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Neutron Scattering’s Moment 1n the Limelight

The Nobel Prize
in Physics

Shull made use of elastic
scattering i.e. of neutrons which
change direction without losing energy when
they collide with atoms,
Because of the wave nature of neutrons,
a diffraction pattern can be recorded which
indicates where in the sample the atoms are
sinated. Even the placing of light clements
such as hydrogen in metallic hydrides, or
hydrogen, carbon and oxygen i onganic
substances can be deter
The pattern abso shows how at

e

nic dipoles
are oriented in nuagnenc materials, since
neutrons are affected by magnetic forces.
Shull ako made use of this phenomenon in
his neutron diffraction technique.
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Brockhouse made use
of inelastic scattering i.c. of
neutrons, which change both direction and
energy when they collide with atoms. They
then start or cancel atomic oscillations in
crystaks and record movements in liquids
and mehs. Neutrons can ako interact with
SPIN Waves in magnets.

With his 3-axis spectrometer Brockhouse
measured energies of phonons (atomic
vibrations) and magnons (magnetic waves).
He abo studied how atomic structures in
Dquids change with tme,




[.ecture Outline -- References

¢ General Concepts

¢ Direct Lattice, Reciprocal Lattice, Lattice Types

¢ Diffraction Conditions (Bragg Law, Ewald Diagram)

¢ Polycrystals vs Single Crystals

¢ Scattering Cross-sections, amplitudes and form factors

¢ References:

Neutron Diffraction, G.E. Bacon, 5th edition, Oxford Press, 1975

Theory of Neutron Scattering From Condensed Matter, S.W. Lovesey,
Oxford Press 1984

Introduction to the Theory of Neutron Scattering, G.L. Squires, Dover,
1996.

Solid State Physics, N.W. Ashcroft, N.D. Mermin, Holt, Rinehart &
Winston, 1976




General Properties of the Neutron

# The kinetic energy of a 1.8 A neutron is equivalent to T = 293K
(warm coffee!), so it is called a thermal neutron.

# The relationships between wavelength (A) and the energy (meV),
and the speed (m/s, mi/hr) of the neutron are:

E=81.89/4 and v=3960/1
e.g. the 1.8 A neutron has E =25.3 meV and v = 2200 m/s = 4900
mi/hr

¢ The wavelength if of the same order as the atomic separation so

interference occurs between waves scattered by neighboring atoms
(diffraction).

¢ Also, the energy is of same order as that of lattice vibrations
(phonons) or magnetic excitations (magnons) and thus creation of
annihilation of a lattice wave produces a measurable shift in
neutron energy (inelastic scattering).



COMPARATIVE PROPERTIES OF X-RAY AND
NEUTRON SCATTERING

Property

Wavelength

Energy forA=1A

Nature of scattering
by atoms

Magnetic Scattering

Absorption
coefficient

Method of Detection

X-Rays
Characteristic line spectra such as Cu K
A=154 A
1018 h
Electronic

Form factor dependence on [sinO]/A
Linear increase of scattering amplitude
with atomic number, calculable from
known electronic configurations

Very weak additional scattering (= 10-)

Very large, true absorption much larger
than scattering

.~ 102 -10°

increases with atomic number

Solid State Detector, Image Plate

Neutrons

Continuous wavelength band, or single A =
1.1 £0.05 A separated out from Maxwell
spectrum by crystal monochromator or

chopper

1013 h (same order as energy of
elementary excitations)

Nuclear, Isotropic, no angular
dependent factor Irregular variation
with atomic number. Dependent on
nuclear structure and only determined
empirically by experiment

Additional scattering by atoms with
magnetic moments (same magnitude as

nuclear scattering) Amplitude of scattering
falls off with increasing [sin 0]/A

Absorption usually very small
(exceptions Gd, Cd, B ...) and less thai

scattering p, ~ 107!
5
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Real Space Lattice
Direct Space Vectors, Unit Cells

¢ Bravais Lattice -- Lattice of ¢ Primitive Unit Cell contains
Atoms in Crystal Cell only one atom
— Basis vectors a,, a,, a, ¢ (Full) Unit Cell may contain

multiple primitive unit cells --
useful to describe full atomic
symmetry (e.g., bce has 2)

— VectortoP=a,+2a, (2-D)
Linear Comb. Of Basis Vectors
— General Vector (3-D)

R =n,a,/m,a,7n,;a,

Cartoon Neutron Man from the
LANSCE Neutron Scattering Primer




Types of 3-d Bravais Lattices

¢ 14 types of Bravais lattices in 7 classes Y,

¢ Restricted Translations, Rotations, |
Mirror Planes, etc. are all allowed Cutic P Cutic Cuic £
symmetry operations on lattice and |
generate 32 crystal classes and in turn
230 space groups

ragonal P Tetragonal [

Number Restrictions on

of conventional cell
System lattices axes and angles
Triclinic 1 ay # ag # ag Orthorhombic P Orthorhombic C Orthorhombic T Orthorhombic F
aFxFBFEy
Monoclinic 2 a, # ag # ag
a=vy=90°#%8 R BN
Orthorhombic 4 a; # ag # a3
Q= B =y= 90°
Tetragonal 2 4 =ay#a; '
a= B =y= o)° Monoclinic P Monoclinic C Triclinic P
Cubic 3 a) = ag = ag
= ﬁ =y= 90°
Trigonal 1 a;=a; = as
a=f=y<120° # 90°
Hexagonal 1 ay) = ay # as
a=f=90° Trigonal R Trigonal and Hexagonal P

y = 120°




Golden Rule of Neutron Scattering

¢ We don’t take pictures of
atoms!

Atoms in fcc crystal

¢ Job preservation for e
neutron scatterers — we .
live in reciprocal space ] R

S 1 8 15 B




Reciprocal Lattice (also Bravais)

¢ Vector R of real space lattice = R =n,a,#n,a,+n,a;

¢ Incident plane wave ek" [|k|=2n/A ] will have periodicity of Bravais
lattice for specific k = K :

el (Mt R) = giKer jfeiK*R =1  orlKeR =271tm

¢ Defines K = reciprocal lattice vector (1n fake scattering space)

K =k,b,+k,b,+ k;b; interms of reciprocal lattice basis vectors b;
k; = integer b; = defined as:

~ a,xa, - a,xa, - a xa - X
b =2r—=—=b, =2r1—"2 ex: b ed, =2x
Vv

D)
N
o

[

D)
N

If
S

O <

a3>< °

Q|

but b, ed, =27 2 =2x

<

Note: b; *a,=2nd; so
K « R satisfies periodicity (if k. and n;, are integers)
¢ Reciprocal lattice of simple cubic cell 1s simple cubic cell of sides 2nt/a
¢ Reciprocal lattice of fcc cell 1s bee cell of sides 4n/a



Diffraction from a Crystal
Bragg Law, Laue formalism

¢ Incident x-rays or neutrons ¢ More generally

scatter from Crystal planes — 1ncident wave of wavevector k = 2 m/A

— scattered wave k> =2 /A’

—
ﬁ'_l A
iV E':zlﬁ
A
o

. . », *
‘ 7 | ‘ d cos § = dOn
. * - ' 2 S °
;

® < @ <+ -— {Otated ’c:s ==-d.n o

— path difference:
dcosO+dcos®’=de(n-n’)=mA

constructive interference
. de(k-K’)=27mm
2d sinb = nA o
or ReK=2nm [Laue diffraction]
[Bragg Law] where Scat. Vec. K (or Q) =k -k’ 10



Crystal Diffraction, cont’d.

Diffraction conditions, Miller indices

Laue condition R K=2nmm ¢ Miller indices for a reflection

or ¢®*R=1  for m integer have an analog in direct space

Above is exactly the same as the — The direct space plane with

definition of the reciprocal lattice Miller H,ldlces (hkl)1s _
perpendicular to the reciprocal

Thus Laue diffraction condition lattice vector

satisfied if K =recip. lat. vec. K=hb, +kb,+1b,

K=hb, +kb, +1Db; -- defines xya|

Miller indices (hkl) of reflection |

d*=2b,+6Db,

b* d*=1/d

(hil)=(280)
a* = (b x c)/V, etc. . . .
— Miller indices can have no 4

C ook Nk
Note: a*,b*<b,,b, common factors (shortest K)



Crystal Diffraction, cont’d.
Ewald Diagram

¢ Ewald Construction

Sphere of radius |K| in
reciprocal space

Draw intersection of sphere
with scattering plane

Bragg condition satisfied 1f
scattering vector K =Kk - K’
1s a Recip. Lat. Vector (i.e.
Ewald sphere intersects
recip. lat. Point)

0 = angle of kK wrt crystal
plane. 20 = total deviation
of x-ray (neutron) beam

= scattering angle

-~

° AN
)
?;\o(«\

Origin of
reciprocal
lattice

vector E

Intersection of
Ewald sphere
with scattering
plane

& Note: (100) (200) ...all refer to

same crystal plane spacing (arise
from higher order interference

condition) [i.e. 2dsin® = ﬂk]

Some (hkl) may not appear due to
symmetry restrictions (space

group) 12



Ewald Construction

¢ White Beam (e.g. LANSCE or

IPNS) -- range of k, < k <

k,tk, simultaneously available

et

Y 4

¢ Gray region spanned by
available range of k

¢ Large number of reflections
accumulated simultaneously

White Beam Diffraction, Polycrystals

¢ Previous discussion assumed
scattering from ordered discrete
atomic planes -- a single crystal

¢ Polycrystal (powder) - jumble
of single crystals

All orientations of
crystallites possible

Sample: 1cc powder of 10um
crystallites - 10° particles

if 1um crystallites - 102

B @\“ particles

¢ Several crystallites generally
oriented to produce reflection

for all allowed K.

13



Diffraction from Polycrystals
Debye-Scherrer Cones

¢ Crystallites in powder that One Crystallite Another Crystallite
are 1n position of reflect
diffract into cones of
semi-angle 24 according
to Bragg’s Law

¢ Diffraction occurs only at ~ Multiple Crystallites
specific angle represented
by the surface of cones
(Debye-Scherrer cone)

¢ Ewald Construction (?)

(220)

(200)

14



Diffraction from Polycrystals

. Loci f i | d f i !
# Polycrystal -- equivalent to  iattice vectors s.—{~.—.  crystal lattice of
. . . in a polycrystal _. =< single crystal
spinning reciprocal space O AT Pl intersection of
. . ya ///// ~."\] '\ Ewald sphere
¢ Previous discrete allowed ;o e, Y Mo raing
. . oy s A VAR
directions of K become i 6, ! b Shckiont gear
. ’ . it . ) = a— .
circles (Note: |k| = |K’|) NN i
. . \\ \ '~ \ :
# Single crystal must be NN AN
. . . NN Y St
reoriented to bring various oo e N\ N
lanes (K) into reflection -- TN
p directions of scattered intensity in

the drawing plane

polycrystal remains fixed
¢ Varying 20 brings in
reflections

— Or varying A at pulse source (varies radius of Ewald sphere)
15



How are neutrons scattered by atoms (nuclei1)?
- o ) o] i

Short-range scattering potential:

V(r >—2”h b&(r)

The quantity “b” (or f) is the strength of the potentlal and 1s called
the scattering length — depends on I1Sotopic composition

Thus “b” varies over N nuclei — can find average [

defines coherent scattering amplitude p_. —p leadsto
diffraction — turns on only at Bragg peaks

But what about deviations from average? This defines the
incoherent scattering N\
(b*-b°)

binc =

Incoherent scattering doesn’t depend on Bragg diffrac. condition, _.Z -
thus has no angular dependence — leads to background (e.g., H)

16



Scattering of neutrons by nuclel

¢ A single 1solated nucleus will scatter neutrons with an
intensity (1sotropic)
— =1, [4nb?]
where [, = incident neutron intensity, b = scattering amplitude for
nucleus
¢ What happens when we put nucleus (atom) 1n lattice?

— Scattering from N neuclei can add up because they are on a lattice

— Adding 1s controlled by phase relationship between waves
scattered from different lattice planes

— Intensity 1s no longer isotropic — Bragg law gives directional
dependence

— Intensity I (Q, or 0) is given by a scattering cross-section or
scattering function

17
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Observed coherent scattering in lattice

¢ Intensity of diffracted x-ray or neutron beam produces series of peaks at
discrete values of 26 [or d or K (also Q)]

Note: d =A/(2 sinB) or K =4nsinb/ A =2n/d are more fundamental since
values are independent of A and thus characteristic only of material.
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Scattering Cross-section

The measured scattered intensity in a diffraction experiment is proportional to
a scattering function S(g), which is proportional to a scattering cross-section
o

1(20,d,0r Q) o« S(Q) o< 0 (2 = solid angle
In turn the cross-section oc |A(Q) * A*(Q)|
A = scattering anplitude

In second Born approximation (kinematic limit) A oc Fourier transform of
scattering length density p(r) = 2_,;(F-R;) (o atom) with the sum over j
atoms at position R, ’

then AQ) = ijaj (r - Rj)ez;ziQ*rd 3 = Z fj (Q)GZ;ziQ*R

where the scattering factor f,(Q) = I o (r)e*™rd’r

The scattering factor f(Q) is the fundamental quantity describing the scattering
of radiation from the material

— ftakes different forms depending on the type of radiation

— fvaries in magnitude depending on the scattering atom or magnetic spin
19



Scattering Factors f

o .The scattering factor f(Q) = jpaj (r)e*™rd’r

¢ The Fourier transform character of the scattering factor f means that the radial
extent of the scattering center density p,( r) will dictate its Q dependence.

— Xx-rays scatter from the electron cloud of dimensions comparable to A or d (ec1/Q)

— Neutrons scatter from the nucleus = 10~ the dimension of A or d
10"%m.s }

Scattering amplitude

(i) Neutrons
0 S S S T S 20

4 ‘6 8 10
Gin@)fA 10%cm:!



Scattering Factors 1, cont’d

¢ For x-rays the magntude of f is proportional to Z

¢ For neutrons nuclear factors determine f, thus no regular with Z (different
isotopes can have different f s)
RELATIVE SCATTERING FACTORS

X rays
X-rays
- . P .

znggys (sm9)/z\-—05a . © O OQO
55— H C 0 T Fe Ni
_.!t neutrons
o 4 u
? 00 (OO
gz_ Portetnti_ol OZ I‘GO )

BN scattering ' '
g Neutrons  /-ontribution ' e 58
=1 _—
[T} N Mg =
5 A «@) @ O ®
»0 80 100 " : 49 o
; Atomic weiqg ‘ 62
. 50

_1[— saNl‘ O (537

For neutrons conventionally f=b

. Shaded (negative) --> © phase changg,
(Scattering length - constant for an element)



What Controls the Scattering
Amplitude?

[Measured scattered intensity, S = scat.func.]

¢ 1(Q) ¢ S(Q)  |A(Q) * A*(Q)|
4 A(Q) — Z faj (Q)ezﬂiQ*R where f; = atomic scattering factor [cm']
J

¢ Magnitude of A(Q) 1s controlled by [|A(Q) * A*(Q)| called Structure Factor]

— fvalues for various atoms in lattice
— destructive interference of waves scattering from atoms at various lattice sites (calculation

of above sum over atoms in lattice reveals this)
¢ fcc lattice (000, 0'2'2 , /50Y%, ¥2Y20)

— A(Q)=41f, forhklall odd or
hkl all even

- A(Q)=0 otherwise

bee lattice (000, Y2Y2Y%)
AQ)=21, for h+k+1 even

A(Q)=0 otherwise

22
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Why don’t (h+k+1)

odd integer index

reflections appear for bce cystals?

# A bec cell has an extra
plane stuck 1n between

lattice planes separated by

a (lattice parameter)

¢ Phase difference (path
difference) between
nearest neighbor planes 1s
m (A/2) — destructive
interference

-
-
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And atoms wiggle!

¢ Thermal vibration of atoms from their equilibrium position
(normal phonon modes) affects the scattering intensity

¢ This is represented by the Debye-Waller factor e?W
modifying the scattered intensity, where for a cubic
monatomic Bravais lattice
W =((Ge U)2> =q°( u§> u,*= comp. of velocity
along Q.

¢ In a multi-site lattice each atom may have a unique D-W
factor.

¢ If the lattice 1s non-cubic, the velocity components are
unequal, and up to 6 components may be required to
determine the D-W correction.

24



Debye-Waller factor temperature

and g-dependence

¢ Because the D-W factor
originates from phonon
normal modes, the average
velocity 1s both T- and g-
dependent

~C f(QD )(sinﬁ)z
c2W— e o, (T )L 4
Where O 1s the Debye
temperature from specific heat

08

0-6

04

0-2

00°K

00°K
Fe
S00°K

0-2 04 08 10 10%n’

0-6
(Sin 8){A

25



Other Factors Affecting

Scattering Intensity from Powder
¢ L oc S(Q) = M[L][SFI[G][M][TF][LF][AF][PO][EE]JAA¥|

I, = Incident intensity
[SF] = Overall scale factor (det. efficiency, everything else you forgot)
G] = Geometrical factors of instrument and sample (e.g., density)
M] = Multiplicity of reflection [# cooperating planes, e.g. 8 (111)]
TF] = Debye Thermal Vibration Factor = ¢2W
LF] = Lorenz geometrical factor LF = 1/(2sin’0cos0) [A fixed]

LF = d%sinb [TOF]; LF = 1/sin’26 [plate geom., A fixed]

[AF] = Absorption factor AF = eA* [varies as 1/v] [AF very large for x-rays,
small for neutrons except Gd, B, Li, Cd, ...]

[
[
|
|

[PO] = Preferred Orientation factor (compensates for non-random crystallite
orientation in sample)

[EE] = Primary extinction correction [non-uniform illumination of all reflecting

planes] o
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