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We derive bounds for the time of predictability in various nonlinear systems by 
using linear autoregressive (LAR) and nonlinear autoregressive (NAR) models. 
Based on the analysis of degree of predictability, defined as a correlator be-
tween the observation and the forecast, we relate the predictability time in 
LAR models to the correlation time of the observed process. This relationship 
is illustrated by a number of examples for which the degree of predictability 
can be determined analytically or numerically. In particular, we analyze the 
ability of LAR models to predict random processes with exponential and Gaus-
sian correlation functions, differentiable and nondifferentiable random proc-
esses, discrete maps, and multidimensional continuous dynamical series 
(Roessler system). In all the cases the predictability time exceeds the correla-
tion time by a factor no larger than 1.1–1.4. 

A predictability assessment using NAR algorithms is carried out for three 
classes: random and continuous chaotic dynamical processes, as well as one-
dimensional nonlinear maps in chaotic regime. It is shown that, like in the case 
of LAR, for processes of random (nondynamical) nature the maximum pre-
dictability time provided by NAR models, does not exceed the correlation time.  
NAR models lead only to an increase of the computation time without noticea-
bly improving the prediction quality. The same is true for multidimensional 
continuous dynamical processes, like the Roessler system in chaotic regime. In 
this case, the NAR model also has no noticeable advantages over LAR models, 
even in noiseless situations. 

The only exception is provided by discrete maps in chaotic regimes, where the 
NAR model provides a predictability time which may significantly exceed the cor-
relation time and brings the former to a limiting “predictability horizon”. 
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1.  Introduction 

Autoregressive models are widely used for pre-
diction and forecasting of real processes, based on 
analysis of continuous and discrete time series. 
Despite their broad utilization, the question of pre-
dictability limits guaranteed by autoregressive 
models is still far from being settled. Noticeable 
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progress has been achieved only in linear autore-
gressive (LAR) models [1, 2]. 

LAR models are frequently used to forecast the 
outcome of a process over a certain period of time. 
Based on such models, the predictability time for 
the process,  is upper-bounded by the corre-

lation time τ
,LAR

predτ

c of the process, 

 , (1) c
LARLAR

pred ττ B<

where BLAR is a factor of the order of unity. Al-
though inequality (1) has long been accepted as 
valid, to date it has no convincing substantiation. 
In fact, in many cases this inequality is postulated 
as obvious (see [2]). By developing the approach 
proposed in [2], we will give more general argu-
ments in support of inequality (1). This general 
statement will be illustrated by a number of exam-
ples indicating that the factor BLAR can hardly ex-
ceed 1.1–1.4 (Secs. 2–4). 

The question of the quality of forecasting en-
sured by nonlinear autoregressive  (NAR) models 
for various nonlinear processes is still open. The 
aim of the second part of this paper (Secs. 6–8) is 
to assess the limit of predictability of NAR models 
for following three classes of processes: 

(i) processes of truly random (nondynamical) 
nature; 

(ii) continuous chaotic dynamical processes; 
(iii) nonlinear maps in the chaotic regime. 
Below we outline theoretical and empirical (nu-

merical) arguments to support the argument that 
for processes (i) and (ii) the predictability time 

 provided by a NAR model, satisfies a rela-
tionship similar to Eq. (1) for LAR, 

NAR
predτ

 ,  (2) c
NARNAR

pred ττ B≈

where the factor BNAR is less than 1.1–1.4 for the 
overwhelming majority of processes of classes (i) 
and (ii). 

On the other hand, we found that for discrete 
maps in the chaotic regime the predictability time 
may reach the limiting value 

 
f

lim ln
1

σλ
τ

A
+≈ ,  (3) 

where λ+ is the largest Lyapunov exponent of the 
nonlinear map, A is the typical amplitude of the 
observed time series and σ f is the root-mean-
square value of dynamical fluctuations which al-
ways exist in any real system. The limiting time of 
predictability (3) can be identified with the notion 
of “predictability horizon” [4] for chaotic proc-
esses. 

2.  LAR and NAR models 

Let us observe a process y(t), with zero average 
for a certain time interval preceding the moment t0. 
Within the LAR model [1], the forecast z(t) at 
some future time t = t0 + τ is given as a linear com-
bination of values of the observed process y(t) in 
preceding moments t0, t0 – τ , t0 – 2τ,…, 

[ ]ττ )1()()()( 00
2

0
1 −−++−+= Mtyatyatyatz M… ,  

  (4) 
where M denotes the order of LAR model and 
τ = t – t0 is the forecasting time. The coefficients a1, 
a2, …, aM of the LAR model are usually calculated 
by minimizing the mean squared forecast error 

 [ ]2)()()( tytz −=τφ . (5) 

Angular brackets indicate either “theoretical” aver-
aging on the basis of probabilistic characteristics of 
the processes y(t) and z(t), or empirical averaging 

 [ ]∑
=
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k

kk tytz
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200 )()()( τττφ
K1

0

,
M

 (6) 

on the ensemble of processes z(t) and y(t) sampled 
at sufficiently many initial moments of time  
k = 1, ..., K. 

,kt

Minimization of functionals (5)–(6) with re-
spect to (4) leads to the Yule–Walker set of normal 
equations [3, 5] 
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is the normalized correlation function of the proc-
ess y(t) and rk ≡ r(kτ) is the value r(∆t) for ∆t = kτ, 
k = 1, 2, … 

The coefficients ak are expressed in terms of the 
correlation coefficients rk by solving linear alge-
braic system (7). Thus, for M = 1 (first-order auto-
regression), we have 
 a1 = r1 = r(τ), (9) 

while for M = 2 (second-order autoregression), the 
coefficients a1 and a2 become 

 .
1

,
1
1

2
1

2
12

22
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rr
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r
r

ra
−

−
=

−
−

=  (10) 

As will be shown later, the dependence of coeffi-
cients aj on the correlation function determines a 
fundamental limitation for the horizon of predict-
ability of LAR models and linear evaluation meth-
ods. 

NAR models differ from LAR model (1) by the 
presence of nonlinear terms. A polynomial NAR 
model of order M and power N for prediction z(t) 
of the process y(t) at the moment t = t0 + τ reads 
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1

0,,
,,

11

1
ττ k

n
N

n

M

m

nmm
nn mtymtyatz kk

k
−−=∑∑ ……

… , 
j j

  (11) 
where the maximum sum of indices nj is the 
power N of the regression, max(n1 + ...  + nk) = N, 
and no number 1 + mk can exceed the order M of 
regression, 1 + mk ≤ M. 

3.  Degree and time of predictability 

The quality of forecast is usually characterized by 
the squared absolute error or the relative squared er-
ror 

 
[ ]
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=τ . (12) 

However, it is more convenient to use here the no-
tion of “degree of predictability”, defined as a 
correlation between the observed process y(t), and 
the predicted process z(t), [2, 4, 6–8], 

 .,
)()(

)()(
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tzty

tzty
D −== ττ  (13) 

The mean values of both y(t) and z(t) are supposed 
to be zero. 

Although D(τ) can be expressed in terms of the 
relative error E(τ), 

 [ )(1
)()(2
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it has several advantages over E(τ) that will be-
come clear shortly. 

Due to the natural condition z(t0) = y(t0), we 
have D(0) = 1. The more the observed process y(t) 
deviates from the forecast, the more D deviates 
from unity. Sooner or later, the degree of predict-
ability becomes zero, D(τ → ∞) → 0 (recall that 
the means of processes y(t) and z(t) are zero). 
Based on the degree of predictability, we can natu-
rally introduce the time τpred of predictable behav-
ior, defined as the time interval during which the 
degree of predictability D(τ) remains higher than a 
certain threshold value 1– p. Thus, the time of pre-
dictability τpred becomes a function of the “confi-
dence level” p and satisfies the equation 

 [ ] ppD −=1)(predτ . (14) 

Similarly, we can define the correlation time 
τc(p), as the time interval during which the correla-
tion function r(τ) remains higher than 1– p. The 
correlation time can be calculated from the equa-
tion 

 . (15) [ ] ppr −=1)(cτ

4.  Bounds for predictability times  
derived from LAR models 

The correlation and predictability times have  
no prescribed natural ordering. The relation be-
tween them depends on the confidence level p, in 
such a way that the best predictability for small p 
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(τpred > τc) may be close to the worst predictability 
(τpred < τc) for greater p This dependence is shown 
in Fig. 1, where the correlation function r(τ) is rep-
resented together with the degree of predictability 
D(τ). 

For LAR model (4) D(τ) is given by 
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Taking into account that all the coefficients of the 
LAR model are expressed in terms of the correla-
tion function (see (7)), we conclude that the degree 
of predictability D(τ) have no other intrinsic time 
scale, except the correlation time. Therefore, the 
predictability time  calculated from Eq. (14) 

with D(τ) replaced by D

LAR
predτ

LAR(τ), cannot be essen-
tially different from the correlation time calculated 
in Eq. (15). In other words, the horizon of predict-
ability for LAR models cannot exceed appreciably 
the correlation time τc. Thus, fundamental inequal-
ity (1) 
which has been long known to be valid as experi-
mental is recovered here by very simple argu-
ments. We illustrate the validity of relationship (1) 
with some simple examples. 

First-order autoregression (M = 1). According 

to (9), a1 = r1 = r(τ), and using (16) we find that 
the degree of predictability is equal to the correla-
tion function, 

 D(τ) = r(τ). (17) 

Correspondingly, the predictability time is simply 
equal to the correlation time  This con-
clusion is fully corroborated by numerical calcula-
tion in the examples given below. The graph of D(τ), 
for first-order LAR models, as well as for random 
series, or for deterministic series, coincides practi-
cally with the correlation curve. 

.c
LAR
pred ττ =

Exponential correlation function r(τ) = exp(–
|τ |/τ1). For this correlation function, all coefficients, 
except the first one, are zero and a1 = r1 = r(τ). 
Thus, D(τ) = r(τ) and  for any confidence 
level p. We note that the quality of forecast is not 
improved by increasing of the order M of autore-
gression. The result of numerical experiments av-
eraging 90 realizations of random numbers with 
the exponential distribution function is represented 
by the function 

c
LAR
pred ττ =

 
c

LAR
pred)(
τ

τ
=Mg . (18) 

For this example, g(M) is identically equal to unity 
(see Fig. 2, curve 1). 

Nondifferentiable random processes. For such 
processes the correlation function has a derivative 

 g(M)

 1.0

 0.8

 0.6

 0.4

 0.2
2             4            6             8           M

 1

 3 2

 
Figure 2. Dependence of the predictability time on the 
regression order M. Line 1 corresponds to processes 
with the exponential correlation function (for any lev-
els of p); line 2 presents processes with the Gaussian 
correlation function (p = 0.1); and line 3 is constructed 
for the logistic map (p = 0.1). 

 
Figure 1. Degree of predictability D and correlation func-
tion r as functions of time τ. The predictability time τpred 
and the correlation time τc are determined from the inter-
section of curves D(τ) and r(τ) with the horizontal line 1–
 p according to Eqs. (14) and (15). 
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discontinuity at τ = 0, similar to the exponential 
correlation function r(τ) = exp(–|τ |/τ1) [9]. For all 
processes of this form, the correlation function r(τ) 
can be approximated (as τ → 0) by a “triangle” 
function, such as  from which the 
feature mentioned above follows. The forecast 
does not improve when using higher-order LAR 
models. 

,/||1~)( 1τττ −−r

Gaussian correlation function 
 This example illustrates that 

the gain provided by higher-order LAR models is 
small compared with the first order. When M = 2, 
degree of predictability computed for the Gaussian 
correlation function according to (16) becomes 

)./exp()( 2
2

2 τττ −=r

 2/18642

64
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Calculations based on formula (19) using 
condition (15) show that if the confidence level p 
exceeds 0.3, then τpred exceeds τc only by 1.2. 
Including the third order (M = 3) increases τpred by 
at most one percent. Higher-order inclusions lead 
even to a decrease of the predictability time with 
respect to τc. The function q(M) for random series 
with the Gaussian distribution and correlation func-
tions are shown in Fig. 2 (curve 2). 

Differentiable random processes. As τ → 0, the 
Gaussian correlation function  
has quadratic behavior near the origin, namely 

 Such a run is characteristic of 
all differentiable random processes. Thus, for small p 
the behavior described above for processes with 
the Gaussian correlation function (i.e., modest im-
provement and then deterioration of the forecast as 
a function of the order M of regression) are inher-
ent in a wide class of processes with quadratic run 
of the correlation function as τ → 0. 

)/exp()( 2
2

2 τττ −=r

)./exp(~)( 2
2

2 τττ −−r

Discrete dynamical series (logistic map). The 
above consideration may be carried over to dis-
crete series with some slight changes. The differ-
ences are that the time intervals t, t0, τ take on only 
discrete values, say t = 1, 2, 3, ..., and one cannot 
pass to the continuous limit τ → 0. 

We illustrate the features of discrete series on 
the example of the logistic map 

  (20) [ ] ,,2,1,)(1)()1( …=−=+ ttytryty

with parameter r = 3.82, which displays fully de-
veloped chaotic behavior. 

In Fig. 3 the degree of predictability  
which is in agreement with the first-order LAR 
model, is represented by a continuous curve, and 
the degree of predictability for second, fifth, and 
ninth-order LAR models as points. For M = 1, the 
curve  coincides with the correlation 
function r(t). For M = 2, the degree of predictabil-
ity decreases noticeably, and, as a result, the pre-
dictability time  also decreases. With the later 
increase in the order of regression, the predictabil-
ity time rises slightly to reach saturation at M = 9. 
The ratio  is represented in Fig. 2 by 
curve 3. The value g is compared with unity, which 
is in agreement with general statement (1). 

),(LAR τMD

)(LAR τMD

τ

τ≡g

LAR
pred

LAR
pred /τ c

At M = 2 we observe a marked decrease of D(τ) 
not only for the logistic map but also for other se-
ries at times τ ≥ τc. A possible reason of this phe-
nomenon may stem from the dominant “sign-varia-
bility” of values y(t) at neighboring moments of 
time: if at a given time t we have y(t) > y(t – 1), 
then at the time t +1 it often happens that 
y(t +1) < y(t), and vice versa. 

Multidimensional continuous dynamical series 

DM(t )

0.8

0.6

0.4

0.2

0              2            4            6            8           t

D1(t )

 M = 1  M = 5

 M = 9 M = 2

 
Figure 3. Degree of predictability for the logistic map 
as derived from LAR models of orders M = 1, 2, 5, 9. 
The first-order LAR model is represented by a line, the 
other models are represented by points. 
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(Roessler system). For discrete series in chaotic 
regime, the digitization time as a rule exceeds the 
correlation time, as may be seen from Fig. 3 for the 
logistic map. 

The same is true for continuous processes, even 
if we integrate the equations of motion with the 
digitization step less than the correlation time. To 
illustrate this, let as consider the Roessler system 

 

.252.0

,2.0

,

314
3

21
2

32
1

yyy
dt

dy

yy
dt

dy

yy
dt
dy

+−=

+=

−−=

 (21) 

The degree of predictability of the component 
y2(t) computed with the LAR model is given in 
Figs. 4 and 5 and represents the relationship between 
the parameter  and the order M of LAR 
model. As we see in Fig. 5, the gain in predictabil-
ity time for this deterministic process is not signifi-
cantly higher than that for random time series. In 
all the cases inequality (1) takes place with the fac-
tor B

c
LAR
pred /ττ=g

LAR < 1.4. We will also see that the same is 
true for NAR models. 

The examples above show that the predictabil-
ity time of the processes, based on LAR models, is 
essentially limited by the correlation time. This 
fundamental limitation is connected to the very 
essence of the LAR model itself. Formally, the 
causality principle lies at the basis of this model: 

the value of forecast z(t) is expressed in terms of 
the process values y(t – kτ) only at the preceding 
moments of time. 

In this sense, the LAR model is a “linear substi-
tute” for the actual causality constraints. Such  
a substitute cannot be a serious contender as a  
long-term forecast tool. Its predictability horizon 

 is comparatively low and, according 

to (1), does not exceed B

LAR
predmaxτ

LARτc. 
Since only a weak causality principle is used in 

LAR models, an increase in the regression order M 
improves predictability only marginally. Indeed, 
considering higher-order LAR models (4) would 
only “overload” Yule–Walker set (7), without re-
vealing nonlinear constraints and relationships in 
the system. This is also quite in agreement with the 
empirical fact that increasing the linear regression 
order beyond M = 2 practically does not improve 
the forecast quality and in some cases it even 
worsens it. 

The relationship between the horizon of pre-
dictability for LAR models and the correlation 
time can be explained from a new vantage point. If 
y(t) is a stationary random process with variance 
〈y2(t)〉 = const, then it would be natural to expect 
that the variance 〈z2(t)〉 of the forecast z(t) also be 
constant and equal to 〈y2(t)〉. In other words, the 
following condition should be fulfilled, 

 〈z2〉 = 〈y2〉 = R(0),  

or, equivalently, 

 .  (22) 1||
1 1

=−
= =

∑∑ kj

M

k

M

j
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D(τ)
1.0

0.8

0.6

0.4

0             2             4             6             8           τ

D1(τ) = r(τ)

 
Figure 4. Degree of predictability for the y2 component 
of Roessler system (37) as derived from LAR models of 
orders M = 1, 2, ..., 10. The curve shows the predictabil-
ity for a first-order LAR model, the other data are rep-
resented by points. 

 g(M)

1.0

1.4

1.8

0.6
1             3             5             7            9    M

 
Figure 5. Dependence of the function g(M) (18) on the 
regression order M for the y2 component of Roessler 
system. 
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Unfortunately, condition (22) cannot be satis-
fied together with Yule–Walker set (7). In fact, if 
the coefficients ak satisfy (7), then the double sum 
in (22) is equal to 

  (23) ,
1

||
1 1

∑∑∑
=

−
= =

=
M

j
jjkj

M

k

M

j
jk raraa

and obviously cannot equal unity. Indeed, if we 
take a trivial example of first-order autoregression 
(M = 1), then a1 = r1 and in the right-hand side 
of (22), instead of unity, we have  
according to Eq. (16). 

,1)(22
1 ≤= τrr

The right-hand side of Eq. (22) tends to unity 
only if τ → 0. Thus, in spite of natural expecta-
tions, the forecast variance 〈z2〉 does not remain 
constant but tends to zero as τ → 0. This further 
limits the applicability of LAR forecasts for times 
τ > τc. 

5.  Bounds for predictability times 
derived from NAR models 

5.1.  Processes of random (nondynamical) na-
ture 

For truly random processes, NAR models pre-
sent no advantages over LAR models and cannot 
extend the prediction times beyond the correlations 
time τc of the process y(t) under study. This state-
ment can be motivated in the same way we used 
for LAR models (4). 

Let us write the coefficients  in expan-

sion (11) in a more compact form as  where m 
and n are multi-indices m = (m

k

k

mm
nna ,,

,,
1

1

…
…

,n
ma

n
ma

1, ..., mk) and 
n = (n1, ..., nk). The coefficients  in NAR model 
(11) are calculated by minimization of the quad-
ratic functional 

 [ ]∫
+

=′′−′=Φ
Tt

t

tdtzty
T

0

0

min)()(
1 2 ,  (24) 

which is a measure of difference between the ob-
served process y(t) and prediction z(t) based on the 
NAR algorithm. Differentiating Eq. (24) with re-

spect to  we derive a set of linear equations for 
these quantities. The second statistical moments 

,m
na

 
,,,1,,,2,1,

,)()()(

MkNqp

ktytykR qp
pq

…… ==

+′′= ττ
 (25) 

of the observed process y(t) appear in this set as 
coefficients. 

Using nonlinear prediction model (11) in 
Eq. (12), the degree of predictability D(τ) can be 
expressed through statistical moments Rpq(kτ) of 
the observed process and through coefficients  
which in turn are expressible through the same 
moments. Let τ

,m
na

c be the correlation time of process 
y(t), i.e., the characteristic time of a second mo-
ment is R11(τ) = 〈y(t) y(t +τ)〉. In fact, τc can be de-
termined from Eq. (15). To fix an idea, we take the 
parameter p in Eq. (15) to be 0.25, so that the cor-
relation time τc satisfies the equation r(τ) = 0.75. 
There are no reasons to expect that the highest 
moments Rpq(τ) possess time scales different 
from τc. The same can be said about the predict-
ability time  defined by Eq. (14) and whose 

value is comparable to the correlation time τ

NAR
predτ

c. 
Therefore, if the observed process is of nondy-

namical nature and allows only statistical descrip-
tion, then there are no reason to expect that NAR 
models have advantages over LAR ones. In this 
case, the predictability time  satisfies condi 
tion (2), which is similar to relationship (1) for 

 

NAR
predτ

.LAR
predτ

This conclusion can be illustrated by the calcu-
lated predictability time  for a process with 
Gaussian statistics. We assume that the average 
value of the observed process is zero, 〈y〉 = 0, then 
all its odd moments turn out to be zero, while all 
the even moments are expressed through the corre-
lation function R

NAR
predτ

11(τ) = 〈y(t) y(t +τ)〉 ≡ R(τ). 
For simplicity we restrict ourselves to a NAR 

model of second order (M = 2) and the second 
power (N = 2), 

  (26) ,)( 2
15104

2
0312010 yayyayayayaatz +++++=
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where we denote y0 ≡ y(t0) and y1 ≡ y(t0 – τ). Using 
extremum condition (24) and denoting R0 = R(0), 
R1 = R(τ), R2 = R(2τ), we get a set of six linear 
equations for six coefficients a0, a1, …, a5, which 
may be separated into two independent subsys-
tems: four homogeneous equations for the coeffi-
cients a0, a3, a4, and a5, 

  (27) 
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and two inhomogeneous equations for coefficients 
a1 and a2, 

  (28) 
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12110

RaRaR
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The determinant of homogeneous system (27) is 
nonzero, when implying a0 = a3 = a4 = a5 = 0. At 
the same time it follows from Eq. (28) that the co-
efficients a1 and a2 at linear terms in Eq. (26) are 
exactly the same as for LAR model (10). 

Thus, adding quadratic terms to the LAR model 
yields no advantage, so that the predictability time 
given by a NAR model satisfies relation (2), simi-
lar to relation (1) for LAR model. This conclusion 
remains essentially valid for autoregression models 
of the higher order (M > 2) and power (N > 2) and 
is corroborated numerically for various random 
processes. In all these cases, the NAR models are 
not more successful than LAR ones, regardless of 
the model order M and power N: the predictability 
time  for processes of class (i) always obeys 
estimate (2). Thus, the NAR models only brings 
about an increase of the computation time without 
actually improving the prediction quality. 

NAR
predτ

5.2.  Discrete one-dimensional maps 

Let us now apply NAR models to time series 
generated by nonlinear one-dimensional maps. Let 
y(ν) be a sequence generated by the map G(x), 

  (29) [ ] ),()()1( ννν fyGy +=+

where the discrete time ν takes integer values 1, 2, 
3, ... For generality we include in Eq. (29) the fluc-
tuation term f (ν), which in fact determines a hori-
zon of predictability. Expanding the function G(ν) 
in Taylor series and truncating at the N th power  
of y, we get 

[ ] .)()()()( 2
210 νννν N

N ygygyggyG ++++= …  
  (30) 

We try to describe a sequence generated by 
such a map with the help of NAR model of the 
first-order (M = 1) and N th power. For a discrete 
time NAR algorithm (11) of the first order and of 
N th power takes on a form 

  (31) .)()()1( 10 ννν N
N yayaaz +++=+ …

Minimizing error functional (24), one can read-
ily ensure that in the absence of fluctuations, the 
model coefficients an coincide with those of expan-
sion (30), 

 a0 = g0,     an = gn,     n = 1, 2, …, N. (32) 

This implies that fitting NAR model (31) to the 
time series y(ν) generated by noiseless map y(ν +1) 
= G[y(ν)] allows us to reconstruct this map (at least 
to the order N). In the presence of noise (f ≠ 0), 
equalities (32) become approximate. It is evident 
that the differences δ an = an – gn, characterizing the 
accuracy of the map reconstruction, depend on the 
noise level σ f. 

The role of the noise f (ν) can be illustrated by 
the example of a logistic map 

 G(x) = ry(1– y), (33) 

for which g0 = 0, g1 = r, and g2 = –r. NAR mo-
del (31) is chosen in the form of polynomial of the 
fifth power (N = 5). The minimization of error 
functional (24) yields the coefficients an which are 
close to the coefficients of original map (33), that 
is in (31). 
The difference between actual coefficients g

0~~~,~,~,0~
543210 −−−−−−− aaararaa

n and 
the reconstructed an is usually of the order σ f. 
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After constructing nonlinear map (31) with an 
close to gn, we can calculate the degree of  
predictability 

 
[ ]

,,
)()(

)()(
)( 0

2/122
ννµ

νν

νν
µ −==

zy

zy
D  (34) 

of the process y(ν) based on (31). Five curves in 
Fig. 6 show degree of predictability (34) for differ-
ent noise intensities σ f , 

 .10,7,5,3,2,10
32

1
=⋅= − ss

fσ  (35) 

Fluctuations f (ν) are assumed to be uniformly dis-
tributed in the interval (–10–s, 10s ). 

The calculations are performed for the control 
parameter r = 3.821 which, according to [10], cor-
responds to a regime of developed chaos. The op-
timum parameters ak are found by minimizing 
functional (24) for 500 realizations of the process. 
The values a0, a1, …, a5 are rather close to the coef-
ficients g0, g1, …, g5 of original polynomial (30). 
Indeed, for r = 3.821 and for two noise levels σ f = 

32/10 5−  and 32/10 3−=fσ  the coefficients gk 
and ak are as shown in Table 1. 
Table 1.  Initial coefficients gi and restored coefficients aj 
for the logistic map. 

i gi ai (s = 5) ai (s = 3) 
0 0 0 –0.0025 
1 3.821 3.8208 3.8508 

2 –3.821 –3.8201 –3.9459 
3 0 0.0019 0.2380 
4 0 0.0019 –0.2108 
5 0 –0.0007 0.0703 

 

According to Fig. 6, the greater the noise inten-
sity  the shorter the predictability time  

The values are in good agreement with hori-
zon of predictability (3). The curves of Fig. 6 are 
reminiscent of the results of a similar calculation, 
performed in [3] for the map G(y) = 2y (mod 1) 
(see also [7, 8]). 

,2
fσ .NAR

predµ
NAR
predµ

 
Figure 6. Degree of predictability D(τ) based on NAR 
model (31) for logistic map (33) with noise intensities 
corresponding to s ≥ 2, 3, 5, 7, and 10. For reference the 
autocorrelation function r(τ) is shown as characterized 
by rather short correlation time τc –~ 1. 

For reference the normalized autocorrelation 
function r(µ) is shown in Fig. 6, which displays 
very rapid decrease with a characteristic time of 
the order of unity, µc –~  1. According to the figure, 
the predictability time may considerably exceed 
the correlation time,  This means that 
the behavior of discrete nonlinear systems like (29) 
can be predicted for much longer times than the 
correlation time which typically is of the order of 
unity. 

.c
NAR
pred µµ >>

Next we determine how the autoregression 
power N affects the predictability of a noisy logis-
tic map. The results of numerical modeling of the 
degree of predictability D(µ) are brought in the 
form of cubic spline in Fig. 7a for the noise with 
rms σ f = ,32/5−10  and in Fig. 7b for the greater 
σ f = .32/310  At N = 1, the NAR model coincides 
with the LAR model of the same order. The degree 
of predictability D

−

1(µ) in Fig. 7a practically coin-
cides with the autocorrelation function r(µ), so that 
the predictability time coincides with the correla-
tion time, which is close to unity, µpred(N = 1) = µc –
~  1. Thus, on average the predictability power of 
the first power autoregression model (N = 1) does 
not extend beyond one step of the map. The same 
is true also for the larger noise with σ f = .32/3−10  
The curves D1(µ) and r(µ) practically merge to-
gether in Fig. 7b like in Fig. 7a. 
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D(µ)

D1 –~ r
D3, D5, D17
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 D2

 
Figure 7. Degree of predictability DN(τ) for logistic 
map (33) with two noise intensities (a) s = 5, (b) s = 3 
and for different powers N of NAR model (31). Curves 
D1,2,3,5,17(τ) correspond to orders N = 1, 2, 3, 5, 17. The 
curve D1(τ) practically coincides with the normalized 
correlation function r(τ), whereas curves D1,2,3,5,17(τ) in 
(a) and (b) illustrate the saturation of the forecasting 
power at N ≥ 3. 

While the NAR model power increases to N = 2 
(curves D2(µ) in Fig. 7) the predictability rises 
sharply to  for s = 5 (Fig. 7a) and to 

 for s = 3 (Fig. 7b). Both these values 
are close to the corresponding horizons of predict-
ability (3). Indeed, taking into account that the am-
plitude A is approximately 0.8 and the Lyapunov 
index λ

3.12NAR
pred =µ

5.7NAR
pred =µ

+ is of the order 0.6, we conclude, that the 
predictability horizon is estimated as µlim ≈ 19 for 
s = 5 and as µlim ≈ 11 for s = 3. 

Increasing further the polynomial power N in 
(31) saturates the degree of predictability: curves 
D2, D3, D5, and D17 in Figs. 7a and b are quite 
close to each other. One can even notice a certain 
deterioration of the predictability at large N. This 
can be explained by the fact that the additional 
terms with the powers N > 2 (in the case of logistic 
map (33)) become an unnecessary burden to 
worsen the accuracy of recovering the map G(y) 
and increasing the computation time. 
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Similar results have been found also for the cu-
bic map 

  (36) [ ] .01.0)(83.2)()( 3 −−= ννν yyyG

The results of numerical modeling of the degree of 
predictability D(µ) with the noise rms σ f = 

,32/10 3−  are presented in Fig. 8. The curve D1 
shows the predictability for the first-order LAR 
model. This curve is close to the autocorrelation 
function r(µ): the predictability and correlation 
times are practically alike and occur near 0.75, i.e., 
less than one step. A certain divergence between 
D1(µ) and r(µ) comes under µ ≥ 2. In contrast to 
the square-law logistic map, a sudden increase of 
the predictability time occurs for N = 3. When 
N ≥ 3 the degree of predictability saturates: as is 
seen from Fig. 8, plots of D(µ) for N = 3, 5, 7, and 
17 practically overlap. All of them correspond to 
almost the same time of predictability  
and are close to its horizon. 

2.8~NAR
pred −µ

5.3.  Continuous dynamical processes 

Real dynamical processes are seldom controlled 
by one-dimensional maps which provide 
predictability times close to predictability horizon 
(3). In the case of continuous dynamic processes, 
NAR models turn out to be much less effective. 
Numerical calculations show that the time of 
predictability for such processes is comparable to 
the correlation time and never approaches limiting 
time of predictability (3). As an illustration we 
consider a dynamic process generated by the 
Roessler system dy

 

3213
3

221
2

132
1

102.0

,2.0

,

fyyy
dt

dy

fyy
dt

dy

fyy
dt

++−=

++=

+−−=

 (37) 

in the chaotic regime. 
First we choose 500 random initial values y10, 

y20, y30 and numerically integrate set (37) for a suf-
ficiently long time with zero noise. As a result we 
find a set of 500 initial values, sufficiently close to 
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the attractor, for which transient effects were prac-
tically eliminated. The initial conditions derived by 
this procedure are uniformly distributed over the 
whole area of the Roessler attractor. 

NAR models are built for each of the compo-
nents of this process and calculations are carried 
out for noise intensities 0.01 % and 0.1 % of the 
variance of corresponding component. The final 
value of N is chosen to maximize the degree of 
predictability. The optimum values of the power N 
range between 5 and 7. The increase in the degree 
of predictability with N turns out to be rather mod-
est, by 10–15 %. 

The numerical calculations show that for none 
of components {y1, y2, y3} of the process the pre-
dictability time exceeds the correlation time by 
more than a few percent. This is illustrated in 
Fig. 8, where the correlation function r(τ) and the 
degree of predictability D(τ) are plotted for the y1 
component of a Roessler process with 0.1 % noise. 
For small τ, the degree of predictability for the po-
lynomial model behaves like the correlation func-
tion and their values are practically identical. The 
time of predictability at the first “half-period” of 
curve D(τ) is about 0.7. 

On the following half-period, D(τ) also exceeds 
the level 0.75, but for definiteness we choose the 
shorter interval, τ ≈ 0.7. Otherwise, the interval of 
satisfactory prediction will be broken in two parts 

by the intervals of extremely unsatisfactory fore-
cast at τ ≈ 2. 

 D(m)

0.8

0.6

0.4

0.2

1.0

 D  r

0                  5               10              15            m  
Figure 9. Degree of predictability D(τ) and normalized 
correlation function r(τ) for Roessler system (37). The 
predictability time is comparable with the correlation time 
τc. 

It is important to understand, why the NAR 
models cannot satisfactorily forecast continuous 
processes of chaotic type. Qualitatively, discrete 
NAR models are badly matched with differential 
equations of chaotic processes. To better illustrate 
these considerations we turn to the simplest dy-
namic system of the third order, 
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dt
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+=

+=

+=

 (38) 

which admits a chaotic behavior and where fi (t), 
i = 1, 2, 3, are random (fluctuation) forces. 
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To pass from the set of differential equations (38) to a set of difference equations, for instance for the variable 
y1(τ), we integrate (38) from t to t +τ and get the integral equations 

  (39) [ ] ),()(),(),()()( 1321
)1(

11 ttdtytytyFtyty
t

t

ϕτ
τ

+′′′′+=+ ∫
+
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In equations (39)–(41) the values ϕ 1,2,3(t) represent the fluctuation forces integrated over the time interval 
from t to t +τ, 

 .  (42) )()( 3,2,13,2,1 tdtft
t

t

′′= ∫
+τ

ϕ

We express the integrals in equations (39)–(41) through the values of variables at preceding moments  
t –τ, t –2τ, ..., restricting ourselves to the second-order quadrature formula 
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Then Eq. (39) becomes 
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Equations (40) and (41) yield similar expressions. Equation (43) together with the similar equations for 
y2(t +τ) and y3(t +τ) are now playing the role of equations of motion for the delayed variables yk(t), yk(t –τ), 
yk(t – 2τ), which are referred to as Takens’ variables. 

Let us represent the functions F(1,2,3) as polynomials of degree S, 

  (45) ∑=
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where α1,2,3 = 0, 1, … and the indices’ sum α1+α2+α3 does not exceed S. Then, Eq. (43) contains the powers 
of variables y1, y2, and y3 at the moments t, t –τ, and t – 2τ. When restricting in Eq. (44) to terms of the second 
order only, each of three functions F( j ) has nine terms, 
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In total, set (39)–(41) will contain 27 factors. 
Using the equations for y2(t +τ) and y3(t +τ), which are similar to Eq. (43), we express the variables y2 and 

y3 in Eq. (43) through the values of all variables {y1, y2, y3} at the preceding moments of time. 
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Repeating this procedure P times, we shift the variables y2 and y3 in time for P steps. After that we can 
single out in Eq. (43) the terms with delays m1, …, mk, which do not exceed P, 

 { }∑ +−−+=+
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mm yyyQmtymttyty kk
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1
β

β
ββ ϕττγτ ……

…  (47) 

whereas the terms with larger delays and all the fluc-
tuative terms ϕ 

( j ) are included in the function QP. 
In spite of the formal similarity, the right-hand 

parts of Eq. (47) and NAR model (23) are essen-
tially different. The main difference consists of the 
following: initial systems (37) of three first-order 
differential equations is equivalent to the third-
order differential equation. On the other hand, ex-
pression (47) preserves only the information on the 
first derivative in the form of the first-order differ-
ence y1(t +τ) – y1(t), while the differences of the 
second and third order are absent in this equation, 
at least in the explicit form. As a result, part of the 
dynamic structure of system (38) is already lost 
after the first iteration, since an important informa-
tion is relegated to the term QP, which contains an 
infinite number of components. By discarding this 
term, we limit the order of autoregression, thereby 
losing information on the system dynamics. In 
other words, fitting decomposition (47) (without 
QP) to experimental time series rather worsens the 
quality of  
approximation due to local instability of chaotic 
systems. 

Thus, NAR model (23) reflects nonlinear 
properties of multidimensional dynamical systems 
in a very truncated form. In fact, the NAR model 
works within the framework of first-order LAR 
model only. This explains the very short interval of 
prediction τpred, comparable with τc. 

The inability of NAR models to reveal the dy-
namics of multidimensional nonlinear systems 
does not mean that such dynamics cannot be 
brought to light by other methods. The issue is re-
lated to an inverse problem in nonlinear dynamics, 
namely to the reconstruction of dynamical equa-
tions from the experimental time series. The es-
sence of the reconstruction method consists in as-
suming the structure of nonlinear functions (say, 
polynomial) entering the differential equations and 
then determining the coefficients of polynomials 

from the best fit to the experimental data. This pro-
cedure was analyzed extensively in [11–14]. 

In fact, this reconstruction procedure is nothing 
but a version of nonlinear autoregression analysis 
[1, 15]. The difference lies in the fact that the re-
construction implies determination of the polyno-
mial coefficients in governing equations, whereas 
the standard autoregression deals with the coeffi-
cients of polynomial approximation (23) of the 
signal itself. It comes then as no surprise that re-
construction methods have a stronger prognosis 
power. In particular, these are able to reach horizon 
of predictability (3), although to do so they require 
more complex and time-consuming algorithms. 

Of course, as the dimensionality of the system 
increases, the efficiency of reconstruction algo-
rithms decreases accordingly due to numerical cal-
culations of high-order derivatives from noisy time 
series. Under conditions of multidimensional noisy 
processes the advantages of the method for recov-
ering dynamic equations against the standard NAR 
procedure are not too evident. 

6.  Discussion 

We have confirmed numerically that the pre-
dictability time for nonlinear processes, derived 
from LAR models, cannot significantly exceed the 
correlation time of these processes. 

We also have shown that the predictability of 
NAR models depends strongly on the nature of 
underlying process. For random processes, i.e., 
processes of a nondynamical origin, the time of 
forecast based on NAR models does not exceed 
that based on LAR models and is comparable with 
a correlation time in the observed process. NAR 
models apply well to time sequences generated by 
one-dimensional maps. For such sequences the 
predictability time may approach predictability 
horizon (3). We also have noticed a saturation ef-
fect of the predictability as the power of NAR 
model increases. 
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For continuous dynamical processes, the effi-
ciency of NAR models does not exceed the effi-
ciency of LAR ones. The time of predictability for 
LAR and NAR models is comparable with the cor-
relation time. These models are considerably less 
powerful than reconstruction methods which en-
sure predictability times close to limit (3). 

These results show that the only class of proc-
esses where the NAR models perform better than 
the LAR ones are the discrete maps. For all other 
signals, the efficiency of NAR models is compara-
ble to that of first-order LAR models, i.e., the pre-
dictability time computed by former models does 
not exceed the correlation time. 
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