TDMS Software control procedures

Toxicology Data Management System

Document Number:
DD-1001-4.3

Version:
4.3

Issued:
March 3, 1999

Reviewed & Approved by:
John Minnich, Program Director

Date:

TDMS Software Control Procedures

National Toxicology Program Support

TDMS Software Control Procedures

Prepared for:
National Institute of Environmental Health Sciences

Research Triangle Park, NC 27709

Contract no.:
273-95-I-0012

Prepared by:
Technology Planning & Management Corporation

Imperial Center

Canterbury Hall, Suite 310

4815 Emperor Boulevard

Durham, NC 27703

Revision Summary

Date Released
Document Number
Revision Level
Reason for Revision

03/99
DD-1001
4.3
Document template change.

VAX references changed to HAZEL. CERT references changed to BETA..

Removed old tracking system information and incorporated PVCS Tracker procedures in the following sections:

Steps 1, 4, and 26 in Appendix C

Steps 1, 4, and 25 in Appendix D

Steps 1 and 22 in Appendix F

Steps 1 and 22 in Appendix G

3/97
DD-1001
3.3
Minor Update

12/96
DD-1001
3.2
Minor Update

10/96
DD-1001
3.1
Minor Update

10/95
DD-1001
3.0
Major procedural changes in addition of QA environment

12/94
DD-1001
2.0
Changes in procedures

8/88
DD-1001
1.0
New

Table of Contents

ii

Revision Summary

Table of Contents
iii

Chapter 1
1

Introduction
1

Overview
1

Policy
2

Chapter 2
3

TDMS Structure
3

TDMS Environments
3

TDMS Directories
3

Directories Used for Development and Testing
4

Production Directories
4

STAR_PROD_CODE
4

STAR_PROD_DATA
5

Relationship of Environments to Directories
5

Movement of Software Between Environments
5

Chapter 3
6

Compiling and Linking Programs
6

Compiling Programs
6

Security for Compiling Programs
6

Searchlists
7

Linking Programs
8

Security for Linking Programs
9

Search List
9

Executing Procedures
10

Chapter 4
11

Software Control in the TDMS Project
11

Chapter 5
12

Development Environment
12

Logical Names for the Development Environment
12

The Development Directories
13

Prerequisites to Moving Software to the QA Environment
13

Chapter 6
15

Quality Assurance Environment
15

Logical Names for the QA Environment
15

The QA Directories
16

Moving Files from Development to QA
16

Executing Batch Jobs for Formal Testing
16

Making Corrections During a Formal Test
17

Recording the Program Corrections
17

Chapter 7
18

Beta Testing Environment
18

Logical Names for the Beta Environment
18

The Beta Directories
19

Moving Files from QA to Beta
19

Correcting Errors during Beta Testing
19

Preparing to Move Software to the Production Environment
20

Chapter 8
21

Production Environment
21

Logical Names for the Production Environment
21

The Production Directories
22

Moving Files from Beta to Production
22

Appendix a
1

TDMS Directories
1

Development Environment Directories
1

QA Environment Directories
2

Beta Environment Directories
3

Production Environment Directories
4

Appendix b
1

Creating a Movelist File
1

Purpose of a Movelist File
1

Files in the Movelist File
1

Organizing the Movelist
2

Procedures for Creating Movelist Files
3

Appendix c
1

Moving Software from Development to QA
1

Moving from the Development to the QA Environment
1

Tasks to Perform Prior to Moving Software
1

Procedure to Move Software from Development to QA
1

Appendix d
1

Moving Software from QA to Beta
1

Tasks to Perform Prior to Moving Software
1

Procedure to Move Software from QA to Beta
1

Appendix e
1

Compiling and Linking Programs and Modules
1

Compiling Programs and Modules
1

Linking Programs and Modules
1

Compile and Link Errors
2

Appendix f
3

Moving from Beta to Production
3

Tasks to Perform Prior to Moving Software
3

Procedure to Move Software from Beta to Production
3

Appendix g
1

Moving from QA to Production
1

Tasks to Perform Prior to Moving Software
1

Procedure to Move Software from QA to Production
1

Appendix h
2

Cataloging NATURAL Command Procedures
2

NATURAL Programs
2

CMD Files
2

Cataloging Natural Files
2

Chapter

1

Introduction

The purpose of this document is to offer a thorough explanation of the standards and procedures for controlling the movement of software in the National Toxicology Program’s (NTP) Toxicology Data Management System (TDMS) project.

These standards and procedures given in this document ensure movement of software is accomplished in a disciplined and controlled manner to protect the security of the TDMS software. It is used as a guideline for developers and the Software Control Librarian.

Overview

The TDMS system collects, stores, and reports information produced from the in-life and histopathology portions of subchronic and chronic toxicology tests conducted by the NTP. This information is collected from the contract toxicology laboratories using microcomputers that contain the Laboratory Data Acquisition System (LDAS). The information is uploaded through communications lines to an ALPHA 2100. The system processes an average of 10,000 daily update records, which are added to an ADABAS database on the ALPHA.

TDMS consists of the following eight subsystems:

1. TDMS Main Menu

2. PEX

3. PAS Download

4. RECEIVE

5. UPDATE

6. EIS/PEIS Reports

7. Error Correction

8. Communications

The TDMS subsystems contain over 250,000 lines of source code. Because TDMS source code is so vast, structured control methods are needed to ensure the integrity of the software. Software control procedures regulate the movement of software files to provide control over the development and testing of software before the software actually begins production processing.

Policy

The Quality Assurance Manager establishes the standards and procedures for software control. These standards and procedures are used in conjunction with the latest versions of the following documents:

· Software Development Procedures and Standards
· Configuration Management Procedures
Both documents describe the rules and conventions governing the practices used to develop and maintain the TDMS project.

Chapter

2

TDMS Structure

TDMS Structure containing 4 software environments that reside in one of eight software directories is discussed in this chapter.

TDMS Environments

The TDMS system contains the following four software environments:

Environment
Tasks Performed in the Environment

Development
Maintenance
Modifies, repairs, and enhances existing software.

Development
Creates new software.

Development Testing
Tests software as it is being developed.

Quality Assurance
Formal Testing
Verifies that software performs as expected, from a developer’s perspective.

Beta Testing
Training, Second Code Line, and Staging area

Production
Production Testing
Verifies function of software required to operate production system

Each environment is separated by function, strict security is maintained to ensure that they remain separate.

TDMS Directories

All TDMS software resides in one of the following eight software directories:

· STAR_DEVL_CODE
· STAR_BETA_CODE

· STAR_DEVL_DATA
· STAR_BETA_DATA

· STAR_QA_CODE
· STAR_PROD_CODE

· STAR_QA_DATA
· STAR_PROD_DATA

Depending on the environment in which the location is set, the directories associated with that environment and those near the bottom of the list can be referenced using the logical names set up for TDMS.

Following are descriptions of each software directory.

Directories Used for Development and Testing

STAR_DEVL_CODE
STAR_DEVL_DATA

Contains subdirectories which house all code under development or informal testing.
Contains subdirectories that house parameter and control files and data used by developers for informal testing.

STAR_QA_CODE
STAR_QA_DATA

Contains subdirectories to which files from Star_Devl_Code have been moved when they have completed development and are ready for formal testing.
Contains subdirectories to which files from Star_Devl_Data have been moved when they have completed development and are ready for formal testing.

STAR_BETA_CODE
STAR_BETA_DATA

Subdirectory structure is identical to its QA counterpart. Files in these subdirectories have been moved from QA and are ready for Beta testing.

Production Directories

STAR_PROD_CODE

[STAR_PROD_CODE] contains all source code files required to operate the production system. This directory contains nine major subdirectories. These subdirectories contain production versions of:

· Command procedures

· Source Programs

· Executable images

· System information

STAR_PROD_DATA

[STAR_PROD_DATA] contains all data files required to operate the production system.

This directory contains six major subdirectories. These subdirectories contain the production version of access control files and system parameters.

Relationship of Environments to Directories

The following chart shows the relationship between the four software environments, software directories, and the tasks that are performed in each area with the direction of software movement being from left to right.

Development
Quality Assurance
Beta-Testing
Production

STAR_DEVL_CODE

STAR_DEVL_DATA

STAR_QA_CODE

STAR_QA_DATA
STAR_BETA_CODE

STAR_BETA_DATA
STAR_PROD_CODE

STAR_PROD_DATA

Development Testing
Formal Testing
Beta Testing
Production Processing

Movement of Software Between Environments

The Software Control Librarian is responsible for moving software from one environment to another.

When work in the Development environment is complete, the Software Control Librarian moves the software into the QA environment, where formal testing is completed by formal testers. The Software Control Librarian then moves the software into the Beta environment. When work in the Beta environment is complete, the Software Control Librarian moves the software into the Production environment.

Software may be copied back to the Development environment by the developer, but only the Software Control Librarian can return software to the QA, Beta, or Production environments. In the event that an entire softweare project must be moved from a testing environment back to the Development environment, the database administrator (DBA) of the TDMS Production MS account (TDMSPROD) must be enlisted by the Software Control Librarian. The DBA is responsible for manually moving all files that are part of the project to the CRETURN directory in the development environment. All related logical names should be removed from the setup procedures of the QA and Beta testing environments and placed in the setup procedures of the Development environment. Logical names for each environment are discussed in Chapters 5 and 8.

Chapter

3

Compiling and Linking Programs

Programs in the Development, QA, Beta Testing, and Production environments require a standard set of compiling and linking procedures.

Using the same procedures in all four environments—Development, QA, Beta Testing, and Production—ensures consistent software performance when software is moved from one environment to another.

Compiling Programs

Source code files are compiled using procedures that are standard for all three environments. Developers use these procedures in the Development environment to ensure that new or modified code compiles, and subsequently executes, correctly.

Source code files are compiled automatically when a file is moved to the QA, Beta or Production environment. However, if a compile error occurs, the Software Control Librarian must compile the program(s) containing the errors by using the standard compiling procedures.

Using the same procedures in all four environments ensures that the proper compiler options are always used, and software performance will not change if the compiler options change.

Appendix E contains the commands for compiling programs and modules.

Security for Compiling Programs

In TDMS software, several programs often require the same lines of source code, such as record layouts. Instead of inserting these same lines of code in each program or subroutine that requires the code, the lines of code are inserted into a single copy code file. A COPY or INCLUDE statement is then used in each program or subroutine that

requires the code to direct the compiler to the copy code file and include those lines of code in the compile.

A search list logical name is required on all COPY or INCLUDE statements. Search list logicals are used in source programs to define a list of directories where the compiler will search for copy code files. Using Searchlists enables the developer to avoid hardcoding the directory names for copy code files into a program. This allows the copy code files and object files to be moved from the Development environment to the QA, Beta, and Production environments without having to change the procedures that compile the programs.

For example, the search list in the Development environment causes the compiler to search the Development directories for copy code files or definitions. If the required information cannot be found in the Development environment, the QA and Beta environments are searched. If the information still cannot be found, the Production environment is searched.

The QA environment has a search list that causes the compiler to search first the QA directories, next the Beta directories, then the Production directories. However, the Searchlists in the QA environment are defined to ensure that no Development files are included in the compile.

Similarly, a search list in the Beta environment causes the compiler to search first the Beta directories, then the Production directories. Again, the Searchlists in the Beta environment are defined to QA or ensure that no Development files are included in the compile. Attempting to compile a program containing a copy code file that is in the Development environment creates a compile error.

A search list in the Production environment searches only the Production directories, ensuring that no Beta or Development files are included in the compile. Attempting to compile a program containing a copy code file in the Development or Beta environments creates a compile error.

Searchlists

Searchlists for compiling programs in the Development environment are as follows:

Language Searched
Search list
Directories

COBOL

PL/1

C
COBCOPY

PLICOPY

VAXC$INCLUDE
[]

STAR_DEVL_CODE:[COPYLIB]

STAR_QA_CODE:[COPYLIB]

STAR_BETA_CODE:[COPYLIB]

STAR_PROD_CODE:[COPYLIB]

NOTE

In the previous list and any subsequent lists, the symbol [] denotes the default directory. Also, VAXC libraries are still used in the ALPHA environment. It is the same identifier for the VAXC language.

The Searchlists for compiling programs in the QA environment are as follows:

Language Searched
Search list
Directories

COBOL

PL/1

C
COBCOPY

PLICOPY

VAXC$INCLUDE
[]

STAR_QA_CODE:[COPYLIB]

STAR_BETA_CODE:[COPYLIB]

STAR_PROD_CODE:[COPYLIB]

The Searchlists for compiling programs in the Production environment are as follows:

Language Searched
Search list
Directories

COBOL

PL/1

C
COBCOPY

PLICOPY

VAXC$INCLUDE
[]

STAR_BETA_CODE:[COPYLIB]

STAR_PROD_CODE:[COPYLIB]

The Searchlists for compiling programs in the Production environment are as follows:

Language Searched
Search list
Directories

COBOL

PL/1

C
COBCOPY

PLICOPY

VAXC$INCLUDE
[]

STAR_PROD_CODE:[COPYLIB]

Linking Programs

Two procedures are used in all three environments to link software. Using these two procedures for all environments ensures that the proper linker options are always used, and software performance will not change even if the linker options change.

Developers use these procedures to link the programs in the Development environment. The Software Control Librarian uses the linking procedures to link the programs in the Beta and Production environments after a software move.

Refer to Appendix E for more information on linking programs.

Security for Linking Programs

To link programs, a search list is required in the link options files. The search list is defined in each environment to ensure that only the proper files are included in the link operation. For example, the search list in the Development environment allows the necessary files from all three environments to be linked. The search list in the QA environment ensures that only QA, Beta, and Production files are linked.

The search list in the Beta environment ensures that only Beta and Production files are linked. Attempting to create an executable image for a program that requires an object file that does not reside in either the Beta or Production environments creates a link error.

The search list in the Production environment ensures that only Production files linked. Attempting to create an executable image for a program that requires an object file that does not reside in the Production environment creates a link error.

Search List

Search list logicals define a list of directories that the linker searches for unresolved object modules to include in the executable image. Searchlists allow the copy code files and object files to be moved from the Development environment to the QA, Beta, and Production environments without having to change the procedures that link the programs.

A search list logical name is coded on all references in a program to INCLUDE files, allowing the developer to avoid hardcoding directory names. This method allows the INCLUDE files to be moved without having to change the options files that reference them.

The search list for linking programs is called LINKSEARCH. In the Development environment, LINKSEARCH searches the following directories:

[]

STAR_DEVL_CODE:[APPLICCON]

STAR_DEVL_CODE:[RECEIVE]

STAR_DEVL_CODE:[LABS]

STAR_DEVL_CODE:[PASVAL]

STAR_DEVL_CODE:[EP_REPORTS]

STAR_DEVL_CODE:[VAXUTILITY]

STAR_DEVL_CODE:[DOWNLOAD]

STAR_DEVL_CODE:[MENU]

STAR_QA_CODE:[SOURCE]

STAR_BETA_CODE:[SOURCE]

STAR_PROD_CODE:[SOURCE]

In the QA environment, LINKSEARCH searches the following directories:

[]

STAR_QA_CODE:[APPLICCON]

STAR_QA_CODE:[SOURCE]

STAR_BETA_CODE:[SOURCE]

STAR_PROD_CODE:[SOURCE]

In the Beta environment, LINKSEARCH searches the following directories:

[]

STAR_BETA_CODE:[SOURCE]

STAR_PROD_CODE:[SOURCE]

In the Production environment, LINKSEARCH searches the following directory:

STAR_PROD_CODE:[SOURCE]

Executing Procedures

All procedures are invoked using a logical name. Procedures are given logical names to avoid using directory names to invoke the procedures. By avoiding directory names, procedures can be moved from the Development environment to the QA, Beta, and Production environments without having to change any source code references to the procedures.

The logical name tables in each of the three environments define the procedures and programs that reside in each environment. Attempting to execute a command procedure or program that is not in the appropriate environment creates a run-time error. For example, if an attempt is made in the Beta environment to execute a procedure that is not in the Beta or Production environments, an error is generated.

Chapter

4

Software Control in the TDMS Project

The diagram below illustrates the sequence of events that occur during software movement. Chapters 5 through 7 contain detailed information on the three software environments and movement between directories.

Chapter

5

Development Environment

The Development environment contains software that is being created or maintained.

Developers modify the files in the Development directories and continuously perform informal tests on the software to ensure that the code compiles, links, and executes as expected.

The Development directories are protected by Access Control Lists (ACLs), which prevent unauthorized users from writing or deleting files in those directories. Following is the access granted to authorized users:

Identifier
Type
Access

PROJ_STAR_DM
Development Manager
Read, Write, Execute. Delete, Control

PROJ_STAR_S
Software Control Librarian
Read, Write, Execute, Delete

PROJ_STAR_ASI
ASI Subcontractor
Read, Execute

PROJ_STAR_D
Developer
Read, Write, Execute, Delete

ALL
Other
None

Logical Names for the Development Environment

The Development environment is defined by using a set of logical name tables. These tables define the directories, procedures, and programs currently in development. Using logical names avoids hard coding directory names in command procedures and in source code programs. Directory names change when files move from Development directories to QA directories. Using logical names allows the procedures and programs to be moved from the Development environment to the QA environment without any changes.

Logical names prevent hardcoding filenames in command procedures. Filenames change when release revision names change. Software standards require that a release revision notation (such as 1A) is included in the filename. When maintenance is done on a program or procedure, the release revision is changed (such as from 1A to 1B). Using logical names avoids changing procedures when the release revision names change.

Logical names are also used to control compiling and linking processes. Search list logicals define a list of directories in which the compiler searches for copy code files. The linker searches for unresolved object modules to include in the executable image.

The following chart lists the logical name tables in the Development environment and defines each table:

Table
Description

Directories
Contains all code and data directories.

Files
Contains miscellaneous logicals for specific files, print and batch queues, and security.

Procedures
Contains command procedures.

Programs
Contains executable programs.

Queues
Contains batch and print queues.

Searchlists
Contains Searchlists for compiling and linking.

The Development Directories

The Development environment contains a number of directories. Files are stored in these directories according to their project and function. Refer to Appendix A for a list of the Development directories.

Prerequisites to Moving Software to the QA Environment

After testing, the QA group creates a formal test plan. (Refer to Configuration Management Procedures for information on software development and testing). By the time the software is complete and has passed preliminary testing, the formal test plan is ready for approval by NIEHS authorities. In addition to specific testing instructions, the test plan identifies source code programs and procedures to be tested, files required to conduct formal testing, and batch jobs to be run. For more information on test plans, refer to Software Development Procedures and Standards.
The developer adds the names of the files identified in the test plan to a MOVELIST. A MOVELIST contains a list of the files to be moved from the Development environment to the QA environment by the Software Control Librarian. Appendix B contains the procedures for creating a MOVELIST file.

Before the software can be moved to the QA environment, the move must be properly authorized. The developer must obtain the approval on the Software Change Request Form.

Software is ready to be moved into the QA environment for formal testing once the software has passed preliminary testing, the test plan has been written, and the Software Change Request Form has been properly filled out.

Chapter

6

Quality Assurance Environment

The Quality Assurance (QA) Environment contains software that has completed development and developmental testing by the Software Development group. Formal testing by the QA group will be completed while the software is in this environment. Formal testing by the QA group will be completed while the software is in this environment.

The QA directories are protected by Access Control Lists (ACLs), which prevent developers from writing to or deleting files in QA directories. ACLs ensure that software cannot be changed during formal or Beta testing (conducted in the Beta environment) unless software control procedures are followed.

Software remains in the QA environment until formal testing is complete.

Logical Names for the QA Environment

The QA environment is defined by using a set of logical name labels that define the directories, procedures, and programs currently in Beta. Using logical names avoids hard coding directory and file names in command procedures and in programs.

Logical names also control compiling and linking processes. Search list logicals define a list of directories in which the compiler searches for copy code files. The linker searches for unresolved object modules to include in the executable image.

Defining the QA environment using logical name tables ensures that procedures and programs from the Development environment are not executed during formal testing.

The chart on the next page lists the logical name tables in the QA environment and the purpose of each table:

Table
Description

QADirectories
Defines all directories.

QAFiles
Defines all miscellaneous file names.

QAProcedures
Defines all procedures.

QAPrograms
Defines all programs.

QAQueues_System
Defines all batch and print queues.

QASearchlists
Defines Searchlists used for compiling and linking code and modules.

The QA Directories

The QA environment contains a number of directories. Files are stored in these directories according to their type and function. Refer to Appendix A for a list of the QA directories.

Moving Files from Development to QA

When preliminary testing in the Development environment is complete, the developer prepares a MOVELIST file. (Appendix B contains the procedures for creating a MOVELIST file.) The group leader gives the MOVELIST, along with the Software Change Request Form, to the Software Control Librarian. The Software Control Librarian uses the MOVELIST to move the appropriate files from the Development environment to the QA environment. Appendix C contains procedures for moving software from the Development environment to the QA environment.

During the move, each file in the MOVELIST is copied to the QA environment and subsequently deleted from Development. Deleting files from the Development environment minimizes disk-space usage and prevents file duplication.

The Software Control Librarian's approval is required on the Software Change Request Form to indicate that all of the files were moved.

Executing Batch Jobs for Formal Testing

Formal testing begins when all of the files in the MOVELIST have been successfully moved into the QA environment, all source code files have been compiled, and all executable images have been linked for all programs; this is completed by the Software Control Librarian. Formal testing is then completed by the Formal Testing section of the Quality Assurance Group.

To ensure that software is not changed during formal testing, developers do not have write access to the QA directories. Developers also do not have write access to the log files, reports, and data files that are created in the various QA directories during formal testing.

Making Corrections During a Formal Test

If the test results reveal that an error occurred during formal testing, the developer determines which files are involved and how to correct the error. If errors are caused by incorrect logical names, the Software Control Librarian corrects the names and repeats the tests.

If file corrections are required, the developer copies the files from the QA environment to the Development environment and makes the changes. After the changes are made, the developer prepares another MOVELIST file containing a list of the changed files and delivers the list to the Software Control Librarian. The list is appended to the original Software Change Request Form.

The Software Control Librarian uses the MOVELIST file to replace the files in the QA environment with the corrected files from the Development environment. The Formal Testing group then resubmits the batch jobs for the tests that required correction. This process is repeated until no errors are present in any of the test cases.

Recording the Program Corrections

The test reviewer records all of the corrections made to the programs and subroutines during formal testing. Recording the changes to command procedures or logical names is not necessary.

Chapter

7

Beta Testing Environment

The Beta environment contains software that requires Beta testing. The Beta directories are protected by Access Control Lists (ACL), which prevent developers from writing to or deleting files in the Beta directories. Software remains in the Beta directories until Beta testing is complete.

Logical Names for the Beta Environment

The Beta environment is defined by using a set of logical name labels that define the directories, procedures, and programs currently in Beta. Using logical names avoids hard coding directory and file names in command procedures and in programs.

Logical names also control compiling and linking processes. Search list logicals define a list of directories in which the compiler searches for copy code files. The linker searches for unresolved object modules to include in the executable image.

Defining the Beta environment using logical name tables ensures that procedures and programs from the Development and QA environments are not executed during Beta testing. The following chart lists the logical name tables in the Beta environment and the purpose of each table:

Table
Description

BetaDirectories
Defines all directories.

BetaFiles
Defines all miscellaneous file names.

BetaProcedures
Defines all procedures.

BetaPrograms
Defines all programs.

BetaQueues_System
Defines all batch and print queues.

BetaSearchlists
Defines Searchlists used for compiling and linking code and modules.

The Beta Directories

The Beta environment contains a number of directories. Files are stored in these directories according to their type and function. Refer to Appendix A for a list of the Beta directories.

Moving Files from QA to Beta

When preliminary testing in the Development environment is complete, the developer prepares a MOVELIST file. (Appendix B contains the procedures for creating a MOVELIST file.) The group leader gives the MOVELIST, along with the Software Change Request Form, to the Software Control Librarian. The Software Control Librarian uses the MOVELIST to move the appropriate files from the Development environment to the Beta environment. Appendix C contains procedures for moving software from the Development environment to the Beta environment.

During the move, each file in the MOVELIST is copied to the Beta environment and subsequently deleted from Development. Deleting files from the Development environment minimizes disk-space usage and prevents file duplication.

The Software Control Librarian's signature is required on the Software Change Request Form to indicate that all of the files were moved.

Correcting Errors during Beta Testing

The developer copies the required files back to the Development environment and makes the changes. Once the changes are made, the developer prepares a MOVELIST file containing a list of the changed files.

The Software Control Librarian uses the MOVELIST file to replace the files in the Beta environment with the corrected files from the Development environment. The Beta Specialists reruns all tests that failed during Beta testing.

The Software Control Librarian delivers the resulting logs to the developer. The developer reviews the new test results and adds the results to the test plan.

Preparing to Move Software to the Production Environment

Once no errors occur during Beta testing, the QA Group Manager approves the Software Change Request Form and delivers the form to the User Support Manager.

The User Support Manager delivers the Software Change Request Form to the Software Control Librarian, who begins the process to move software to the Production environment.

Chapter

8

Production Environment

The Production environment contains all software required to operate the TDMS production system.

The Production directories are protected by Access Control Lists (ACLs). ACLs prevent developers from writing or deleting files in the Production directories. ACLs ensure that software cannot be changed unless software control procedures are followed.

Logical Names for the Production Environment

The Production environment is defined by using a set of logical name tables that define the directories, procedures, and programs currently in production. Using logical names avoids hard coding directory and file names in command procedures and in source code programs. Logical names are also used to control compiling and linking processes.

Defining the Production environment using logical name tables ensures all procedures and programs are executed from the Production environment when production batch jobs are executed..

The following chart lists the logical name tables in the Production environment and the purpose of each table:

Table
Description

StarDirectories_System
Defines all directories.

StarPrograms_System
Defines all programs.

StarProcedures_System
Defines all procedures.

StarSearchlists_System
Defines searchlists used for compiling and linking code and modules.

StarFiles_System
Defines all files.

The Production Directories

The TDMS production system consists of a large number of command procedures, software source programs, executable images, system data, and control files. Refer to Appendix A for a list of Production directories.

Moving Files from Beta to Production

When Beta testing is complete, the Software Control Librarian receives the Software Change Request form with the appropriate signatures.

The Software Control Librarian prepares a MOVELIST file based on the original MOVELIST used during Beta. The MOVELIST file lists the files required by the Test Plan and excludes test case files. Appendix B contains procedures for creating a MOVELIST.

The Software Control Librarian uses the MOVELIST file to move the appropriate files from the Beta environment to the Production environment. Appendix F contains procedures for moving software from the Beta environment to the Production environment.

During the move, each file in the MOVELIST is copied from the Beta environment to the Production environment and subsequently deleted from Beta. Deleting the files from the Beta environment minimizes disk-space usage and prevents file duplication.

For more information on moving software to the Production environment, refer to the Configuration Management Procedures manual.

The Software Control Librarian archives the MOVELIST and the test files from the Beta environment. After all files have been moved into Production, the Software Control Librarian notifies all involved parties via e-mail.

Appendix

A

TDMS Directories

Development Environment Directories

The Development environment contains a number of code and data directories. Files are stored in these directories according to their type and function. The two top-level directories in the Development environment are

STAR_DEVL_CODE

STAR_DEVL_DATA

These directories are divided into controlled subdirectories. The following table lists the logical names of the Development subdirectories and provides a brief description of each:

Logical Name
Description of Contents

CAPPLICCOM
Command procedures

CCOPYLIB
Copy codes - shared modules

CDOWNLOAD
PAS download source code files

CECS
Error Correction System source code

CEPREPORTS
EIS/PEIS reports source code files

CMAINTCOM
Maintenance procedures

CMENU
Main menu source code files

CPASVAL
PAS validation reports source code

CPCT
PCT source code files

CPEX
PEX source code files

CRECEIVE
RECEIVE source code files

CRETURN
Project files returned to Development

CSETUPCOM
Setup procedures for Development environment

CUPDATE
UPDATE source code files

CVAXUTILITY
ALPHA utilities source code files

DPRISAS
ASI development

DPARMS
Parameter data files

SYS$NATPARM
Natural 1 parameter modules

NATURAL$PARAMETER
Natural 2 parameter modules

QA Environment Directories

The QA environment contains numerous directories. These directories store code and related data files that have been moved out of development and into formal testing. Some of the directories store test plans and output pertaining to their execution. The two top-level directories in the QA environment are STAR_QA_CODE and STAR_QA_DATA.

These directories are divided into controlled subdirectories. The following table lists the logical names of the QA subdirectories and provides a brief description of each:

Logical Name
Description of Contents

NATURAL$PARAMETER
Natural 2 parameter modules

QAAPPLICCOM
Application specific command procedures

QACODEARCHIVES
Code files to be archived

QACOPYLIB
Copy code members in compiled languages

QADATAARCHIVES
Data files to be archived

QADBBUILD
Data files for building ADABAS files

QAEXE
Executable images for all modules

QALOGS
Logs for reports (STARLOGS)

QAMAINTCOM
Maintenance and software control Procedures

QAPARMS
Parameter files

QAPRINT
Holding areas for report print files

QASASSOURCE
Source code written in SAS

QASETUPCOM
DCL which defines the QA environment

QASOURCE
All non-SAS source code

QATESTPLANS
Formal test plans

QARECEIVEERROR
Receive error files

QARECEIVE LOGS
Receive log files

QARECEIVE PRI
Receive transaction files

SYS$NATPARM
Natural 1 parameter modules

Beta Environment Directories

The Beta environment contains numerous directories. Files are stored in these directories according to their type and function. The two top-level directories in the Beta environment are

STAR_BETA_CODE

STAR_BETA_DATA

These directories are divided into controllable subdirectories. The following table lists the logical names of the Beta subdirectories and provides a brief description of each:

Logical Name
Description of Contents

BETAAPPLICOM
Application specific command procedures

BETACOPYLIB
Copy code members in compiled languages

BETADBBUILD
Copy code members in compiled languages

BETAEXE
Executable images for all modules

BETASASSOURCE
Source code written in SAS

BETASETUPCOM
Defines batch and print queues

BETASOURCE
Files for COBOL, PL/1, C, NATURAL JSP operation list, and JSP structured text files

BETATESTPLANS
Data files need to execute formal tests

BETALOGS
Logs for reports (STARLOGS)

BETAPARMS
Parameter files

BETAPRINT
Holding areas for print files and reports

NATREPORTS
Holding area for NATURAL reports

NATURAL$PARAMETER
Natural 2 parameter modules

STARCODEARCHIVES
Code files to be archived

STARDATAARCHIVES
Data files to be archived

STARDBBUILD
Data files used for building ADABAS files

STARESS
ESS reports

STARESSLAB
ESS reports for laboratories

STARFWC
Transaction files created by Food and Water System

STARRECEIVEERROR
RECEIVE error files

STARRECEIVELOGS
RECEIVE log files

STARRPTPARMS
Parameters to execute the Sacrifice and Treatment group reports

STARSTATTRAN
STATTRAN reports

SYS$NATPARM
Natural 1 parameter modules

Production Environment Directories

The TDMS production system consists of a large number of command procedures, software source programs, executable images, system data, and control files. This information is grouped into the following top-level directories:

PRJ_NTPDISK:[STAR_PROD_CODE]

PRJ_NTPDISK:[STAR_PROD_DATA]

Logical Name
Description of Contents

NATURAL$PARAMETER
Natural 2 parameter modules

STARESS
Files containing information that controls access to TDMS

STARAPPLICCOM
Command procedures used for application specific subsystems

STARBACKUPLOGS
Logs from backup procedures

STARBACKUPPROCS
Procedures to execute backups

STARCODEARCHIVES
Source code files to be archived

STARDATAARCHIVES
Data files to be archived

STARCOPYLIB
Copy code files in compiled languages

STARBBUILD
Database build files

STARDOWNLOAD
Download files

STARESSLAB
ESS reports for laboratories

STAREXE
Executable images for all modules

STARFWC
Transaction file created by the Food and Water System

STARLOGS
Log files (all but RECEIVE)

STARMAINTCOM
Command procedures used for administrative and software control maintenance

STARPARMS
Static but essential data such as the destination table and sort parameters

STARPRINT
Report files

STARPRODARCHIVES
Logs of tape archives

STARRECEIVEERROR
RECEIVE error files

STARRECEIVELOGS
RECEIVE log files

STARRECEIVEPRI
RECEIVE data

STARRECEIVESEC
RECEIVE data backup

STARRPTPARMS
Parameters to execute the Sacrifice and Treatment reports

STARSASSOURCE
Source code written in SAS

STARSCRATCH
Temporary files, deleted daily

STARSETUPCOM
Command procedures used for initializing and setting up a user's process

STARSOURCE
Source code written in compiled languages

STARSTATTRAN
STATTRAN reports

SYS$NATPARM
Natural 1 parameter modules

Appendix

B

Creating a Movelist File

Purpose of a Movelist File

The MOVELIST file is an itemized list of files required for formal testing. It defines all of the files that must be moved from the Development environment to the testing environments to build an executable image, including the test case files.

A command procedure in each testing environment reads the MOVELIST and copies each file to the proper target directory, compiles the programs, and then deletes each file from the original directory. The developer originally creates the MOVELIST, using QA directories as target directories. The Software Control Librarian makes required changes in the MOVELIST as software is moved beyond the QA environment, using the directories described in Appendix A.

Files in the Movelist File

The MOVELIST includes all files specified in the Test Plans. The MOVELIST can include any of the following:

· COBOL, PL/1, C, FORTRAN, and MACRO modules

· Copy-code files used by the modules

· NATURAL programs

· Link options files (filetype .OPT) used for building the executable images

· Operations lists (filetype .OPS) and structured text (filetype .STX) for redesigning modules

· NATURAL command files (filetype .CMD) for cataloging or executing NATURAL programs

· Command procedures

· Data files

· Reports created in development to be compared to reports created in Beta using Differences

Target directories for each file type should be specified as follows:

File Type
Target Directory

.SAS
QASASSOURCE

.COB, .PLI, .C
QASOURCE

.FOR, .NAT, .MAR
QASOURCE

.OPT
QAEXE

.COM (testing)
QATESTPLANS

.COM
QAAPPLICCOM

.DAT, .SRT, .CMD
QAPARMS

SUTMAINMENU_xx.COM
QAPARMS

.CMD (for cataloging)
QAMAINTCOM

.CRY, .PRY, .H
QACOPYLIB

Organizing the Movelist

Organize the MOVELIST so that the necessary copy code files can be located by the system before the COBOL, PL/1, C, FORTRAN, and MACRO source code files are recompiled in the testing environment.

When the Software Control Librarian issues the SSCBETAMOVEADD command, the COBOL, PL/1, C, FORTRAN, and MACRO files are moved to the testing environment and recompiled. When the source code files are being recompiled, the system searches the testing directory for the copy code files. The Development directory is not searched. Therefore, if the required copy code files have not been moved before the source code files are recompiled, a compile error occurs.

Procedures for Creating Movelist Files

Follow the following steps to create a MOVELIST file:

1. Create a MOVELIST file by entering the following command string:

$ EDIT aaaaaaaa MOVE.DAT

where aaaaaaaa is the project name, such as PEIRPT04.

2. The MOVELIST file contains one record for each file to be moved. Enter the first file name using the following format:

dev_dir_name:file_name, QA_dir_name

where, dev_dir_name is the logical name of the Development directory where the file currently resides (source directory).

file_name is the name of the file.

QA_dir_name is the logical name of the QA directory in which the file resides (target directory).

Following is an example of a record in a MOVELIST file:

CRECEIVE:REFORMA_1A.COB, QASOURCE

NOTE

The comma in the preceding command is required.

3. Continue entering records into the MOVELIST, one record on each line, following the format in Step 2 until all files required for the Test Plan are entered.

4. Add to the MOVELIST the modules that are required for building an executable image for the test plan and the modules that are referenced in the link options file.

5. Determine the file type of the Third Generation Language (3GL) source and the current location of each file in the options file by entering the following command:

$ DIRECTORY LINKSEARCH:filename

6. Include the files located in Step 5 in the MOVELIST.

7. Locate the copy code files. For COBOL files enter

$ DIRECTORY COBCOPY:filename.CRY

For PL/1 files enter

$ DIRECTORY PLICOPY:filename.PRY

For "C" files enter

$ DIRECTORY VAX$INCLUDE:filename.H

8. Include the files located in Step 7 in the MOVELIST.

9. Do not include any of the following files in your MOVELIST:

· object files (filetype .OBJ)

· executable images (filetype .EXE)
· map files (filetype .MAP)

· log files (filetype .LOG)

· listing files (filetype .LIS)

· scratch or temporary files

· files already in Production.

10. If there are any NATURAL files in the MOVELIST, attach a printout of the catalog procedure to the MOVELIST. See Appendix H for an example of a catalog procedure. Deliver the MOVELIST to the Software Control Librarian.

You have completed the steps required to create a MOVELIST.

Appendix

C

Moving Software from Development to QA

Moving from the Development to the QA Environment

Tasks to Perform Prior to Moving Software

Before moving software from the Development environment to the QA environment, be sure that the following tasks have been performed:

1. The Software Change Request form has been approved by the appropriate people.

2. The following command string is in your LOGIN.COM file:

$ @SETUP_STAR QA
Procedure to Move Software from Development to QA

Follow these steps to move files from the Development environment to the QA environment.

1. Log on to HAZEL.
2. Set the development logicals with the following command:

$ SETUP_STAR DEVELOPMENT

3. Set the default with the following command:

$ SET DEFAULT QAMAINTCOM

4. A MOVELIST is attached to the Software Change Request Form, indicating a move request. The name of the directory and the MOVELIST's filename are found at the top of the printed MOVELIST.

5. Edit the MOVELIST in the Development directory.

a) Verify that the copy of the MOVELIST in the Development directory is the same as the printed copy you have.

b) Check the MOVELIST file for missing commas, incorrect directories, misspelled entries, and other errors.

c) Exit the MOVELIST.

6. Move the MOVELIST file to the QA environment with the following command:

$ @SSCCOPYDELETE dir:MOVELIST QAMAINTCOM:
7. Move the files listed in the MOVELIST to the QA environment and automatically compile the programs by entering the following command:

$ @SUBMIT_SSCQAMOVEADD MOVELIST

In this command, movelist is the shortened version of the movelist filename. As
an example, TRG08_MOVE.DAT is shortened to TRG08.

8. When an error is found during testing, the developer corrects the erroneous file. The Software Control Librarian replaces the files in the QA environment with the corrected files from the Development environment.

To replace files that currently exist in QA with corrected files from the
Development environment, enter the following command string:

$ @SUBMIT_SSCQAMOVEREPLACE MOVELIST

Movelist is the shortened version of the MOVELIST filename. Refer to the
example given in step 7.

9. When the move is complete, review the log generated during the move by entering the following command string:

$ EDIT/READ MOVELIST_MOVE.LOG

Movelist is the shortened version of the MOVELIST filename. Refer to the
example given in step 7.

10. Resolve any errors found in the log.

If a compile error occurs, resolve the source of the problem and
manually
compile that program. Appendix E contains a description of the commands for
compiling programs.

If you cannot resolve all of the errors, see the developer. If necessary, rerun the
move.

11. Set up your working environment by entering the following command:

$ @SETUP_STAR QA

12. Confirm that you are in the QA environment by entering the following command:

$ SH0W SYMBOL STARUSER

13. Identify the files that require attention by entering the following
commands:

$ SEARCH MOVELIST MOVE.DAT .OPT

$ SEARCH MOVELIST MOVE.DAT .SAS

$ SEARCH MOVELIST MOVE.DAT .CMD

$ SEARCH MOVELIST MOVE.DAT .COM

14. Record the filenames displayed in Step 3. If the list is short, note the filenames on your copy of the MOVELIST.

15. Link all main programs using .OPT files as follows. Subroutines or "INCLUDE" files may be missing.

a)
Enter the following commands to link the programs:

$ SET DEFAULT QAEXE

$ @LINKSTD filename

where filename has the format aaaa_aa.OPT
b) For NATURAL macros, use the following command:

$ @LINKSHARE filename

where filename has the format aaaa_NAT_aa.OPT.

NOTE

Appendix E contains more information about linking programs.

16. Check .COM files in the QATESTPLANS directory for errors. Ensure that the developer has followed the following conventions:

a) All RUN statements are coded as RUN/ NODEBUG.

b) All references to Development directories are changed to QA directories.

If these conventions have not been followed, refer the problems to the developer.

17. Add the program and procedure logicals to the QA logical name tables.

a) To add logical definitions for .OPT files (programs) that were moved to QAEXE, SAS programs that were moved to QASASSOURCE, and changes noted below, enter the following command:

$ EDIT QASETUPCOM:QAPROGAMES.COM

b) To add the logical definitions to .COM files (procedures) that were moved to QAAPPLICCOM or QAPARMS (STARPARMS) and changes noted below, enter the following command:

$ EDIT QASETUPCOM:QAPROCNAMES.COM
NOTE

SUTMAINMENU in STARPARMS must have a logical name.

c) SRPRPTGL_xx.NAT must be defined in QAPROGNAMES as follows:

$ DEFINE SRPRPTGL RPTGLxx
where xx is the release and revision.

18. Delete program and procedure logicals from Development tables that were added or changed in QA logical name tables as follows:

a) Edit the logical definitions for .OPT files (programs) by entering the following command:

$ EDIT CSETUPCOM:PROGNAMES.COM

b) Edit logical definitions for .COM files (procedures) by entering the following command:

$ EDIT CSETUPCOM:PROCNAMES.COM

19. Verify that the correct logicals were deleted from the Development environment and properly created in the QA environment by entering the following commands:

$@SETUP_STAR DEVELOPMENT

$ DIRECTORY/DATE/SIZE logical_name

20. Verify all logical names in QA by entering the following commands:

$ SET DEF QAMAINTCOM

$ @SUBMIT_SSCCHECKLOGICAL

21. Examine the log file for error messages indicating that logicals are missing. Resolve any errors.

22. The developer provides .CMD files that are used to catalog NATURAL programs. These files are stored in QAMAINTCOM. Edit CAT_NATURAL.COM, substituting the name of the .CMD file in the MOVELIST for the existing filename.

23. Update and execute the cataloging procedure in batch mode:

$SUBMIT/KEEP/NOTIFY/NOPRINT/QUE=STARSHORTBQ/LOG=QAMAINTCOM CAT_NAT2
24. Check the batch log for errors. For more information..
25. Approve the Movelist form to indicate the move is complete.

26. Update the SCR status via PVCS Tracker to QA.

27. Submit the batch jobs for formal testing, following the instructions in the test plan. The procedures for submitting batch jobs are in Appendix D.

28. To add files to the MOVELIST, the developer will fill out a new Software Change Request form and provide a new MOVELIST. This new MOVELIST is attached to the back of the original software change form. Add the new filenames to the original MOVELIST.

Begin at Step 1, treating the addition of files as a new move. Once the move is complete, archive the file of additions. The additions are now part of the original list.

You have completed the steps required to move files from the Development environment to the QA environment.

Appendix

D

Moving Software from QA to Beta

Tasks to Perform Prior to Moving Software

Before moving software from the QA environment to the Beta environment, be sure that the following tasks have been performed:

1. The Software Change Request form has been approved by the appropriate people.

2. The following command string is in your LOGIN.COM file:

$ @SETUP_STAR BETA

Procedure to Move Software from QA to Beta

Follow these steps to move files from the QA environment to the Beta environment.

1. Log on to HAZEL.

2. Set the Beta logicals with the following command:

$ SETUP_STAR BETA

3. Set the default with the following command:

$ SET DEFAULT BETAMAINTCOM

4. A printed MOVELIST is attached to the Software Change Request Form, indicating a move request. The name of the directory and the MOVELIST's filename are found at the top of the printed MOVELIST.

5. Edit the MOVELIST in the QA directory.

a) Verify that the copy of the MOVELIST in the Development directory is the same as the printed copy you have.

b) Check the MOVELIST file for missing commas, incorrect directories, misspelled entries, and other errors.

c) Exit the MOVELIST.

6. Move the MOVELIST file to the Beta environment with the following command:

$ @SSCCOPYDELETE dir:MOVELIST BETAMAINTCOM:

where, dir is the directory name.

MOVELIST is the complete name of the MOVELIST file.

7. Move the files listed in the MOVELIST to the Beta environment and automatically compile the programs by entering the following command:

$ @SUBMIT_SSCBETAMOVEADD MOVELIST

where, MOVELIST is the shortened version of the MOVELIST filename.

For example, TRG08_MOVE.DAT would be shortened to TRG08.

8. When an error is found during testing, the developer corrects the erroneous file. The Software Control Librarian replaces the files in the QA environment with the corrected files from the Development environment.

To replace files that currently exist in QA with corrected files from the
Development environment, enter the following command string:

$ @SUBMIT_CBETAMOVEREPLACE MOVELIST

where, MOVELIST is the shortened version of the MOVELIST filename.

For example, TRG08_MOVE.DAT would be shortened to TRG08.

9. When the move is complete, review the log generated during the move by entering the following command string:

$ EDIT/READ MOVELIST_MOVE.LOG

where, MOVELIST is the shortened version of the MOVELIST filename.

For example, TRG08_MOVE.DAT would be shortened to TRG08.

10. Resolve any errors found in the log.

If a compile error occurs, resolve the source of the problem and
manually
compile that program. Appendix E contains a description of the commands
for compiling programs.

If you cannot resolve all of the errors, see the developer. If necessary, rerun the
move.

11. Set up your working environment by entering the following command:

$ @SETUP_STAR BETA

12. Confirm that you are in the Beta environment by entering the following command:

$ SH0W SYMBOL STARUSER

13. Identify the files that require attention by entering the following
commands:

$ SEARCH MOVELIST MOVE.DAT .OPT

$ SEARCH MOVELIST MOVE.DAT .SAS

$ SEARCH MOVELIST MOVE.DAT .CMD

$ SEARCH MOVELIST MOVE.DAT .COM

14. Record the filenames displayed in Step 3. If the list is short, note the filenames on your copy of the MOVELIST.

NOTE

Appendix E contains more information about linking programs

15. Link all main programs using .OPT files as follows. Subroutines or "INCLUDE" files may be missing.

a) Enter the following commands to link the programs:

$ SET DEFAULT BETAEXE

$ @LINKSTD filename

where filename has the format aaaa_aa.OPT
b) For NATURAL macros, use the following command:

$ @LINKSHARE filename

where filename has the format aaaa_NAT_aa.OPT.

If these conventions have not been followed, refer the problems to the
developer.

NOTE

SUTMAINMENU in STARPARMS must have a logical name.

16. Check .COM files in the BETATESTPLANS directory for errors. Ensure that the developer has followed the following conventions:

a) All RUN statements are coded as RUN/NODEBUG.

b) All references to QA directories are changed to Beta directories.

If these conventions have not been followed, refer the problems to the developer.

17. Add the program and procedure logicals to the Beta logical name tables.

a) To add logical definitions for .OPT files (programs) that were moved to BETAEXE, SAS programs that were moved to BETASSOURCE, and changes noted below, enter the following command:

$ EDIT BETASETUPCOM:BETAPROGNAMES.COM

b) To add the logical definitions to .COM files (procedures) that were moved to BETARAPPLICCOM or BETAPARMS (STARPARMS) and changes noted below, enter the following command:

$ EDIT BETASETUPCOM:BETAPROCNAMES.COM

c) SRPRPTGL_xx.NAT must be defined in BETAPROGNAMES as follows:

$ DEFINE SRPRPTGL RPTGLxx

where xx is the release and revision.

18. Delete program and procedure logicals from QA tables that were added
or changed in QA logical name tables as follows:

a) Edit the logical definitions for .OPT files (programs) by entering the following command

$ EDIT QASETUPCOM:PROGNAMES.COM

b) Edit logical definitions for .COM files (procedures) by entering the following command:

$ EDIT QASETUPCOM:PROCNAMES.COM

c) Delete the existing QA logical from the current QA system table by entering the following commands:

$ @SETUP_STAR QA

$ DEASSIGN/SYSTEM/TABLE=qa_table_nameqa_logical_name

19. Verify that the correct logicals were deleted from the QA environment and properly created in the QA environment by entering the following commands:

$ DIRECTORY/DATE/SIZE logical_name

20. Verify all logical names in Beta by entering the following
commands:

$ SET DEF CBETAMAINTCOM

$ @SUBMIT_SSCCHECKLOGICAL

21. Examine the log file for error messages indicating that logicals are missing. Resolve any errors.

22. The developer provides .CMD files that are used to catalog NATURAL programs. These files are stored in BETAMAINTCOM. Edit CAT_NATZ.COM, substituting the name of the .CMD file in the MOVELIST for the existing filename.

23. Execute the cataloging procedure in batch mode:

SUBMIT/KEEP/NOTIFY/NOPRINT/QUE=STARSHORTBQ/

LOG=BETAMAINTCOM CAT_NAT2

24. Check the batch log for errors. For more information.

25. Update the Software Change Request form’s status via PVCS Tracker to indicate the move is complete.

26. Submit the batch jobs for formal testing, following the instructions in the test plan. The procedures for submitting batch jobs are in Appendix D.

27. To add files to the MOVELIST, the developer will fill out a new Software Change Request form and provide a new MOVELIST. This new MOVELIST is attached to the back of the original software change form. Add the new filenames to the original MOVELIST.

Begin at Step 1, treating the addition of files as a new move. Once the move is
complete, archive the file of additions. The additions are now part of the original
list.

You have completed the steps required to move files from the QA environment
to the Beta environment

Appendix

E

Compiling and Linking Programs and Modules

Compiling Programs and Modules

To compile a program or module, use one of the commands in the following chart.

In the following chart, file_spec is the source file to be compiled. The file type should NOT be included.

Program Language
Command

C
@CCSTD file_spec

COBOL
@COBSTD file_spec

FORTRAN
@FORSTD file_spec

MACRO
@MACSTD file_spec

PL/1
@PLISTD file-spec

Linking Programs and Modules

Use the following procedures to link programs and modules.

These procedures require a link options file with a file name equal to file_spec and a file type of .OPT. The options file provides an exact list of all software used in the program. An options file is required for each release revision of an executable program. The options file includes the specific release revision of each subroutine to be included in the image for the program. Object libraries containing modules are not used.

Use
Command

Create executable images that are NOT shareable and are NOT called from NATURAL programs.
@LINKSTD file_spec

Create executable images that are shareable and are called from NATURAL programs.
@LINKSHARE file_spec

Compile and Link Errors

Missing programs are the most common cause of compile and link errors. If a compile error occurs, refer the problem to the developer.

If a link error occurs, verify that an object file exists for the program referred to in the error message. If you cannot resolve an error, refer the problem to the developer.

Appendix

F

Moving from Beta to Production

Tasks to Perform Prior to Moving Software

Before moving software from the Beta environment to the Production environment, be sure that the following tasks have been performed:

1. The Software Change Request form has been approved.

2. A mail message has been sent announcing when the software will be moved from the Beta environment to the Production environment. This task ensures that moving software from the Beta environment to the Production environment will not disrupt service.

Procedure to Move Software from Beta to Production

Complete the following steps to move files from the Beta environment to the Production environment:

(If you have any questions during this procedure, see the project leader.)

1. Log on to HAZEL
2. Access the Production system by executing the following command:

$ @SETUP_STAR PRODUCTION

3. Set the default with the following commands:

$ SET DEFAULT STARMAINTCOM

4. Prepare the Production MOVELIST from the Beta MOVELIST as follows:

a) In STARMAINTCOM, create a file named

MOVELIST_MOVE_PROD.DAT

where MOVELIST is any name you wish to call the MOVELIST file.

b) Include the appropriate MOVELIST from BETAMAINTCOM into:

MOVELIST_MOVE_PROD.DAT

c) Change all target directories to Production directories.

d) Change all Development directories to Beta directories.
e) Exit the file.

5. When the MOVELIST file is complete in STARMAINTCOM, issue the following command to move the software from the Beta environment to the Production environment:

$ @SUBMIT_SSCPRODMOVEADD MOVELIST

where, MOVELIST is the shortened version of the MOVELIST file name. For
example, TRG08_MOVE_PROD.DAT would be shortened to TRG08.

The command procedure automatically appends the "_MOVE_PROD.DAT" suffix
to the MOVELIST file name.

6. If necessary, coordinate with the Production Support Specialist to get an execution slot for your job.

7. To check for your job in the queue, submit the following command:

$ SHOW QUE/ALL HAZEL_SHORT

8. When the move is complete, search the log that was generated during the move with the following command:

$ EDIT/READ MOVELIST_MOVE.LOG

9. Resolve any errors. If necessary, rerun the move.

10. Issue the following command to set up your working environment:

$ @SETUP_STAR PRODUCTION

11. Issue the following command to confirm that you are in the Production environment:

$ SHOW SYMBOL STARUSER

12. To identify all files that require attention, issue the following commands:

$ SEARCH MOVELIST_MOVE_PROD.DAT .OPT

$ SEARCH MOVELIST_MOVE_PROD.DAT .SAS

$ SEARCH MOVELIST_MOVE_PROD.DAT .CMD

$ SEARCH MOVELIST_MOVE_PROD.DAT .COM

13. Record all file names that are displayed in Step 12. If the list is
short, note the files on your copy of the MOVELIST.

14. Link all main programs using .OPT files as follows:

a) Link programs using the following commands:

$ SET DEF STAREXE

$ @LINKSTD filename

b) For NATURAL macros, issue the following commands:

$ SET DEF STAREXE

$ @LINKSHARE filename

where filename has the format aaaa_NAT_aa.OPT.
Appendix E for more information on linking programs and handling the errors.

15. Catalog the NATURAL programs named in the .CMD files as follows:

a) Edit the catalog procedure provided by the developer.

b) Change BETASOURCE to STARSOURCE. Use the following command:

SUBSTITUTE/BETASOURCE/STARSOURCE/WHOLE

c) Exit the file.

d) Edit CAT_NAT2.COM and change the name of the module

e) Submit CAT_NAT2 using the following command:

$SUBMIT/KEEP/NOTIFY/NOPRINT/QUE=HAZEL_SHORT/LOG=STARMAINTCOM CAT_NAT2

16. Add the program and procedure logicals to the production logical name tables as follows:

a) To add logical definitions for .OPT files and .SAS files (programs) that were moved as well as the change noted below, issue the following command:

$ EDIT STARSETUPCOM:PROGNAMES.COM

NOTE

SRPRPTGL xx.NAT must be defined as follows: $ DEFINE SRPRPTGL RPTGLxx, where xx is release and revision.

b) To add logical definitions for .COM files (procedures) that were moved and the change noted below, issue the following command:

$ EDIT STARSETUPCOM:PROCNAMES.COM

NOTE

SUTMAINMENU in STARPARMS must have a logical name.

17. To install production logicals into system tables, issue the following commands:

$ @SETUP_STAR PRODUCTION

$ @STARSETUPCOM:PROCNAMES SYSTEM or

$ @STARSETUPCOM:PROGNAMES SYSTEM

18. Delete the program and procedure logicals from the Beta logical name tables as follows:

a) Set up your working environment with the following command:

$ @SETUP_STAR BETA

b) To delete logical definitions for .OPT files that were moved, issue the following command:

$ EDIT BETASETUPCOM:BETAPROGNAMES.COM

c) To delete logical definitions for .COM files that were moved, issue the following command:

$ EDIT BETASETUPCOM:BETAPROCNAMES.C0M

19. To ensure all logicals in this move are deleted from the Development and Beta environments, issue the following commands:

$ @SETUP_STAR DEVELOPMENT

$ DIRECTORY/DATE/SIZE logical_name

20. Delete any of the logical names for this move that still remain in the Development or Beta environments.

21. Verify that logical names are in place as follows:

a) Issue the following commands:

$ SET DEF STARMAINTCOM

$ @SUBMIT_SSCCHECKLOGICAL

b) Examine the resulting log file for error messages indicating that
the logicals are out of place or files are misplaced.

c) Resolve any errors.

22. Send An e-mail message, announcing the move to production.

Update the Software Change Request form’s status via PVCS Tracker to indicate
that the move is complete.

23. Archive the MOVELIST, NATURAL.CMD catalog files, and test files
as follows.

· MOVELIST is in BETAMAINTCOM.
· NATURAL.CMD catalog files are in BETAMAINTCOM.

a) Create a MOVELIST called TEMP_MOVE.DAT in BETAMAINTCOM by issuing the following command:

$ EDIT TEMP_MOVE.DAT

b) Insert into TEMP_MOVE.DAT the name of the original MOVELIST, the NATURAL.CMD files from BETAMAINTCOM, and all files used in testing. (Refer to Appendix B if you need additional information on MOVELISTS.)

Each record in the MOVELIST should have the following format: source_dir_name:file_name, target_dir_name.
where, source_dir_name is the logical name of the directory where the file currently resides (source directory). file_name is the name of the file.

target dir_name is logical name of the directory in which the file will reside (target directory).

c) Archive the files using the following command:

$ @SUBMIT_SSCBETAMOVEADD TEMP

You have completed the steps required to move software into Production.

Appendix

G

Moving from QA to Production

Tasks to Perform Prior to Moving Software

Before moving software from the QA environment to the Production environment, be sure that the following tasks have been performed:

1. The Software Change Request form has been approved.

2. A mail message has been sent announcing when the software will be moved from the QA environment to the Production environment. This task ensures that moving software from the QA environment to the Production environment will not disrupt service.

Procedure to Move Software from QA to Production

Complete the following steps to move files from the QA environment to the Production environment:

(If you have any questions during this procedure, see the project leader.)

1. Log on to HAZEL
2. Access the Production system by executing the following command:

$ @SETUP_STAR PRODUCTION

3. Set the default with the following commands:

$ SET DEFAULT STARMAINTCOM

4. Prepare the Production MOVELIST from the QA MOVELIST as follows:

a) In STARMAINTCOM, create a file named

MOVELIST_MOVE_PROD.DAT

where MOVELIST is any name you wish to call the MOVELIST file.

b) Include the appropriate MOVELIST from QAMAINTCOM into:

MOVELIST_MOVE_PROD.DAT

c) Change all target directories to Production directories.

d) Change all Development directories to QA directories.
e) Exit the file.

5. When the MOVELIST file is complete in STARMAINTCOM, issue the following command to move the software from the QA environment to the Production environment:

$ @SUBMIT_SSCPRODMOVEADD MOVELIST

where, MOVELIST is the shortened version of the MOVELIST file name. For
example, TRG08_MOVE_PROD.DAT would be shortened to TRG08.

The command procedure automatically appends the "_MOVE_PROD.DAT" suffix
to the MOVELIST file name.

6. If necessary, coordinate with the Production Support Specialist to get an execution slot for your job.

7. To check for your job in the queue, submit the following command:

$ SHOW QUE/ALL HAZEL_SHORT

8. When the move is complete, search the log that was generated during the move with the following command:

$ EDIT/READ MOVELIST_MOVE.LOG

9. Resolve any errors. If necessary, rerun the move.

10. Issue the following command to set up your working environment:

$ @SETUP_STAR PRODUCTION

11. Issue the following command to confirm that you are in the Production environment:

$ SHOW SYMBOL STARUSER

12. To identify all files that require attention, issue the following commands:

$ SEARCH MOVELIST_MOVE_PROD.DAT .OPT

$ SEARCH MOVELIST_MOVE_PROD.DAT .SAS

$ SEARCH MOVELIST_MOVE_PROD.DAT .CMD

$ SEARCH MOVELIST_MOVE_PROD.DAT .COM

13. Record all file names that are displayed in Step 12. If the list is short, note the files on your copy of the MOVELIST.

14. Link all main programs using .OPT files as follows:

a) Link programs using the following commands:

$ SET DEF STAREXE

$ @LINKSTD filename

b) For NATURAL macros, issue the following commands:

$ SET DEF STAREXE

$ @LINKSHARE filename

where filename has the format aaaa_NAT_aa.OPT.
Appendix E for more information on linking programs and handling the errors.

15. Catalog the NATURAL programs named in the .CMD files as follows:

a) Edit the catalog procedure provided by the developer.

b) Change QASOURCE to STARSOURCE. Use the following command:

SUBSTITUTE/QASOURCE/STARSOURCE/WHOLE

c) Exit the file.

d) Edit CAT_NAT2.COM and change the name of the module

e) Submit CAT_NAT2 using the following command:

$SUBMIT/KEEP/NOTIFY/NOPRINT/QUE=HAZEL_SHORT/LOG=STARMAINTCOM CAT_NAT2

16. Add the program and procedure logicals to the production logical name tables as follows:

a) To add logical definitions for .OPT files and .SAS files (programs) that were moved as well as the change noted below, issue the following command:

$ EDIT STARSETUPCOM:PROGNAMES.COM

NOTE

SRPRPTGL xx.NAT must be defined as follows: $ DEFINE SRPRPTGL RPTGLxx, where xx is release and revision.

b) To add logical definitions for .COM files (procedures) that were moved and the change noted below, issue the following command:

$ EDIT STARSETUPCOM:PROCNAMES.COM

NOTE

SUTMAINMENU in STARPARMS must have a logical name.

17. To install production logicals into system tables, issue the following commands:

$ @SETUP_STAR PRODUCTION

$ @STARSETUPCOM:PROCNAMES SYSTEM or

$ @STARSETUPCOM:PROGNAMES SYSTEM

18. Delete the program and procedure logicals from the QA logical name tables as follows:

a) Set up your working environment with the following command:

$ @SETUP_STAR QA

b) To delete logical definitions for .OPT files that were moved, issue the following command:

$ EDIT CBETASETUPCOM:QAPROGNAMES.COM

c) To delete logical definitions for .COM files that were moved, issue the following command:

$ EDIT QASETUPCOM:QAPROCNAMES.C0M

19. To ensure all logicals in this move are deleted from the Development and QA environments, issue the following commands:

$ @SETUP_STAR DEVELOPMENT

$ DIRECTORY/DATE/SIZE logical_name

20. Delete any of the logical names for this move that still remain in the Development or QA environments.

21. Verify that logical names are in place as follows:

a) Issue the following commands:

$ SET DEF STARMAINTCOM

$ @SUBMIT_SSCCHECKLOGICAL

b) Examine the resulting log file for error messages indicating that the logicals are out of place or files are misplaced.

c) Resolve any errors.

22. Send An e-mail message, announcing the move to production.

Update the Software Change Request form’s status via PVCS Tracker to indicate
that the move is complete.

23. Archive the MOVELIST, NATURAL.CMD catalog files, and test files
as follows.

· MOVELIST is in QAMAINTCOM.
· NATURAL.CMD catalog files are in QAMAINTCOM.

a) Create a MOVELIST called TEMP_MOVE.DAT in QAMAINTCOM by issuing the following command:

$ EDIT TEMP_MOVE.DAT

b) Insert into TEMP_MOVE.DAT the name of the original MOVELIST, the NATURAL.CMD files from QAMAINTCOM, and all files used in testing. (Refer to Appendix B if you need additional information on MOVELISTS.)

Each record in the MOVELIST should have the following format: source_dir_name:file_name, target_dir_name.
where, source_dir_name is the logical name of the directory where the file currently resides (source directory). file_name is the name of the file.

target dir_name is logical name of the directory in which the file will reside (target directory).

c) Archive the files using the following command:

$ @SUBMIT_SSCQAMOVEADD TEMP
Appendix

H

Cataloging NATURAL Command Procedures

NATURAL Programs

NATURAL programs are cataloged into the Production database with a new release/revision number when they are moved to the Beta or Production environments.

Two command files are required for cataloging NATURAL programs in batch mode: CAT_xxxxx.CMD and CAT_xxxxx.COM.
CMD Files

CAT_xxxxx.CMD contains NATURAL commands that perform the following functions:

· Log on to correct NATURAL library

· Clear edit buffer

· Execute globals program

· Read source code onto the buffer

· Catalog code into the object library

· List library modules for the log file

· Exit NATURAL.

The following is an example of a .CMD file:

LOGON EPREPORT

CLEAR

READ BETASOURCE:SRPEPRGLB_1B.NAT

UNCAT EPRGLB1B

CAT EPRGLB1B

EPRGLB1B

CLEAR

READ BETASOURCE:SRPEISMAP_1B.NAT

UNCAT EISMAP1B

CATMAP EISMAP1B

CLEAR

READ BETASOURCE:SRPEISMN_1B>NAT

UNCAT EISMN1B

CAT EISMN1B

LIST MODULES

FIN

Cataloging Natural Files

Edit the command file, STARMAINTCOM:CAT_NAT2.COM and include the name of the CMD file. To submit the command files, enter the following command string:

$SUBMIT/KEEP/NOTIFY/NOPRINT/QUE=HAZEL_SHORT/LOG=BETAMAINTCOM CAT_NAT2

End of Document
0
PAGE

_974634581.vsd

