Diffraction From Powder (Polycrystalline) Samples and

Structure Determination

Jim Rhyne
 Lujan Neutron Scattering Center

Los Alamos National Lab.

1
Argonne School on Neutron and x-ray Scattering, September 2008

Neutron Scattering's Moment in the Limelight

Lecture Outline -- References

- General Concepts
- Direct Lattice, Reciprocal Lattice, Lattice Types
- Diffraction Conditions (Bragg Law, Ewald Diagram)
- Polycrystals vs Single Crystals
- Scattering Cross-sections, amplitudes and form factors
- References:
- Neutron Diffraction, G.E. Bacon, 5th edition, Oxford Press, 1975
- Theory of Neutron Scattering From Condensed Matter, S.W. Lovesey, Oxford Press 1984
- Introduction to the Theory of Neutron Scattering, G.L. Squires, Dover, 1996.
- Solid State Physics, N.W. Ashcroft, N.D. Mermin, Holt, Rinehart \& Winston, 1976

General Properties of the Neutron

- The kinetic energy of a 1.8 Å neutron is equivalent to $T=293 \mathrm{~K}$ (warm coffee!), so it is called a thermal neutron.
- The relationships between wavelength (\AA) and the energy (meV), and the speed $(\mathrm{m} / \mathrm{s}, \mathrm{mi} / \mathrm{hr})$ of the neutron are:

$$
E=81.89 / \lambda^{2} \text { and } v=3960 / \lambda
$$

e.g. the $1.8 \AA$ neutron has $\mathrm{E}=25.3 \mathrm{meV}$ and $\mathrm{v}=2200 \mathrm{~m} / \mathrm{s}=4900$ $\mathrm{mi} / \mathrm{hr}$

- The wavelength if of the same order as the atomic separation so interference occurs between waves scattered by neighboring atoms (diffraction).
- Also, the energy is of same order as that of lattice vibrations (phonons) or magnetic excitations (magnons) and thus creation of annihilation of a lattice wave produces a measurable shift in neutron energy (inelastic scattering).

COMPARATIVE PROPERTIES OF X-RAY AND NEUTRON SCATTERING

Property	X-Rays	Neutrons
Wavelength	Characteristic line spectra such as Cu_{α} $\lambda=1.54 \AA$	Continuous wavelength band, or single $\lambda=$ $1.1 \pm 0.05 \AA$ separated out from Maxwell spectrum by crystal monochromator or chopper
Energy for $\lambda=1 \AA$	$10^{18} \mathrm{~h}$	$10^{13} \mathrm{~h}$ (same order as energy of elementary excitations)
Nature of scattering by atoms	Electronic Form factor dependence on $[\sin \theta] / \lambda$ Linear increase of scattering amplitude with atomic number, calculable from known electronic configurations	Nuclear, Isotropic, no angular dependent factor Irregular variation with atomic number. Dependent on nuclear structure and only determined empirically by experiment
Magnetic Scattering	Very weak additional scattering ($\approx 10^{-5}$)	Additional scattering by atoms with magnetic moments (same magnitude as nuclear scattering) Amplitude of scattering falls off with increasing $[\sin \theta] / \lambda$
Absorption coefficient	Very large, true absorption much larger than scattering $\mu_{\mathrm{abs}} \approx 10^{2}-10^{3}$ increases with atomic number	Absorption usually very small (exceptions Gd, Cd, B ...) and less tha scattering $\mu_{\mathrm{abs}} \approx 10^{-1}$
Method of Detection	Solid State Detector, Image Plate	Proportional ${ }^{3} \mathrm{He}$ counter

Real Space Lattice
 Direct Space Vectors, Unit Cells

- Bravais Lattice -- Lattice of Atoms in Crystal Cell
- Basis vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$

$-\quad$ Vector to $\mathbf{P}=\mathbf{a}_{\mathbf{1}}+2 \mathbf{a}_{\mathbf{2}} \quad$ (2-D) Linear Comb. Of Basis Vectors
- General Vector (3-D)

$$
\mathbf{R}=\mathrm{n}_{1} \mathbf{a}_{1}+\mathrm{n}_{2} \mathbf{a}_{2}+\mathrm{n}_{3} \mathbf{a}_{3}
$$

Types of 3-d Bravais Lattices

- 14 types of Bravais lattices in 7 classes
- Restricted Translations, Rotations, Mirror Planes, etc. are all allowed symmetry operations on lattice and generate 32 crystal classes and in turn 230 space groups

System	Number of lattices	Restrictions on conventional cell axes and angles
Triclinic	1	$a_{1} \neq a_{2} \neq a_{3}$ $\alpha \neq \beta \neq \gamma$
Monoclinic	2	$a_{1} \neq a_{2} \neq a_{3}$ $\alpha=\gamma=90^{\circ} \neq \beta$ $a_{1} \neq a_{2} \neq a_{3}$ $\alpha=\beta=\gamma=90^{\circ}$ Orthorhombic Tetragonal
Cubic	4	$a_{1}=a_{2} \neq a_{3}$ $\alpha=\beta=\gamma=90^{\circ}$ Trigonal
Hexagonal	2	$a_{1}=a_{2}=a_{3}$ $\alpha=\beta=\gamma=90^{\circ}$
	3	$a_{1}=a_{2}=a_{3}$ $\alpha=\beta=\gamma<120^{\circ}, \neq 90^{\circ}$ $a_{1}=a_{2} \neq a_{3}$ $\alpha=\beta=90^{\circ}$ $\gamma=120^{\circ}$

Golden Rule of Neutron Scattering

- We don't take pictures of atoms!

Atoms in fcc crysta

- Job preservation for neutron scatterers - we live in reciprocal space

Reciprocal Lattice (also Bravais)

- Vector R of real space lattice $\quad \mathbf{R}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+\mathrm{n}_{3} \mathbf{a}_{3}$
- Incident plane wave $\mathrm{e}^{\mathrm{ik} \cdot \mathbf{r}}[|\mathbf{k}|=2 \pi / \lambda]$ will have periodicity of Bravais lattice for specific $\mathbf{k}=\mathbf{K}$:

$$
\mathrm{e}^{\mathrm{i} \mathbf{K} \cdot \mathbf{(r}+\mathbf{R})}=\mathrm{e}^{\mathrm{i} \mathbf{K} \cdot \mathbf{r}} \quad \text { if } \mathrm{e}^{\mathrm{i} \mathbf{K} \cdot \mathbf{R}}=1 \quad \text { or } \mathbf{K} \cdot \mathbf{R}=2 \pi \mathrm{~m}
$$

- Defines $\mathbf{K}=$ reciprocal lattice vector (in fake scattering space) $\mathbf{K}=\mathrm{k}_{1} \mathbf{b}_{1}+\mathrm{k}_{2} \mathbf{b}_{2}+\mathrm{k}_{3} \mathbf{b}_{3}$ in terms of reciprocal lattice basis vectors $\mathbf{b}_{\mathbf{i}}$ $\mathrm{k}_{\mathrm{i}}=$ integer $\quad \mathbf{b}_{\mathbf{i}}=$ defined as:
$\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{V} ; \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{V} ; \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{V} \quad$ ex: $\vec{b}_{1} \bullet \vec{a}_{2}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3} \bullet \vec{a}_{2}}{V} \equiv 0$
$V=\vec{a}_{1} \bullet\left(\vec{a}_{2} \times \vec{a}_{3}\right)$
Note: $\mathbf{b}_{\mathrm{i}} \cdot \mathbf{a}_{\mathrm{j}}=2 \pi \delta_{\mathrm{ij}}$ so

$$
\text { but } \vec{b}_{2} \bullet \vec{a}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1} \bullet \vec{a}_{2}}{V} \equiv 2 \pi
$$

$\mathbf{K} \cdot \mathbf{R}$ satisfies periodicity (if k_{i} and n_{i} are integers)

- Reciprocal lattice of simple cubic cell is simple cubic cell of sides $2 \pi / \mathrm{a}$
- Reciprocal lattice of fcc cell is bcc cell of sides $4 \pi / \mathrm{a}$

Diffraction from a Crystal Bragg Law, Laue formalism

- Incident x-rays or neutrons scatter from crystal planes

constructive interference

$2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$

[Bragg Law]

- More generally
- incident wave of wavevector $\mathrm{k}=2 \pi / \lambda$
- scattered wave $\mathrm{k}^{\prime}=2 \pi / \lambda$,

- path difference:

$$
d \cos \theta+d \cos \theta^{\prime}=\mathbf{d} \cdot\left(\mathbf{n}-\mathbf{n}^{\prime}\right)=m \lambda
$$

or $\mathbf{d} \cdot\left(\mathbf{k}-\mathbf{k}^{\mathbf{\prime}}\right)=2 \pi \mathrm{~m}$
or $\quad \mathbf{R} \cdot \mathbf{K}=2 \pi \mathrm{~m} \quad$ [Laue diffraction]
where Scat. Vec. $\mathbf{K}($ or $\mathbf{Q})=\mathbf{k}-\mathbf{k}^{\prime} \quad 10$

Crystal Diffraction, cont'd. Diffraction conditions, Miller indices

- Laue condition $\mathbf{R} \cdot \mathbf{K}=2 \pi \mathrm{~m}$ or $\mathrm{e}^{\mathrm{i} \cdot \boldsymbol{R}}=1 \quad$ for m integer
- Above is exactly the same as the definition of the reciprocal lattice
- Thus Laue diffraction condition satisfied if $\mathbf{K}=$ recip. lat. vec.
- $\mathbf{K}=\mathrm{h} \mathbf{b}_{1}+\mathrm{k} \mathbf{b}_{2}+1 \mathbf{b}_{3}$-- defines Miller indices (hkl) of reflection

Note: $a^{*}, b^{*} \Leftrightarrow b_{1}, b_{2}$

- Miller indices for a reflection have an analog in direct space
- The direct space plane with Miller indices (hkl) is perpendicular to the reciprocal lattice vector

$$
\mathbf{K}=\mathrm{h} \mathbf{b}_{1}+\mathrm{k} \mathbf{b}_{2}+1 \mathbf{b}_{3}
$$

$-. h: k: l=\frac{1}{x_{1}}: \frac{1}{x_{2}}: \frac{1}{x_{3}}$

- Miller indices can have no 11 common factors (shortest \mathbf{K})

Crystal Diffraction, cont'd.

Ewald Diagram

- Ewald Construction
- Sphere of radius $|\mathbf{k}|$ in reciprocal space
- Draw intersection of sphere with scattering plane
- Bragg condition satisfied if scattering vector $\mathbf{K}=\mathbf{k}-\mathbf{k}$, is a Recip. Lat. Vector (i.e. Ewald sphere intersects recip. lat. Point)
- $\theta=$ angle of \mathbf{k} wrt crystal plane. $2 \theta=$ total deviation of x-ray (neutron) beam \equiv scattering angle

Ewald Construction White Beam Diffraction, Polycrystals

- White Beam (e.g. LANSCE or IPNS) -- range of $\mathrm{k}_{0}<\mathbf{k}<$ $\mathrm{k}_{0}+\mathrm{k}_{1}$ simultaneously available

- Gray region spanned by available range of \mathbf{k}
- Large number of reflections accumulated simultaneously
- Previous discussion assumed scattering from ordered discrete atomic planes -- a single crystal
- Polycrystal (powder) - jumble of single crystals

All orientations of crystallites possible

Sample: 1 cc powder of $10 \mu \mathrm{~m}$ crystallites - 10^{9} particles if $1 \mu \mathrm{~m}$ crystallites -10^{12} particles

- Several crystallites generally oriented to produce reflection for all allowed \mathbf{k}.

Diffraction from Polycrystals Debye-Scherrer Cones

- Crystallites in powder that are in position of reflect diffract into cones of semi-angle $2 \theta_{h k l}$ according to Bragg's Law
- Diffraction occurs only at specific angle represented by the surface of cones
(Debye-Scherrer cone)
- Ewald Construction (?)

Multiple Crystallites

Diffraction from Polycrystals

- Polycrystal -- equivalent to spinning reciprocal space
- Previous discrete allowed directions of \mathbf{K} become circles (Note: $|\mathbf{k}|=|\mathbf{k}|$)
- Single crystal must be reoriented to bring various planes (K) into reflection -polycrystal remains fixed

- Varying 2θ brings in reflections
- Or varying λ at pulse source (varies radius of Ewald sphere)

How are neutrons scattered by atoms (nuclei)?

- Short-range scattering potential:

$$
V(r)=\frac{2 \pi \hbar^{2}}{m} b \delta(r)
$$

- The quantity "b" (or f) is the strength of the potential and is called the scattering length - depends on isotopic composition Thus "b" varies over N nuclei - can find average \bar{b} defines coherent scattering amplitude $b_{\text {coh }}=\bar{b}$ leads to diffraction - turns on only at Bragg peaks ${ }^{\text {co }}$

- But what about deviations from average? This defines the incoherent scattering

$$
b_{\text {inc }}=\left(\bar{b}^{2}-\bar{b}^{2}\right)^{1 / 2}
$$

- Incoherent scattering doesn't depend on Bragg diffrac. condition,
 thus has no angular dependence - leads to background (e.g., H)

Scattering of neutrons by nuclei

- A single isolated nucleus will scatter neutrons with an intensity (isotropic)
$-\mathrm{I}=\mathrm{I}_{0}\left[4 \pi \mathrm{~b}^{2}\right]$
where $\mathrm{I}_{0}=$ incident neutron intensity, $\mathrm{b}=$ scattering amplitude for nucleus
- What happens when we put nucleus (atom) in lattice?
- Scattering from N neuclei can add up because they are on a lattice
- Adding is controlled by phase relationship between waves scattered from different lattice planes
- Intensity is no longer isotropic - Bragg law gives directional dependence
- Intensity I (Q, or θ) is given by a scattering cross-section or scattering function

Observed coherent scattering in lattice

- Intensity of diffracted x-ray or neutron beam produces series of peaks at discrete values of 2θ [or d or K (also Q)]
Note: $\mathrm{d}=\lambda /(2 \sin \theta)$ or $\mathrm{K}=4 \pi \sin \theta / \lambda=2 \pi / \mathrm{d}$ are more fundamental since values are independent of λ and thus characteristic only of material.

Tb2Fe12Al5 Room Temperatu

Benzine Pattern (partial)
Note: Inversion of scales $-2 \theta \propto f\left(1 / q_{8}\right.$

Scattering Cross-section

- The measured scattered intensity in a diffraction experiment is proportional to a scattering function $S(Q)$, which is proportional to a scattering cross-section $\mathrm{I}(2 \theta, \mathrm{~d}$, or Q$) \propto \mathrm{S}(\mathrm{Q}) \propto \frac{d \sigma}{d \Omega} \quad \Omega=$ solid angle
- In turn the cross-section $\propto\left|A(Q) \cdot A^{*}(\mathrm{Q})\right|$

$$
\mathrm{A}=\text { scattering anplitude }
$$

- In second Born approximation (kinematic limit) $\mathrm{A} \propto$ Fourier transform of scattering length density $\rho(\mathrm{r})=\sum_{j} \rho_{a j}\left(\vec{r}-\vec{R}_{j}\right) \quad$ (α atom) with the sum over j atoms at position R_{j}
then $A(Q)=\sum_{j} \int \rho_{a j}\left(r-R_{j}\right) e^{2 \pi i Q * r} d^{3} r=\sum_{j} f_{j}(Q) e^{2 \pi i Q * R}$
where the scattering factor $f_{j}(Q)=\int \rho_{a j}\left(r^{\prime}\right) e^{2 \pi i Q^{*} r^{\prime}} d^{3} r^{\prime}$
The scattering factor $f(Q)$ is the fundamental quantity describing the scattering of radiation from the material
- f takes different forms depending on the type of radiation
- f varies in magnitude depending on the scattering atom or magnetic spin

Scattering Factors f

- The scattering factor $f(Q)=\int \rho_{a j}\left(r^{\prime}\right) e^{2 \pi i Q * r^{\prime}} d^{3} r^{\prime}$
- The Fourier transform character of the scattering factor f means that the radial extent of the scattering center density $\rho_{\mathrm{aj}}(\mathrm{r})$ will dictate its Q dependence.
- x-rays scatter from the electron cloud of dimensions comparable to λ or $d(\propto 1 / Q)$
- Neutrons scatter from the nucleus $\approx 10^{-5}$ the dimension of λ or d

Scattering Factors f , cont' d

- For x-rays the magntude of f is proportional to Z
- For neutrons nuclear factors determine f, thus no regular with Z (different isotopes can have different fs)

RELATIVE SCATTERING FACTORS

For neutrons conventionally $\mathrm{f}=\mathrm{b}$ (Scattering length - constant for an element)

$$
x \text { rays }
$$

Shaded (negative) --> π phase change,

What Controls the Scattering Amplitude?

$-\mathrm{I}(\mathrm{Q}) \propto \mathrm{S}(\mathrm{Q}) \propto|\mathrm{A}(\mathrm{Q}) \cdot \mathrm{A} *(\mathrm{Q})|$

- $A(Q)=\sum_{j} f_{a j}(Q) e^{2 \pi i Q * R}$
[Measured scattered intensity, $\mathrm{S}=$ scat.func.]
where $f_{a j}=$ atomic scattering factor $\left[\mathrm{cm}^{-1}\right]$
- Magnitude of $\mathrm{A}(\mathrm{Q})$ is controlled by $\left[\left|\mathrm{A}(\mathrm{Q}) \cdot \mathrm{A}^{*}(\mathrm{Q})\right|\right.$ called Structure Factor $]$
- f values for various atoms in lattice
- destructive interference of waves scattering from atoms at various lattice sites (calculation of above sum over atoms in lattice reveals this)
- fcc lattice ($000,01 / 21 / 2,1 / 201 / 2,1 / 21 / 20$)
$-A(Q)=4 f_{a} \quad$ for hkl all odd or hkl all even
- $\mathrm{A}(\mathrm{Q})=0 \quad$ otherwise

$A(Q)=2 f_{a} \quad$ for $h+k+1$ even
$\mathrm{A}(\mathrm{Q})=0 \quad$ otherwise

Why don't $(\mathrm{h}+\mathrm{k}+1)$ odd integer index reflections appear for bcc cystals?

A bcc cell has an extra
plane stuck in between
lattice planes separated by a (lattice parameter)

- Phase difference (path
 difference) between nearest neighbor planes is $\pi(\lambda / 2)$ - destructive interference

And atoms wiggle!

- Thermal vibration of atoms from their equilibrium position (normal phonon modes) affects the scattering intensity
- This is represented by the Debye-Waller factor $\mathrm{e}^{-2 \mathrm{~W}}$ modifying the scattered intensity, where for a cubic monatomic Bravais lattice

$$
\begin{aligned}
& 2 W=\left\langle(\vec{q} \bullet \vec{u})^{2}\right\rangle=q^{2}\left\langle u_{q}^{2}\right\rangle \quad u_{\mathrm{q}}^{2}=\text { comp. of velocity } \\
& \text { along } \mathbf{q} .
\end{aligned}
$$

- In a multi-site lattice each atom may have a unique D-W factor.
- If the lattice is non-cubic, the velocity components are unequal, and up to 6 components may be required to determine the $\mathrm{D}-\mathrm{W}$ correction.

Debye-Waller factor temperature and q-dependence

- Because the D-W factor originates from phonon normal modes, the average velocity is both T - and $\mathrm{q}-$ dependent

$$
\mathrm{e}^{-2 \mathrm{~W}}=e^{-\frac{C}{\theta_{D}} f\left(\frac{\theta_{D}}{T}\right)\left(\frac{\sin \theta}{\lambda}\right)^{2}}
$$

Where Θ_{D} is the Debye
temperature from specific heat

Other Factors Affecting

Scattering Intensity from Powder

$\mathrm{I} \propto \mathrm{S}(\mathrm{Q})=\lambda^{3}\left[\mathrm{I}_{\mathrm{o}}\right][\mathrm{SF}][\mathrm{G}][\mathrm{M}][\mathrm{TF}][\mathrm{LF}][\mathrm{AF}][\mathrm{PO}][\mathrm{EE}]\left|\mathrm{AA}^{*}\right|$

- $\mathrm{I}_{\mathrm{o}}=$ Incident intensity
- [SF] = Overall scale factor (det. efficiency, everything else you forgot)
$-[\mathrm{G}]=$ Geometrical factors of instrument and sample (e.g., density)
- $[\mathrm{M}]=$ Multiplicity of reflection [\# cooperating planes, e.g. 8 (111)]
$-[\mathrm{TF}]=$ Debye Thermal Vibration Factor $=\mathrm{e}^{-2 \mathrm{~W}}$
- [LF] = Lorenz geometrical factor $\mathrm{LF}=1 /\left(2 \sin ^{2} \theta \cos \theta\right)[\lambda$ fixed $]$ $\mathrm{LF}=\mathrm{d}^{4} \sin \theta[\mathrm{TOF}] ; \quad \mathrm{LF}=1 / \sin ^{2} 2 \theta$ [plate geom., λ fixed]
$-[\mathrm{AF}]=$ Absorption factor $\mathrm{AF}=\mathrm{e}^{-\mathrm{A} \lambda}$ [varies as $\left.1 / \mathrm{v}\right][\mathrm{AF}$ very large for x -rays, small for neutrons except $\mathrm{Gd}, \mathrm{B}, \mathrm{Li}, \mathrm{Cd}, \ldots$]
$-[\mathrm{PO}]=$ Preferred Orientation factor (compensates for non-random crystallite orientation in sample)
- [EE] = Primary extinction correction [non-uniform illumination of all reflecting planes]

