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1 Relativistic Hydrodynamics with Particle Emission

During last 20 years the searches for quark gluon plasma (QGP) led to an essential development
[1, 2] of relativistic hydrodynamics with emission of particles. Hydrodynamics is the set of partial
differential equations which describe the local energy-momentum and charge conservation

∂µTµν
f (x, t) = 0 , Tµν

f (x, t) = (εf + pf ) uµ
fuν

f − pfgµν , (1)

∂µNµ
f (x, t) = 0 , Nν

f (x, t) = nfuν
f , (2)

where the components of the energy-momentum tensor Tµν
f of the ideal fluid and its (baryonic)

charge 4-current Nµ
f are given in terms of energy density εf , pressure pf , charge density nf and

4-velocity of the fluid uν
f . This is a simple evidence for the fact that hydrodynamic description

directly probes the equation of state of the matter under investigation.
As usual to complete the system (1) and (2) it is necessary to provide
(A) the initial conditions on some hypersurface and
(B) equation of state (EOS).
The tremendous complexity of the points (A) and (B) transformed each of them into a

specialized direction of research in the relativistic heavy ion community. However, there are
several specific features of relativistic hydrodynamics which require a few additional constraints.
The latter are related to the small size of the system, its short life-time, very high energy density
and importance of relativistic effects. The combination of small size and short life-time with high
energy density leads to existence of very strong gradients of hydrodynamic parameters. In this
case during short space-time intervals the density of the system drops so drastically that the
hydrodynamics treatment becomes meaningless [3]. This is problem of

(C) boundary conditions which is known as the freeze-out problem.
There are two basic aspects of this problem:

(C1) hydrodynamic equations should be terminated at some freeze-out hypersurface (FHS)
Σfr(x, t);

(C2) at the FHS Σfr(x, t) all interacting particles should be converted into the free-streaming
particles which go to detector.

The complications come from the fact that the FHS cannot be found a priory without solving
hydrodynamic equations (1) and (2). This is a consequence of relativistic causality on the time-
like parts of the FHS. Therefore, the freeze-out criterion is usually formulated as an additional
equation (constraint) F (x, t∗) = 0 with solution t = t∗(x) which has to be plug into conservation
laws and solved simultaneously with them.

There were many unsuccessful tries to solve this problem by imposing the form of the the
FHS a priory, but all of them led to severe difficulties - either to negative number of particles or
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Without boundary conditions (=Freeze-out Procedure)
Hydro Equations do not make any sense at all!
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Hydro does not describe transition from the matter with EoS to the gas 
of free streaming particles. It is kinetic process.                                     
But at time-like parts the transition region is not wide:  0.5 - 1.5 fm only!                       
L. Bravina et al, PRC 60 (1999) 

System has two subsystems (domains): Fluid and Gas.           
Conservations laws MUST be written for the whole system!

Gas of free particles has no EoS, but its hydro variables can be found 
from the cut-off distribution function which accounts for outgoing 
particles only:  K.A.B.,  Nucl. Phys. A 606 (1996)

Hydro with Particle Emission

break up of conservation laws. The freeze-out problem was solved in [4] and developed further
in Refs. [5, 6]. The main idea is that the conservation laws should be formulated not for the
fluid alone, but for the system consisting of the fluid and emitted particles (gas of free particle)
from the FHS. Then the full energy-momentum tensor (for a single particle species) can be cast
in the form

Tµν
tot (x, t) = Θ∗

f Tµν
f (x, t) + Θ∗

g Tµν
g (x, t) , (3)

where at the FHS the energy-momentum tensor of the gas Tµν
g is given in terms of the cut-off

distribution function of particles that have the 4-momentum pµ

φg = φeq (x, t∗, p) Θ (pρdσρ) , (4)

Tµν
g (x, t∗) =

∫
d3p

p0
pµpν φeq (x, t∗, p) Θ (pµdσµ) . (5)

Here φeq (x, t∗, p) denotes the equilibrium distribution function of particles and dσµ are the
components of the external normal 4-vector to the FHS Σfr(x, t∗) [4, 5, 6]. The baryonic 4-
current can be treated similar [5].

The important feature of equations (3)-(5) is presence of several Θ-functions. The Θ∗
g =

Θ(F (x, t)) function of the gas and Θ∗
f = 1−Θ∗

g function of the fluid can be explicitly expressed
in terms of the freeze-out criterion and can automatically ensure that the energy-momentum
tensor of the gas (liquid) is not vanishing only in the domain where the gas (liquid) exists.
The Θ (pµdσµ) function ensures that only the outgoing particles leave the fluid domain and go
to detector. This form of the distribution function (4) not only resolves the negative particles
paradox of the famous Cooper-Frye formula [7] at time-like parts of the FHS, but it allows one
to express the hydrodynamic quantities of the gas of free particles in terms of the invariant
momentum spectrum measured by detector.

The analysis [4, 5, 6] of the equations of motion for the full system ∂µTµν
tot = 0 shows that

they split into two subsystems

Θ∗
f ∂µTµν

f (x, t) = 0 , (6)

dσµTµν
f (x, t∗) = dσµTµν

g (x, t∗) . (7)

Here Eqs. (6) are the equations of motion of the fluid, whereas Eqs. (7) are the boundary
conditions for the liquid at the FHS. On the other hand (7) is a system of the nonlinear partial
differential equations to find the freeze-out hypersurface Σfr(x, t∗) for a given freeze-out criterion.
To find the FHS Σfr(x, t∗) the solution of the fluid equations (6) should be used as an input for
(7).

There is a fundamental difference between the equations of motion (1) of traditional hydro-
dynamics and the corresponding equations (6) of hydrodynamics with particle emission: if the
FHS is found, then, in contrast to usual hydrodynamics, the equations (6) automatically vanish
in the domain where fluid is absent. In this way the equations (3) -(7) resolve the freeze-out
problem in relativistic hydrodynamics. In addition, as shown in [5, 6] for wide class of hadronic
EOS these equations resolve the usual paradox of relativistic hydrodynamics of finite systems
which is known as a recoil problem on the strong emission of particles. The latter means that
substantial emission of particles from the time-like parts of the FHS is expected to inevitably
modify the hydrodynamic solution interior of the fluid. However, it was proved [5, 6] that this is
not the case for a wide class of realistic EOS of hadronic matter because on the time like parts of
the FHS the supersonic freeze-out shock will propagate interior fluid faster than the information
about the change of hydrodynamic solution.

However, up to now there is no numerical realization of this formalism and the hydro com-
munity solves the traditional hydrodynamic equations (1) and (2), and employs the incorrect
Cooper-Frye prescription [7] for particle spectra. The main reasons for that are:
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Correct Hydro Equations
Due to causality the FO criterion F(x,t) = 0  MUST be formulated for 
the Gas of free particles.  Otherwise there is a problem with 
conservation laws: if particle spectra in the Fluid are frozen (=no 
collisions!), then Gas cannot have any other temperature! = No solution!

Same temperature of Fluid and Gas cannot be at time-like parts of the 
FO hypersurface. 

Energy-momentum and charge conservation laws are valid                    
for                 Fluid and Gas together (K.A.B.,  Nucl. Phys. A 606 (1996)):
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Equations for FO Hypersurface

Free streaming particles move along straight lines,  therefore

Boundary conditions define Equations for the FO hypersurface!

Equations for Fluid vanish Everywhere outside the Fluid domain! 

It was proven that this system does not have a causal paradox due to 
recoil.
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Example:  FO of  Simple Wave

           Cooper-Frye                                             Cut-off

        Negative particle numbers at work!

Ni =
∫

d3p∗
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S.−Like

dσ∗
0 p∗0 −

∫
T.−Like

d "σ∗ "p∗ Θ
(
d "σ∗ "p∗

)
 φi

[
p∗0
T

]
"=

∫
dσ∗

0 ni(T )

Ni =
∫

S.−Like

dσ∗
0 ni(T ) − α

∫
T.−Like

dσ∗
X ni(T )|"VThermal|

EoS p =
1

3
ε (massless pions)

FO temperature is T ∗, initial temperature in the wave is Tin.
Center of mass rapidity interval is yC.M. ∈ [−2; 2];
Tin = 1.1T ∗ (dotted line), Tin = 1.5T ∗ (solid line) and Tin = 1.9T ∗ (dashed)
Transverse momentum spectra supposed to be exponential
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There is a fundamental difference between the equations of motion (1) of traditional hydro-
dynamics and the corresponding equations (6) of hydrodynamics with particle emission: if the
FHS is found, then, in contrast to usual hydrodynamics, the equations (6) automatically vanish
in the domain where fluid is absent. In this way the equations (3) -(7) resolve the freeze-out
problem in relativistic hydrodynamics. In addition, as shown in [5, 6] for wide class of hadronic
EOS these equations resolve the usual paradox of relativistic hydrodynamics of finite systems
which is known as a recoil problem on the strong emission of particles. The latter means that
substantial emission of particles from the time-like parts of the FHS is expected to inevitably
modify the hydrodynamic solution interior of the fluid. However, it was proved [5, 6] that this is
not the case for a wide class of realistic EOS of hadronic matter because on the time like parts of
the FHS the supersonic freeze-out shock will propagate interior fluid faster than the information
about the change of hydrodynamic solution.

However, up to now there is no numerical realization of this formalism and the hydro com-
munity solves the traditional hydrodynamic equations (1) and (2), and employs the incorrect
Cooper-Frye prescription [7] for particle spectra. The main reasons for that are:

(1) the complexity of Eqs. (3) -(7) compared to the usual hydrodynamic equations;

(2) absence of the appropriate man power back to the end of 1990-th;

(3) absence of the adequate computational power back to the end of 1990-th;

(4) absence of the necessary support from the heavy ion community to these complicated prob-
lems.
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Example:  FO of  Simple Wave
Evidence of negative particle number disappears 
when rapidity interval is wide.   

Effect is not small even for rapidity spectra:             
(Cooper-Frye results are dashed lines)
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The analysis [4, 5, 6] of the equations of motion for the full system ∂µT µν
tot = 0 shows that

they split into two subsystems

Θ∗
f ∂µT µν

f (x, t) = 0 , (6)

dσµT µν
f (x, t∗) = dσµT µν

g (x, t∗) . (7)

Here Eqs. (6) are the equations of motion of the fluid, whereas Eqs. (7) are the boundary
conditions for the liquid at the FHS. On the other hand (7) is a system of the nonlinear partial
differential equations to find the freeze-out hypersurface Σfr(x, t∗) for a given freeze-out criterion.
To find the FHS Σfr(x, t∗) the solution of the fluid equations (6) should be used as an input for
(7).

There is a fundamental difference between the equations of motion (1) of traditional hydro-
dynamics and the corresponding equations (6) of hydrodynamics with particle emission: if the
FHS is found, then, in contrast to usual hydrodynamics, the equations (6) automatically vanish
in the domain where fluid is absent. In this way the equations (3) -(7) resolve the freeze-out
problem in relativistic hydrodynamics. In addition, as shown in [5, 6] for wide class of hadronic
EOS these equations resolve the usual paradox of relativistic hydrodynamics of finite systems
which is known as a recoil problem on the strong emission of particles. The latter means that
substantial emission of particles from the time-like parts of the FHS is expected to inevitably
modify the hydrodynamic solution interior of the fluid. However, it was proved [5, 6] that this is
not the case for a wide class of realistic EOS of hadronic matter because on the time like parts of
the FHS the supersonic freeze-out shock will propagate interior fluid faster than the information
about the change of hydrodynamic solution.

However, up to now there is no numerical realization of this formalism and the hydro com-
munity solves the traditional hydrodynamic equations (1) and (2), and employs the incorrect
Cooper-Frye prescription [7] for particle spectra. The main reasons for that are:

(1) the complexity of Eqs. (3) -(7) compared to the usual hydrodynamic equations;

(2) absence of the appropriate man power back to the end of 1990-th;

(3) absence of the adequate computational power back to the end of 1990-th;

(4) absence of the necessary support from the heavy ion community to these complicated prob-
lems.
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We need Other Kind of Hydro to
Resolve RHIC puzzles!



Problems of Present Hydro-Cascades

Best indication that we have no control of Hydro 
is indicated by HBT puzzles at RHIC!

So far to reproduce nearly exponential spectra and 
angular dependence of flow is not a great deal!      
It is important ideologically, but not a proof!

Therefore, let us check the Hydro-Cascade!



No term can be NEGLECTED!!!
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For switch criterion F (x.t) = 0 between ideal fluid F and
non − ideal Hadronic Gas G described by cascade:

T µν
tot (x, t) = Θ∗

f T µν
f (x, t) + Θ∗

g [T µν
g (x, t) + τµν

g (x, t)] , (6)

with

Θ∗
f = 1 − Θ∗

g , Θ∗
g = Θ(F (x, t)) : Θ∗

g = 1 for gas only!

If at the switch hypersurface

dσµT µν
f (x, t∗) "= dσµ[T µν

g (x, t∗) + τµν
g (x, t∗)] ,

Then equations of motion are as follows:

Θ∗
f ∂µT µν

f (x, t) = −Θ∗
g ∂µ[T µν

f (x, t) + τµν
g (x, t∗)]

− σµ[T µν
f (x, t∗) − T µν

g (x, t∗) − τµν
g (x, t∗)] δ(t − t∗(x)) ,

No matter how small is coefficient in front of δ-function
IT CANNOT BE NEGLECTED!!!

The analysis [4, 5, 6] of the equations of motion for the full system ∂µT µν
tot = 0 shows that

they split into two subsystems

Θ∗
f ∂µT µν

f (x, t) = 0 , (7)

dσµT µν
f (x, t∗) = dσµT µν

g (x, t∗) . (8)

Here Eqs. (7) are the equations of motion of the fluid, whereas Eqs. (8) are the boundary
conditions for the liquid at the FHS. On the other hand (8) is a system of the nonlinear partial
differential equations to find the freeze-out hypersurface Σfr(x, t∗) for a given freeze-out criterion.
To find the FHS Σfr(x, t∗) the solution of the fluid equations (7) should be used as an input for
(8).

There is a fundamental difference between the equations of motion (1) of traditional hydro-
dynamics and the corresponding equations (7) of hydrodynamics with particle emission: if the
FHS is found, then, in contrast to usual hydrodynamics, the equations (7) automatically vanish
in the domain where fluid is absent. In this way the equations (6) -(8) resolve the freeze-out
problem in relativistic hydrodynamics. In addition, as shown in [5, 6] for wide class of hadronic
EOS these equations resolve the usual paradox of relativistic hydrodynamics of finite systems
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Hydro-Cascade problems are 
similar to old Hydro problems!

Welcome To  Hydro-Cascade!       

Hydro

-dynamics

Freeze-out problem


