.8 Å neutron has $E=25.3\ meV$ and $v=2200\ m/s=4900\ mi/hr$

- The wavelength if of the same order as the atomic separation so interference occurs between waves scattered by neighboring atoms (diffraction).
- Also, the energy is of same order as that of lattice vibrations (phonons) or magnetic excitations (magnons) and thus creation of annihilation of a lattice wave produces a measurable shift in neutron energy (inelastic scattering).

COMPARATIVE PROPERTIES OF X-RAY AND NEUTRON SCATTERING

Property	X-Rays	Neutrons
Wavelength	Characteristic line spectra such as Cu K _{α} $\lambda = 1.54$ Å	Continuous wavelength band, or single $\lambda = 1.1 \pm 0.05$ Å separated out from Maxwell spectrum by crystal monochromator or chopper
Energy for $\lambda = 1$ Å	10 ¹⁸ h	10 ¹³ h (same order as energy of elementary excitations)
Nature of scattering by atoms	Electronic Form factor dependence on [sinθ]/λ Linear increase of scattering amplitude with atomic number, calculable from known electronic configurations	Nuclear, Isotropic, no angular dependent factor Irregular variation with atomic number. Dependent on nuclear structure and only determined empirically by experiment
Magnetic Scattering	Very weak additional scattering (≈ 10 ⁻⁵)	Additional scattering by atoms with magnetic moments (same magnitude as nuclear scattering) Amplitude of scattering falls off with increasing [sin θ]/ λ
Absorption coefficient	Very large, true absorption much larger than scattering $\mu_{abs} \approx 10^2 - 10^3$ increases with atomic number	Absorption usually very small (exceptions Gd, Cd, B) and less that scattering $\mu_{abs} \approx 10^{-1}$
Method of Detection	Solid State Detector, Image Plate	Proportional ³ He counter

Real Space Lattice Direct Space Vectors, Unit Cells

- Bravais Lattice -- Lattice of Atoms in Crystal Cell
 - Basis vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$

- multiple primitive unit cells -
 - useful to describe full atomic symmetry (e.g., bcc has 2)

Primitive Unit Cell contains

(Full) Unit Cell may contain

only one atom

- Vector to $P = a_1 + 2 a_2$ (2-D) Linear Comb. Of Basis Vectors
- General Vector (3-D)

 $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$

Cartoon Neutron Man from the LANSCE Neutron Scattering Primer

Types of 3-d Bravais Lattices

14 types of Bravais lattices in 7 classes Restricted Translations, Rotations, Mirror Planes, etc. are all allowed symmetry operations on lattice and generate 32 crystal classes and in turn 230 space groups

Monoclinic P

Trigonal R

System	Number of lattices	Restrictions on conventional cell axes and angles
Triclinic	1	$a_1 \neq a_2 \neq a_3 \\ \alpha \neq \beta \neq \gamma$
Monoclinic	2	$a_1 \neq a_2 \neq a_3 \alpha = \gamma = 90^\circ \neq \beta$
Orthorhombic	4	$a_1 \neq a_2 \neq a_3 \\ \alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	2	$a_1 = a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^\circ$
Cubic	3	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^\circ$
Trigonal	1	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma < 120^\circ, \neq 90^\circ$
Hexagonal	1	$a_1 = a_2 \neq a_3$ $\alpha = \beta = 90^\circ$ $\gamma = 120^\circ$

Trigonal and Hexagonal P

7

Golden Rule of Neutron Scattering

We don't take pictures of atoms!

Atoms in fcc crystal

 Job preservation for neutron scatterers – we live in *reciprocal space*

Reciprocal Lattice (also Bravais)

- Vector R of real space lattice $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$
- Incident plane wave $e^{i\mathbf{k}\cdot\mathbf{r}}$ [$|\mathbf{k}|=2\pi/\lambda$] will have periodicity of Bravais lattice for specific $\mathbf{k} = \mathbf{K}$:

 $e^{i\mathbf{K}\cdot(\mathbf{r}+\mathbf{R})} = e^{i\mathbf{K}\cdot\mathbf{r}}$ if $e^{i\mathbf{K}\cdot\mathbf{R}} = 1$ or $\mathbf{K}\cdot\mathbf{R} = 2\pi m$

Defines K = reciprocal lattice vector (in *fake* scattering space)
K = k₁b₁+k₂b₂ + k₃b₃ in terms of reciprocal lattice basis vectors b_i
k_i = integer b_i = defined as:

$$\vec{b}_{1} = 2\pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{V}; \vec{b}_{2} = 2\pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{V}; \vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{V} \qquad \text{ex}: \vec{b}_{1} \bullet \vec{a}_{2} = 2\pi \frac{\vec{a}_{2} \times \vec{a}_{3} \bullet \vec{a}_{2}}{V} \equiv 0$$
$$V = \vec{a}_{1} \bullet (\vec{a}_{2} \times \vec{a}_{3})$$
$$\text{but} \ \vec{b}_{2} \bullet \vec{a}_{2} = 2\pi \frac{\vec{a}_{3} \times \vec{a}_{1} \bullet \vec{a}_{2}}{V} \equiv 2\pi$$
$$\text{Note:} \ \mathbf{b}_{i} \bullet \mathbf{a}_{j} = 2\pi \delta_{ij} \text{ so}$$

 $\mathbf{K} \cdot \mathbf{R}$ satisfies periodicity (if k_i and n_i are integers)

Reciprocal lattice of simple cubic cell is simple cubic cell of sides 2π/a
Reciprocal lattice of fcc cell is bcc cell of sides 4π/a

Diffraction from a Crystal Bragg Law, Laue formalism

Crystal Diffraction, cont'd. Diffraction conditions, Miller indices

- Laue condition $\mathbf{R} \cdot \mathbf{K} = 2 \pi \text{ m}$ or $e^{i \mathbf{K} \cdot \mathbf{R}} = 1$ for m integer
- Above is exactly the same as the definition of the reciprocal lattice
- Thus Laue diffraction condition satisfied if K = recip. lat. vec.
- ★ K = h b₁ + k b₂ + 1 b₃ -- defines Miller indices (hkl) of reflection

Note: $a^*, b^* \Leftrightarrow b_1, b_2$

- Miller indices for a reflection have an analog in direct space
 - The direct space plane with Miller indices (hkl) is perpendicular to the reciprocal lattice vector

Miller indices can have no common factors (shortest K)

Crystal Diffraction, cont'd. Ewald Diagram

- Ewald Construction
 - Sphere of radius |k| in reciprocal space
 - Draw intersection of sphere with scattering plane
 - Bragg condition satisfied if scattering vector K = k - k' is a Recip. Lat. Vector (i.e. Ewald sphere intersects recip. lat. Point)
 - $\theta = angle of \mathbf{k} wrt crystal$ $plane. 2\theta = total deviation$ of x-ray (neutron) beam= scattering angle

 Note: (100) (200) ...all refer to same crystal plane spacing (arise from higher order interference

condition) [i.e. $2d\sin\Theta = \mathbf{n}\lambda$]

 Some (hkl) may not appear due to symmetry restrictions (space group)

Ewald Construction White Beam Diffraction, Polycrystals

 White Beam (e.g. LANSCE or IPNS) -- range of k₀ < k < k₀+k₁ simultaneously available

- Gray region spanned by available range of k
- Large number of reflections accumulated simultaneously

- Previous discussion assumed scattering from ordered discrete atomic planes -- a single crystal
- Polycrystal (powder) jumble of single crystals

All orientations of crystallites possible

Sample: 1cc powder of 10μm crystallites - 10⁹ particles if 1μm crystallites - 10¹² particles

 Several crystallites generally oriented to produce reflection for all allowed k.

Diffraction from Polycrystals Debye-Scherrer Cones

- Crystallites in powder that are in position of reflect diffract into cones of semi-angle $2\theta_{hkl}$ according to Bragg's Law
- Diffraction occurs only at specific angle represented by the surface of cones (Debye-Scherrer cone)
- Ewald Construction (?)

Diffraction from Polycrystals

- Polycrystal -- equivalent to spinning reciprocal space
- Previous discrete allowed directions of K become circles (Note: |k| = |k'|)
- Single crystal must be reoriented to bring various planes (K) into reflection -polycrystal remains fixed
- Varying 2θ brings in reflections
 - Or varying λ at pulse source (varies radius of Ewald sphere)

How are neutrons scattered by atoms (nuclei)?

Short-range scattering potential:

$$V(r) = \frac{2\pi\hbar^2}{m}b\delta(r)$$

• Thus "b" varies over N nuclei – can find average \overline{b} defines coherent scattering amplitude $b_{coh} = \overline{b}$ leads to diffraction – turns on only at Bragg peaks

• But what about deviations from average? This defines the incoherent scattering $(\overline{1}_{2}, \overline{1}_{2})^{1/2}$

$$b_{inc} = \left(\overline{b}^2 - \overline{b}^2\right)^{1/2}$$

 Incoherent scattering doesn't depend on Bragg diffrac. condition, thus has no angular dependence – leads to background (e.g., H)

Scattering of neutrons by nuclei

- A single isolated nucleus will scatter neutrons with an intensity (isotropic)
 - $-I = I_0 [4\pi b^2]$

where I_0 = incident neutron intensity, b = scattering amplitude for nucleus

What happens when we put nucleus (atom) in lattice?

- Scattering from N neuclei can add up because they are on a lattice
- Adding is controlled by phase relationship between waves scattered from different lattice planes
- Intensity is no longer isotropic Bragg law gives directional dependence
- Intensity I (Q, or θ) is given by a scattering cross-section or scattering function

Observed coherent scattering in lattice

Intensity of diffracted x-ray or neutron beam produces series of peaks at discrete values of 2θ [or d or K (also Q)]
Note: d = λ/(2 sinθ) or K = 4πsinθ/ λ = 2π/d are more fundamental since values are independent of λ and thus characteristic only of material.

Scattering Cross-section

- The measured scattered intensity in a diffraction experiment is proportional to a scattering function S(Q), which is proportional to a scattering cross-section I(20,d,or Q) \propto S(Q) $\propto \frac{d\sigma}{d\Omega}$ Ω = solid angle
- In turn the cross-section $\propto |A(Q) \cdot A^*(Q)|$

A = scattering anplitude

• In second Born approximation (kinematic limit) A \propto Fourier transform of scattering length density $\rho(\mathbf{r}) = \sum_{j} \rho_{aj}(\vec{r} - \vec{R}_{j})$ (α atom) with the sum over j atoms at position R_{i}

• then
$$A(Q) = \sum_{j} \int \rho_{aj} (r - R_j) e^{2\pi i Q * r} d^3 r = \sum_{j} f_j(Q) e^{2\pi i Q * R}$$

where the scattering factor $f_j(Q) = \int \rho_{aj}(r')e^{2\pi i Q * r'}d^3r'$

The scattering factor f(Q) is the fundamental quantity describing the scattering of radiation from the material

- f takes different forms depending on the type of radiation
- f varies in magnitude depending on the scattering atom or magnetic spin

Scattering Factors f

- The scattering factor $f(Q) = \int \rho_{aj}(r')e^{2\pi i Q * r'}d^3r'$
- The Fourier transform character of the scattering factor f means that the radial extent of the scattering center density $\rho_{aj}(r)$ will dictate its Q dependence.
 - x-rays scatter from the electron cloud of dimensions comparable to λ or d ($\propto 1/Q$)
 - Neutrons scatter from the nucleus $\approx 10^{-5}$ the dimension of λ or d

Scattering Factors f, cont'd

- For x-rays the magntude of f is proportional to Z
- For neutrons nuclear factors determine f, thus no regular with Z (different isotopes can have different f s)
 RELATIVE SCATTERING FACTORS

For neutrons conventionally f = b(Scattering length - constant for an element)

Shaded (negative) --> π phase change

What Controls the Scattering Amplitude?

• $I(Q) \propto S(Q) \propto |A(Q) \cdot A^*(Q)|$

[Measured scattered intensity, S = scat.func.]

•
$$A(Q) = \sum_{j} f_{aj}(Q) e^{2\pi i Q * R}$$

where f_{aj} = atomic scattering factor [cm⁻¹]

- Magnitude of A(Q) is controlled by $[|A(Q) \cdot A^*(Q)|$ called Structure Factor]
 - f values for various atoms in lattice
 - destructive interference of waves scattering from atoms at various lattice sites (calculation of above sum over atoms in lattice reveals this)
- fcc lattice $(000, 0\frac{1}{2}\frac{1}{2}, \frac{1}{2}0\frac{1}{2}, \frac{1}{2}\frac{1}{2}0)$
 - $A(Q) = 4 f_a$ for hkl all odd or hkl all even

- A(Q) = 0

otherwise

bcc lattice $(000, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

 $A(Q) = 2 f_a$ for h+k+l even

22

Why don't (h+k+l) odd integer index reflections appear for bcc cystals?

- A bcc cell has an extra plane stuck in between lattice planes separated by a (lattice parameter)
- Phase difference (path difference) between nearest neighbor planes is π (λ/2) destructive interference

And atoms wiggle!

- Thermal vibration of atoms from their equilibrium position (normal phonon modes) affects the scattering intensity
- This is represented by the Debye-Waller factor e^{-2W} modifying the scattered intensity, where for a cubic monatomic Bravais lattice

 $2W = \left\langle (\vec{q} \bullet \vec{u})^2 \right\rangle = q^2 \left\langle u_q^2 \right\rangle \qquad u_q^2 = \text{comp. of velocity}$ along **q.**

- In a multi-site lattice each atom may have a unique D-W factor.
- If the lattice is non-cubic, the velocity components are unequal, and up to 6 components may be required to determine the D-W correction.

Debye-Waller factor temperature and q-dependence

0

 Because the D-W factor originates from phonon normal modes, the average velocity is both T- and qdependent

$$e^{-2W} = e^{-\frac{C}{\theta_D}f\left(\frac{\theta_D}{T}\right)\left(\frac{\sin\theta}{\lambda}\right)^2}$$

Where Θ_D is the Debye temperature from specific heat

Other Factors Affecting Scattering Intensity from Powder

- $I \propto S(Q) = \lambda^3 [I_0] [SF] [G] [M] [TF] [LF] [AF] [PO] [EE] |AA*|$
 - I₀ = Incident intensity
 - [SF] = Overall scale factor (det. efficiency, everything else you forgot)
 - [G] = Geometrical factors of instrument and sample (e.g., density)
 - [M] = Multiplicity of reflection [# cooperating planes, e.g. 8 (111)]
 - [TF] = Debye Thermal Vibration Factor = e^{-2W}
 - [LF] = Lorenz geometrical factor $LF = 1/(2\sin^2\theta\cos\theta)$ [λ fixed] $LF = d^4 \sin\theta$ [TOF]; $LF = 1/\sin^2 2\theta$ [plate geom., λ fixed]
 - [AF] = Absorption factor $AF = e^{-A\lambda}$ [varies as 1/v] [AF very large for x-rays, small for neutrons except Gd, B, Li, Cd, ...]
 - [PO] = Preferred Orientation factor (compensates for non-random crystallite orientation in sample)
 - [EE] = Primary extinction correction [non-uniform illumination of all reflecting planes]