Self-Consistent Relativistic Hydrodynamics Kyrill Bugaev

Lawrence Berkeley National Laboratory Nuclear Science Division

It is an illusion that Hydro Equations are of the form:

 $\partial_{\mu} T_{f}^{\mu\nu}(x,t) = 0 , \qquad T_{f}^{\mu\nu}(x,t) = (\epsilon_{f} + p_{f}) u_{f}^{\mu} u_{f}^{\nu} - p_{f} g^{\mu\nu} ,$ $\partial_{\mu} N_{f}^{\mu}(x,t) = 0 , \qquad N_{f}^{\nu}(x,t) = n_{f} u_{f}^{\nu} ,$

Without boundary conditions (=Freeze-out Procedure) Hydro Equations do not make any sense at all!

Hydro with Particle Emission

 Hydro does not describe transition from the matter with EoS to the gas of free streaming particles. It is kinetic process.
But at time-like parts the transition region is not wide: 0.5 - 1.5 fm only! L. Bravina et al, PRC 60 (1999)

System has two subsystems (domains): Fluid and Gas. Conservations laws MUST be written for the whole system!

Gas of free particles has no EoS, but its hydro variables can be found from the cut-off distribution function which accounts for outgoing particles only: K.A.B., Nucl. Phys. A 606 (1996)

$$\begin{split} \phi_g &= \phi_{eq}\left(x, t^*, p\right) \Theta\left(p_{\rho} d\sigma^{\rho}\right) , \qquad \mathsf{p}_{\mu} d\sigma^{\mu} > 0 \\ T_g^{\mu\nu}\left(x, t^*\right) &= \int \frac{d^3p}{p_0} p^{\mu} p^{\nu} \phi_{eq}\left(x, t^*, p\right) \Theta\left(p^{\mu} d\sigma_{\mu}\right) . \end{split}$$

Correct Hydro Equations

Due to causality the FO criterion F(x,t) = 0 MUST be formulated for the Gas of free particles. Otherwise there is a problem with conservation laws: if particle spectra in the Fluid are frozen (=no collisions!), then Gas cannot have any other temperature! = No solution!

Same temperature of Fluid and Gas cannot be at time-like parts of the FO hypersurface.

Energy-momentum and charge conservation laws are valid for Fluid and Gas together (K.A.B., Nucl. Phys. A 606 (1996)):

 $\partial_{\mu}T_{tot}^{\mu\nu} = 0$

 $T_{tot}^{\mu\nu}(x,t) = \Theta_f^* T_f^{\mu\nu}(x,t) + \Theta_g^* T_g^{\mu\nu}(x,t) ,$

 $\Theta_f^* = 1 - \Theta_g^*, \quad \Theta_g^* = \Theta(F(x,t)): \quad \Theta_g^* = 1 \text{ for gas only!}$

Equations for FO Hypersurface

Free streaming particles move along straight lines, therefore

 $\begin{array}{rclcrcl} Gas: & \partial_{\mu}T_{g}^{\mu\nu}\left(x,t\right) &\equiv & 0 &\Rightarrow \\ & Fluid: & \Theta_{f}^{*} \partial_{\mu}T_{f}^{\mu\nu}\left(x,t\right) &= & 0 \\ Boundary \ conditions \ at \ \Sigma(x,t^{*}): & d\sigma_{\mu}T_{f}^{\mu\nu}\left(x,t^{*}\right) &= & d\sigma_{\mu}T_{g}^{\mu\nu}\left(x,t^{*}\right) \\ \end{array}$

Boundary conditions define Equations for the FO hypersurface!

Equations for Fluid vanish Everywhere outside the Fluid domain!

It was proven that this system does not have a causal paradox due to recoil.

Example: FO of Simple Wave $EoS \quad p = \frac{1}{3}\varepsilon$ (massless pions)

FO temperature is T^* , initial temperature in the wave is T_{in} . Center of mass rapidity interval is $y_{C.M.} \in [-2; 2]$; $T_{in} = 1.1T^*$ (dotted line), $T_{in} = 1.5T^*$ (solid line) and $T_{in} = 1.9T^*$ (dashed) Transverse momentum spectra supposed to be exponential

 Example: FO of Simple Wave
Evidence of negative particle number disappears when rapidity interval is wide.

Effect is not small even for rapidity spectra: (Cooper-Frye results are dashed lines)

We need Other Kind of Hydro to Resolve RHIC puzzles!

Problems of Present Hydro-Cascades

- Best indication that we have no control of Hydro is indicated by HBT puzzles at RHIC!
- So far to reproduce nearly exponential spectra and angular dependence of flow is not a great deal!
 It is important ideologically, but not a proof!
 - Therefore, let us check the Hydro-Cascade!

No term can be NEGLECTED!!!

For switch criterion F(x.t) = 0 between ideal fluid F and non - ideal Hadronic Gas G described by cascade:

$$T_{tot}^{\mu\nu}(x,t) = \Theta_f^* T_f^{\mu\nu}(x,t) + \Theta_g^* \left[T_g^{\mu\nu}(x,t) + \tau_g^{\mu\nu}(x,t) \right],$$

with

$$\Theta_f^* = 1 - \Theta_g^*, \quad \Theta_g^* = \Theta(F(x,t)): \quad \Theta_g^* = 1 \text{ for gas only!}$$

If at the switch hypersurface

$$d\sigma_{\mu}T_{f}^{\mu\nu}(x,t^{*}) \neq d\sigma_{\mu}[T_{g}^{\mu\nu}(x,t^{*}) + \tau_{g}^{\mu\nu}(x,t^{*})],$$

Then equations of motion are as follows:

2 - Contractor

$$\Theta_{f}^{*} \partial_{\mu} T_{f}^{\mu\nu}(x,t) = -\Theta_{g}^{*} \partial_{\mu} [T_{f}^{\mu\nu}(x,t) + \tau_{g}^{\mu\nu}(x,t^{*})] - \sigma_{\mu} [T_{f}^{\mu\nu}(x,t^{*}) - T_{g}^{\mu\nu}(x,t^{*}) - \tau_{g}^{\mu\nu}(x,t^{*})] \underline{\delta(t-t^{*}(x))},$$

No matter how small is coefficient in front of δ -function IT CANNOT BE NEGLECTED!!!

Hydro-Cascade problems are similar to old Hydro problems!

Welcome To Hydro-Cascade!

