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Neutron Scattering’s Moment in the Limelight
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Lecture Outline --
 

References
General Concepts
Direct Lattice, Reciprocal Lattice, Lattice Types
Diffraction Conditions (Bragg Law, Ewald Diagram)
Polycrystals vs Single Crystals
Scattering Cross-sections, amplitudes and form factors
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General Properties of the Neutron
The kinetic energy of a 1.8 Å neutron is equivalent to T = 293K 
(warm coffee!), so it is called a thermal neutron.
The relationships between wavelength (Å) and the energy (meV), 
and the speed (m/s, mi/hr) of the neutron are:

e.g. the 1.8 Å

 

neutron  has E = 25.3 meV

 

and v = 2200 m/s

 

= 4900 
mi/hr
The wavelength if of the same order as the atomic separation so 
interference occurs between waves scattered by neighboring atoms
(diffraction).
Also, the energy is of same order as that of lattice vibrations 
(phonons) or magnetic excitations (magnons) and thus creation of 
annihilation of a lattice wave produces a measurable shift in 
neutron energy (inelastic scattering). 

λλ /3960  and  /89.81 2 == vE
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COMPARATIVE PROPERTIES OF X-RAY AND
NEUTRON SCATTERING

Property X-Rays Neutrons

Wavelength Characteristic line spectra such as Cu Kα

 

λ

 

= 1.54 Å
Continuous wavelength band,   or single λ

 

=

 
1.1 ±

 

0.05 Å

 

separated out from Maxwell 
spectrum by crystal monochromator

 

or 
chopper

Energy for λ

 

= 1 Å 1018

 

h 1013

 

h (same order as energy of 
elementary excitations)

Nature of scattering 
by atoms

Electronic
Form factor dependence on [sinθ]/λ
Linear increase of scattering amplitude 
with atomic number, calculable from 
known electronic configurations

Nuclear, Isotropic, no angular 
dependent factor Irregular variation 
with atomic number.  Dependent on 
nuclear structure and only determined 
empirically by experiment

Magnetic Scattering Very weak additional scattering (≈

 

10-5) Additional scattering by atoms with 
magnetic moments (same magnitude as 
nuclear scattering) Amplitude of scattering 
falls off with increasing [sin θ]/λ

Absorption 
coefficient

Very large, true absorption much larger 
than scattering 
μabs

 

≈

 

102

 

- 103

increases with atomic number

Absorption usually very small 
(exceptions Gd, Cd, B …) and less than

 
scattering  μabs

 

≈

 

10-1

Method of Detection Solid State Detector, Image Plate Proportional 3He counter
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Bravais Lattice -- Lattice of 
Atoms in Crystal Cell
–

 

Basis vectors a1 , a2 , a3

–

 

Vector to P = a1 + 2

 

a2 (2-D)
Linear Comb. Of Basis Vectors

–

 

General Vector   (3-D)

R = n1

 

a1

 

+n2

 

a2

 

+n3

 

a3

Primitive Unit Cell contains 
only one atom 
(Full) Unit Cell may contain 
multiple primitive unit cells --
useful to describe full atomic 
symmetry (e.g., bcc has 2)

Real Space Lattice
 Direct Space Vectors, Unit Cells

Cartoon Neutron Man from the 
LANSCE Neutron Scattering Primer
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Types of 3-d Bravais
 

Lattices
14 types of Bravais lattices in 7 classes 
Restricted Translations, Rotations, 
Mirror Planes, etc. are all allowed 
symmetry operations on lattice and 
generate 32 crystal classes and in turn 
230 space groups
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Golden Rule of Neutron Scattering

We don’t take pictures of 
atoms!

Job preservation for 
neutron scatterers – we 
live in reciprocal space

Atoms in fcc

 

crystal

In
te

ns
ity
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Reciprocal Lattice (also Bravais)
Vector R of real space lattice       R = n1a1+n2a2+n3a3

Incident plane wave eik•r [ |k|=2π/λ ] will have periodicity of Bravais
lattice for specific k = K :
eiK•(r + R) = eiK•r if eiK• R = 1     or K•R = 2πm

Defines K = reciprocal lattice vector (in fake scattering space)
K = k1

 

b1+ k2

 

b2 + k3

 

b3    in terms of reciprocal lattice basis vectors bi

ki

 

= integer         bi = defined as:

Note:  bi

 

•

 

aj

 

= 2πδij so  
K •

 

R satisfies periodicity (if ki

 

and ni

 

are integers)
Reciprocal lattice of simple cubic cell is simple cubic cell of sides 2π/a
Reciprocal lattice of fcc cell is bcc cell of sides 4π/a
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Diffraction from a Crystal
 Bragg Law, Laue formalism

More generally
–

 

incident wave of wavevector

 

k = 2 π/λ
–

 

scattered wave  k’

 

= 2 π/λ’

–

 

path difference:  

d cosθ

 

+ d cosθ’ = d • (n - n’) = m λ
or d • (k - k’) = 2 π

 

m
or    R • K = 2 π

 

m    [Laue diffraction]
where Scat. Vec. K (or Q) = k - k’

Incident x-rays or neutrons 
scatter from crystal planes

path difference to give 
constructive interference

2d sinθ
 

= nλ
[Bragg Law]

'
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Crystal Diffraction,  cont’d.
 Diffraction conditions, Miller indices

Laue condition   R • K = 2 π m
or  ei

 

K• R = 1      for m integer
Above is exactly the same as the 
definition of the reciprocal lattice 
Thus Laue diffraction condition 
satisfied if  K = recip. lat. vec.
K = h b1 + k b2 + l b3 -- defines 
Miller indices (hkl) of reflection

Miller indices for a reflection 
have an analog in direct space
–

 

The direct space plane with 
Miller indices (hkl) is 
perpendicular to the reciprocal 
lattice vector

K = h b1

 

+ k b2

 

+ l b3

–

 

.

–

 

Miller indices can have no 
common factors (shortest K) 

321

1:1:1::
xxx

lkh =

Note:  a*,b*⇔b1

 

,b2

d*

 

= 2 b1

 

+ 6 b2

(260)
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Crystal Diffraction, cont’d.
 Ewald

 
Diagram

Ewald Construction
–

 

Sphere of radius |k| in 
reciprocal space

–

 

Draw intersection of sphere 
with scattering plane

–

 

Bragg condition satisfied if 
scattering vector K = k - k’ 
is a Recip. Lat. Vector (i.e. 
Ewald

 

sphere intersects 
recip. lat. Point)

–

 

θ

 

= angle of k wrt

 

crystal 
plane. 2θ

 

= total deviation 
of x-ray (neutron) beam     
≡

 

scattering angle

Note:  (100) (200) …all refer to 
same crystal plane spacing (arise 
from higher order interference 

condition)  [i.e.  2dsinΘ = nλ]
Some (hkl) may not appear due to 
symmetry restrictions (space 
group)
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Ewald
 

Construction
 White Beam Diffraction, Polycrystals

White Beam (e.g. LANSCE or 
IPNS) -- range of k0 < k < 
k0+k1 simultaneously available

Gray region spanned by 
available range of k
Large number of reflections 
accumulated simultaneously

Previous discussion assumed 
scattering from ordered discrete 
atomic planes -- a single crystal
Polycrystal (powder) - jumble 
of single crystals

Several crystallites generally 
oriented to produce reflection 
for all allowed k.
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Diffraction from Polycrystals
 Debye-Scherrer

 
Cones

Crystallites in powder that 
are in position of reflect 
diffract into cones of 
semi-angle 2      according 
to Bragg’s Law
Diffraction occurs only at 
specific angle represented 
by the surface of cones 
(Debye-Scherrer cone)
Ewald Construction (?)

hklθ

One Crystallite Another Crystallite

Multiple Crystallites
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Diffraction from Polycrystals
Polycrystal -- equivalent to 
spinning reciprocal space
Previous discrete allowed 
directions of K become 
circles (Note: |k| = |k’|)
Single crystal must be 
reoriented to bring various 
planes (K) into reflection --
polycrystal remains fixed
Varying 2θ brings in 
reflections
–

 

Or varying λ

 

at pulse source (varies radius of Ewald

 

sphere)
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How are neutrons scattered by atoms (nuclei)?
Short-range scattering potential:

The quantity “b” (or f) is the strength of the potential and is called 
the scattering length – depends on isotopic composition
Thus “b” varies over N nuclei – can find average 

defines coherent scattering amplitude                   leads to        
diffraction –

 

turns on only at Bragg peaks
But what about deviations from average?  This defines the 
incoherent scattering

Incoherent scattering doesn’t depend on Bragg diffrac. condition, 
thus has no angular dependence – leads to background (e.g., H) 

bbcoh =
b

)(2)(
2

rb
m

rV δπh
=

( ) 2/122 bbbinc −=
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Scattering of neutrons by nuclei
A single isolated nucleus will scatter neutrons with an 
intensity (isotropic)
–

 
I = I0

 

[4πb2]
where I0

 

= incident neutron intensity, b = scattering amplitude for 
nucleus

What happens when we put nucleus (atom) in lattice?
–

 

Scattering from N neuclei

 

can add up because they are on a lattice
–

 

Adding is controlled by phase relationship between waves 
scattered from different lattice planes

–

 

Intensity is no longer isotropic –

 

Bragg law gives directional 
dependence

–

 

Intensity I (Q, or θ) is given by a scattering cross-section or 
scattering function
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Observed coherent scattering in lattice

Intensity of diffracted x-ray or neutron beam produces series of peaks at 
discrete values of 2θ [or d or K (also Q)]
Note:  d = λ/(2 sinθ) or  K = 4πsinθ/ λ

 

= 2π/d   are more fundamental since 
values are independent of λ

 

and thus characteristic only of material.

Benzine

 

Pattern (partial)
Note: Inversion of scales -

 

2θ ∝ f(1/d)
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Scattering Cross-section
The measured scattered intensity in a diffraction experiment is proportional to 
a scattering function S(Q), which is proportional to a scattering cross-section
I(2θ,d,or Q) ∝

 

S(Q) ∝ Ω = solid angle
In turn the cross-section ∝ |A(Q) • A*(Q)|

A = scattering anplitude
In second Born approximation (kinematic limit) A ∝ Fourier transform of 
scattering length density ρ(r) =                     (α atom) with the sum over j 
atoms at position Rj

then

The scattering factor f(Q) is the fundamental quantity describing the scattering 
of radiation from the material

–

 

f takes different forms depending on the type of radiation
–

 

f varies in magnitude depending on the scattering atom or magnetic spin  

Ωd
dσ

∑ −
j

jaj Rr )(
rrρ

 ')()(factor  scattering  thewhere

)()()(

3'2'

232

∫
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=
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Scattering Factors  f
.
The Fourier transform character of the scattering factor f means that the radial 
extent of the scattering center density ρaj( r) will dictate its  Q dependence.

–

 

x-rays scatter from the electron cloud of dimensions comparable to

 

λ

 

or d (∝1/Q)

–

 

Neutrons scatter from the nucleus ≈

 

10-5

 

the dimension of λ

 

or d

 ')()(factor  scattering The 3'2'∫ ∗= rderQf riQ
aj

πρ
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Scattering Factors  f, cont’d
For x-rays the magntude of f is proportional to Z
For neutrons nuclear factors determine f, thus no regular with Z (different 
isotopes can have different f s)

Shaded (negative) --> π

 

phase changeFor neutrons conventionally    f = b  
(Scattering length -

 

constant for an element)
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What Controls the Scattering 
Amplitude?

I(Q) ∝ S(Q) ∝ |A(Q) • A*(Q)|          [Measured scattered intensity,  S = scat.func.]

where faj = atomic scattering factor [cm-1]

Magnitude of A(Q) is controlled by   [|A(Q) • A*(Q)| called Structure Factor]
–

 

f values for various atoms in lattice
–

 

destructive interference of waves scattering from atoms at various lattice sites (calculation 
of above sum over atoms in lattice reveals this) 

fcc lattice (000, 0½½ , ½0½, ½½0)  bcc lattice (000, ½½½)
–

 

A(Q) = 4 fa

 

for hkl

 

all odd or      A(Q) = 2 fa

 

for h+k+l  even
hkl

 

all even
–

 

A(Q) = 0         otherwise A(Q) = 0           otherwise

∑ ∗=
j

RiQ
aj eQfQA π2)()(
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Why don’t (h+k+l) odd integer index 
reflections appear for bcc cystals?

A bcc cell has an extra 
plane stuck in between 
lattice planes separated by 
a (lattice parameter)
Phase difference (path 
difference) between 
nearest neighbor planes is 
π (λ/2) – destructive 
interference
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And atoms wiggle!
Thermal vibration of atoms from their equilibrium position 
(normal phonon modes) affects the scattering intensity
This is represented by the Debye-Waller factor  e-2W

modifying the scattered intensity, where for a cubic 
monatomic Bravais lattice

uq
2= comp. of velocity 

along q.
In a multi-site lattice each atom may have a unique D-W 
factor.
If the lattice is non-cubic, the velocity components are 
unequal, and up to 6 components may be required to 
determine the D-W correction.

222)(2 ququqW =•=
rr
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Debye-Waller factor temperature 
and q-dependence

Because the D-W factor 
originates from phonon 
normal modes, the average 
velocity is both T- and q-
dependent

e-2W =
Where ΘD

 

is the Debye 
temperature from specific heat

Fe2sin  ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−

λ
θθ

θ T
fC D

De
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Other Factors Affecting 
Scattering Intensity from Powder

I ∝ S(Q) = λ3[Io][SF][G][M][TF][LF][AF][PO][EE]|AA*|
–

 

Io

 

= Incident intensity
–

 

[SF] = Overall scale factor (det. efficiency, everything else you forgot)
–

 

[G] = Geometrical factors of instrument and sample (e.g., density)
–

 

[M] = Multiplicity of reflection [# cooperating planes, e.g. 8 (111)]
–

 

[TF] = Debye Thermal Vibration Factor = e-2W

–

 

[LF] = Lorenz geometrical factor  LF = 1/(2sin2θcosθ) [λ

 

fixed]
LF = d4

 

sinθ

 

[TOF];    LF = 1/sin22θ

 

[plate geom., λ

 

fixed]
–

 

[AF] = Absorption factor  AF = e-Aλ

 

[varies as 1/v] [AF very large for x-rays, 
small for neutrons except Gd, B, Li, Cd, …]

–

 

[PO] = Preferred Orientation factor (compensates for non-random    crystallite 
orientation in sample)

–

 

[EE] = Primary extinction correction [non-uniform illumination of all reflecting 
planes]
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