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We apply a recently developed approach for calculating the transport properties of random media to the case
of disordered arrays of parallel oriented and normally illuminated cylinders. Within this effective-medium
theory resonant scattering of the individual scatterer is treated exactly, and by using a coated cylinder as the
basic scattering unit, multiple scattering contributions are incorporated in a mean-field sense. In the long-
wavelength limit we are able to calculate the effective dielectric constant analytically. We compare our
findings with results for periodic systems. For both “scalar” and “vector” polarization, we reliably calculate
the mean-free path, the transport velocity, and the diffusion coefficient for finite frequencies for all densities of
scatterers and dielectric contrasts. Furthermore, within this effective-medium approach, we present our results
for the localization parametet/’, for both two- and three-dimensional systems, thereby identifying the opti-
mal parameters for observing localizati¢80163-182807)02546-0

[. INTRODUCTION Identity due to an energy-dependent scattering poteftial
croscopic viewpointor caused by a scattering delay due to

The interest in studying the propagation of classicaltemporal storage of wave energy inside the scattejygre-
waves in strongly scattering random media has experiencedreomenological viewpoint In addition, yet another renormal-
considerable boost over the last deck@&tarting with the  ization mechanism, which originates in the asymmetric scat-
observation of the coherent backscattering effect in classicdering from finite sized spheres, has recently been identified
wave systems the analogous effect to weak localization in by Livdan and Lisyansky? In contrast to the above-
the electronic case, it has soon been realized that many quamentioned energy-storage effect this asymmetry renormal-
tum effects have their analogy in classical wave systemszes the transport mean free path rather than the energy
This has opened the field for technological applications liketransport velocityg. In the low-density regime it smooth-
photonic band-gap materidlss well as new fundamental ens the very sharp spikes of the ripple structure, which is
research such as the photonic Hall effeahd anisotropic superimposed on the much broader Mie resonance structure
light diffusion®. of the energy transport velocity renormalization. However,

Although the analogy between quantum and classicalhile these additional corrections are certainly very impor-
waves carries very far, there are certain differences that d@ant for quantitative considerations they do not change the
not allow a simple translation of the many results of disor-overall physical picture. In essence, considerable care has to
dered electronic to strongly scattering classical wave sysbe exerted when interpreting low values of the diffusion co-
tems: For example, the Anderson localizafimf classical efficientD for classical wave systems.
waves has not been observed as yet, despite the fact that Besides the presence of Mie resonances in the intermedi-
theoretical work indicated its existence in an intermediate ate frequency regime, polarization effects may play an addi-
frequency regime and recent experimental investigatiths tionally important role for electromagnetiEM) waves. The
along these lines reported very low values for the diffusiondifferent polarizations of the EM waves have to be taken into
coefficientD. In fact, the pioneering work of van Albada account on a full vector calculation in deriving the Boltz-
et al® showed that, unlike electronic systems, there existsnann equation, starting from the Bethe-Salpeter equation, a
another renormalization mechanism of the diffusion coeffi-task that has been partially solved only very recehtiin
cientD for classical waves. Using a scalar theory in the lowaddition, experimental resulfsfor alumina spheres have
density regime, van Albadet al® were able to show that the shown that as the volume fraction of the scatterkris-
presence of resonant scatterers may cause the energy transeases towards close packirfg<0.60, there is no structure
port velocity vg to decrease sharply close to the single-in the diffusion coefficient versus frequency. This clearly
scatterer resonances. This renormalized transport velocityuggests that there is no structure in the transport velocity.
enters the three-dimensional diffusion coefficient viaSuch a behavior is not observed when extending the low-
D=v/ /3 where/, is the transport mean free path. It density theory of van Albadat al® to this highf regime.
can be viewed as either being the result of a different WardThus, it is by now well understood that towest order in
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densityof the dielectric scatterers, the strong decrease in thebtained quantitative agreement with experiments in the
transport velocity is due to thésingle scattererMie reso-  strong scattering regimé.In view of the above discussion,
nances. For higher values of the density multiple-scatteringttempting to apply the new effective-medium theory to two-
corrections become appreciable and tend to wash out thdmensional systems appears to be very desirable, indeed. In
single-scatterer resonances, as observed experimetftily. the present paper, we, therefore, report the findings of our
the spirit of the coherent-potential approximatit®PA) a invest_igation of the transport properties of classical waves in
conceptually different approach to the problem of classicafvo-dimensional random media within the framework of this
wave propagation in strongly scattering random media ha§ffective-medium theory. _
recently been developtand obtained CPA velocities for  1he Paper is organized as follows. In Sec. Il we review
high densities of scatterers, which has been qualitatively corf® formalism of the new effective-medium theory and apply
sistent with experiment, in not showing any structure as 4t [0 two-dimensonal systems. For the long-wavelength limit,
function of frequency. Not surprisingly, the newly analytical results are presented in Sec. Ill. In addition, we
developedf* coated CPA for lowf gives a CPA velocity that contrast these fmd_mgs V\_nth results for the effective d|e_lectr|c
reduces to the regular phase velocity that may exceed tHgPnstant of two-dimensional photonic crystals. Section IV
velocity of light near Mie resonances. This is an undesirabl&ntains detailed results on transport properties for finite fre-
feature of the CPA that can be understood to be the result U€NCies such as the mean free path, energy transport veloc-
underestimating the above-mentioned energy-storage effedlY: and d|_ffu3|or_1 coefficient for various densities of scatter-
Thus, for smallf, it is the theory of van Albadat al® that ~ €'S and dielectric contrasts. In Sec. V we present results on
seems to give the correct energy transport velooity, the localization parametek/; obtained within this ap-
while for largef, it is the coated CPA approaéhthat ap- proach. The optimal parameters and structures for achieving
pears to give energy transport velocities consistent witHocalization are discussed. Finally, Sec. VI is devoted to a
experimentl.o discussion of the results and in the Appendixes we clarify
In an effort to investigate the differences between scalapome notational matters for scattering of EM waves by cyl-
classical waves and the vector character of EM waves, bottiders and give details of calculations that would unneces-
theories, the low-density theory of van Albaegal. and the ~ sarily complicate the text.
coated CPA, have recently been extended to the two-
dimensional case, i.e., to random arrangements of parallel Il. THE EFFECTIVE-MEDIUM THEORY
oriented and normally illuminated cylindet$In such sys-
tems, the two polarizations of an EM wave decouple, effec- We consider a composite medium of two lossless materi-
tively leading to two separate problems: If the light is polar-als, with dielectric constants; and e,. Our composite me-
ized parallel to the cylinders axis a standard scalar wavélium is assumed to consist of infinitely extended, parallel
problem is obtained, whereas the polarization perpendicula®riented, and randomly placed cylinders with diameter
to the cylinders axis manifests the vector character of the EMI=2R and dielectric constan¢; embedded within a host
waves in, e.g., the absencesfvave scattering. Pronounced material with dielectric constant,. The random medium is
differences between these two polarizations have alreadgharacterized also b, the volume fraction occupied by the
been reported for ordered systems, i.e., the band structure eylinders.
two-dimensional photonic crystals differ substantially for ~The basic idea of any effective-medium theory of disor-
scalar and vector polarizatidf Similarly, the application of dered systems is to focus on one particular scatterer and to
the low-density theory of van Albadet al!® as well as the replace the surrounding random medium by an effective ho-
coated CPA(Ref. 15 revealed pronounced differences in mogeneous medium. The effective medium is determined
their respective regimes of applicabilty. However, the coatedelf-consistently by taking into account the fact that any
CPA has been somewhat hampered by numerical problengher scatterer could have been chosen. This procedure mani-
and not very reliable statements, especially concerning locafests the homogeneity of the random medium on average. In
ization, could be made. Recent numerical studfdmwever, conventional effective-medium theories, such as the CPA,
clearly demonstrate that localization for high dielectric cyl-the effective medium is determined by demanding that the
inders in a low dielectric medium is achieved much moretotal cross sectiofiTC9) of the difference between scattering
easily for the scalar-polarized than it is for the vector-medium and the effective medium vanishes on avefagé’
polarized case. or takes on a minimal valu&:??In the effective medium the
The above situation with different theories for different energy density is homogeneous by construction.
parameter regimes and the lack of an interpolation scheme However, the position of a cylinder in the medium is
between them is clearly very unsatisfactory. Therefore, twegompletely random, with the exception that the cylinders
of us have recently developed an approach to the problem gfannot overlap. This implies that the distributi®{R) of
classical wave propagation in random melfi> This spacings between neighboring cylinders is sharply peaked at
effective-medium theory captures the effects of resonana distanceR.>R. If we approximate this distribution by &
scattering from single scatterers exactly and incorporateiinction, i.e.,P(R)xd(R.—R) and take into account the on-
multiple-scattering effects in a mean-field sense. Its applicaaverage isotropy of the random medium, we may consider a
tion to three-dimensional systems has led to results for alkoated cylinder as the basic scattering unit. The ragtjusf
transport quantities consistent with the theory of van Albaddhe coated cylinder iR.=R/ 2. The dielectric constants of
et al® in the low-density regime as well as with the coatedthe core and the coating aeg and e,, respectively. Using a
CPA (Ref. 19 in the high-density regime. In addition, with- coated cylinder as the basic scattering unit also incorporates
out adjustable parameters, the effective-medium theory hasome of the multiple-scattering effects at different centers.
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With this technique it is, therefore, possible to obtain reliableHere, u is the magnetic permeability, which is taken to be
information about transport properties for the whole range othe same in both materials. The specific form of the scattered
disorder, i.e., all values of scatterer density and dielectridields inside the coating and the core are given in Appendix
contrast, as has been demonstrated in recent wifR$1?2 A, Egs. (A3) and (A4) and the complete evaluation of the
The use of a coated cylinder as the basic scattering unihtegral on the left-hand side of E{L) is described in Ap-
also implies that the homogeneity of the energy density igendix B, Eqs(B2) and(B3). At this point it suffices to note
not anymore trivially fulfilled. This is where the conven- that while the right-hand side of E¢l) is an obvious func-
tional CPA for electrons fails for classical waves: In the in-tjon of the effective-medium dielectric constaat the left-

termediate frequency or Mie scattering regime of classicahand side through its complicated dependence of the fields’
wave systems the intern@hape resonances of the scatter- scattering coefficient.f. Egs.(B2) and(B3) as well as Egs.
ers may be thought of as resonant cavities that lead to gag)—(A30)]is a nontrivial function of the effective-medium
temporary energy storage inside the scatterers, i.e., 10 a SC@ o cric constante, too. Consequently, Eq(1) together
tering delay that the conventional CPA does not fully ac- it Eq. (2) and the respective expressions for the fields

count for in the low-density regime where the coating radiusd , h dielectri e of the effecti
R, is large. Therefore, in the new effective-medium determine the(rea) dielectric constante of the effective

theory®1° we explicitly chose the averaged energy densitymedium for every frequency. The differences between the

; . o - ~two polarizations enter via the different scattered wave fields
homogeneity as the criterion for determining the effective ) .
g 4 g needed for evaluating the left-hand side of Ef). As men-

medium. Since we are exclusively considering lossless di-! T .
lectrics the effecti dium dielectri (arhas to b tioned above, the energy transport veloaity is obtained
electrics the etiective-medium dielectric constamas 0 be ¢, he phase velcity,, (Refs. 19 and 2Rand the renor-

real due to energy conservation. This is in contrast to the )
conventional approaches and forces us to proceed in twg‘al'z?d wave vectok as v\y}ea!lzzas the scattering mean free
steps: First, we determine for every frequenaythe real Path/’s can be calculated

effective dielectric constard by demanding thenergy den-

sity to be homogeneous on scales larger than the basic scat-

tering unit (coated cylindex Then, in a second step, the

physical quantities are calculated from tfmow nonvanish-

ing) scattering cross sections. In this theory all multiple scat-

tering effects are contained in the effective dielectric con- /o= 1 {[kz_ Re(S)]

stant and, thus, we may consider the random medium as S R2ImE)t "

consisting of independent scatterering units, i.e., coated cyl-

inders, immersed in the effective medium. +[ky— Re(S)2+[Im(3) 132 (4)
Since in the above-mentioned arrangement the effective-

medium dielectric constant is real and the energy density is— 1 ) > 5 5 1/2

homogeneous on scales larger than the basic scattering unit = E{[km_ Re(S)]+ V[K5— Re(Z) 12+ [Im(2) ]2} 2

we may neglect the energy-storage effect in calculating the )

energy transport velocityg. Accordingly,vg may now be

obtained from the phase velocity,, i.e., vg= Cfn/vp 1922 All the multiple scattering contributions enter the new

wherec,= C/\/?vp, in turn, is determined by the TC®r  €effective-theory through the effective dielectric constant
equivalently by the self-energy) of a coated cylinder em- Which allows us to calculate the self-enerByin the inde-

bedded in the effective medium,=c,,/\1— Re()/k3, pendent scatterer approximation:

wherek,,= w/c,,. The requirement that the energy content S =ntg o) 6)
per unit length of a coated cylinder embedded in the effec- kAT
tive medium and being hit by a plane wave should be thewvhere, tii. (w) denotes the matrix of a coated cylinder
same as the energy stored by the plane wave in an equalBnbedded in the effective mediumk| is equal tok,,, and
sized volume of the effective medium can be formulated,= 1/ R? is the density of scatterers. We have that
guantitatively by the self-consistency equation

c
ve=—=V1- Re3)/k}, 3

Ve

Re - R¢ . - N— _gi| allt (/L
| Farpein- [ o, @ ta(w)=—4i| 85" +2 2 ) ™
0 0

-, ) . (= @)= Here a'ﬂ” denote the scattering coefficients for the outside
wherer is a two—.d.lmensmna'll vectop'¢(r) andp E(r} are  field, i.e.,al‘=D‘|| anda; = —iC;" (c.f. Appendix A. Further-
the energy densities per unit length for a coated cylinder angyore in the same spirit as that in which we obtained the
a plane wave, respectively. Clearly, this very general pringnergy transport velocity, we approximate the transport
ciple can be applied to any kind of classical wave propagamean free path, by the scattering mean free path, i.e.,

tion, such as, e.g., elastic wavés. _ _/~/s. Then, the two-dimensional diffusion constdhtis
In the present case, the energy density of EM waves Witlyiyen byD =/ /2. This approximation is supported by the
electric and magnetic field&(r) andH(r), is given by fact that, as a mean-field theory, the new effective-medium

theory is unable to make detailed predictions close to the
Anderson transition where the distinction between scattering

-1 L. - o
_ = 2 2
pEN= 2[e(r)|E(r)| T uHIOF @ and transport mean free paths would become important. In
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addition, previous studies of the transport and scattering 9.0 '
mean free path§ obtained results consistent with this ap- a0l T o M Garmett
pr0X|mat|0n_ ---- Inverse Ma)fweII-Gamett

The above set of formulas comprises the basis of the new 7o} . Jec e,
effective-medium theory. In what follows we first examine
their long-wavelength limit, where analytical results can be 8o
derived. For finite frequencies numerical studies have to be ¢
performed. 7

a0 | 7
lIl. LONG-WAVELENGTH LIMIT a0l //

If a wave with wavelength much larger than the scatterer 2ol ///,// o ~
size and mean scatterer spacing propagates through a randor /Cff»/” =
medium, it cannot resolve the disorder and, therefore, we L o2 03 o4 05 06 o7 o8 os o

may define a frequency-independent, long-wavelength di-
electric constant,, according to

FIG. 1. Long-wavelength dielectric constants for various struc-
c \? tures as a function of the filling fractiof for dielectric constants
vE(w)) (8 €,=9 (cylinderg ande,=1. Arrows indicate the filling factor$,
for which the cylinders of the two-dimensional photonic crystals

€,=lim

w—0

. . tart lapping.
The theory of such long-wavelength dielectric constants for o OVerapping

EM waves itself is an old but, nevertheless, still very active

field. Without trying to be complete, we want to mention theTh'S result originates from the fact that for the scalar polar-

classic theories of Bggemar® and Maxwell-Garneff and :izna:;[;on s-wave scattering dominates in the long wavelength
the more modern works of Bergmahwho showed that the I the case of the vector polarization. howeveraye
classic theories follow from a more general expression by v polarization, howevetyav

making special choices for the so-called Bergman spectraﬁcattering is absent and a careful analysis of the dominant
function p-wave scattering for long wavelengths in E§) leads in-

The main difference between three-dimensional Maxwell-deed to the expected Maxwell-Garnett result, i.e.,
Garnett and Brggeman theory lies in the topology of the
random medium. While Maxwell-Garnett theory considers t=c=e¢ (
isolated spheres of one dielectric constant embedded in a * 2
material with different dielectric constant, RBygeman theory
starts from a symmetric arrangement of “lumps” of both Wherea=(e;— €,)/(e1+ €,) is the depolarization factor of
materials. As a Consequence,"sgeman theory leads to an the cylinder for the vector polarization. In order to obtain
expression for the long-wavelength dielectric constant that ignore insight into Eqs(9) and(10) we wish to compare them
symmetric upon interchanging the two dielectric constapts t0 the long-wavelength limit of corresponding ordered sys-
ande, as well asf with 1—f, wheref is the filling fraction ~ tems, i.e., with long-wavelength dielectric constants obtained
of one type of material. In contrast, Maxwell-Garnett theoryfrom the linear part of the dispersion relation of photonic
leads to a formula that does not exhibit this symmetry. Foand structures with respective filling factdrsSince in the
the topology of our model system, i.e., cylinders of dielectriclong-wavelength limit the wave can neither resolve the dis-
constante; embedded in a medium with dielectric constantorder of the random medium nor the structure of the photo-
€, and a filling fractionf of the cylinders, it is well knowff ~ nic crystal, we expect the results of this study to be similar if
that the scalar case is insensitive to this distinction and th&ot identical to the results of the new effective-medium
correct result fore,, is given by the volume averaged dielec- theory for respective polarizations. However, in the photonic
tric constant, whereas in the vector case it is Maxwell-Crystal, we may state exactly for which filling ratio the cyl-
Garnett theory which gives the right answer. To calcutate Inders start to overlap, effectively changing the topology of
within the new effective medium theory, according to Eq.the system. This is a fgature that is absent in the effective-
(8), we, first, need to compute_for w—0 from Eq. (1) medium theo'ry for obvious reasons. .
using a Taylor expansions of all quantities involved to ex-. For penodl(_: structures, the most stralghtfor\_/var_d approach
tract the leading order in». Then we use this results to is to operate in Fourier space, where the periodic boundary

. . . : condition can be put in trivially by imposing Bloch’s
ggaa;:gczgnexﬁ:]esés;g&)fgvn%% as ©—0 from Eq.(8) in theoren?’ We leave details of the calculation for Appendix

The calculations are very straightforward but also veryC and report here only the results: For the scalar polarization

tedious and proceed along the same lines as outlined in Ref/€: once again, obtain the volume average of the t.WO dle_lec-
c constants, i.e., Eq9) as the long-wavelength dielectric

19, so that we may only state the results. Indeed, in the C"jlsti:(g‘xtl)nstant for a two-dimensional photonic crystal. In Fig. 1 we
of scalar polarization we obtain as the long-wavelength di_show results for the Iong—wavellczangth dielgctric. cons?ént for
electric constant the volume avarageegfande,, i.e., the vector polarized case for a squddstted ling and a
triangular lattice(dashed-dotted line The arrows indicate at

el=e=fe;+(1-De, (9 which filling fraction the high dielectric cylinders start to

2fa
), (10)

1+ 1-fa
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overlap. In addition, we plotted in Fig. 1 the two versions of 200
the Maxwell-Garnett theory that are obtained from inter- 180 [
changing the dielectric constants and the filling fractiéns
and 1-f. In what follows we will refer to these two struc-
tures as the directsolid linel and the inverse structure 140 ¢
(dashed ling respectively, where we assume, without loss of 120 |
generality, thak;>€,. Here we have in mind that the direct .=
structure usually consists of free standing high dielectric cyl-
inders in air'® whereas the inverse structure is most com-
monly manufactured by drilling cylindrical holes in a block 60 |
of high dielectric materiat® ol
Obviously, the long wavelength dielectric constants of
photonic crystals for the vector polarization are reasonably e LT
well described by the Maxwell-Garnett result for small and 09 s orsioe s ise T hoo
very highf. However, around the filling factdr, for which
the cylinders start to overlap, we observe a crossover from
direct to inverse Maxwell-Garnett theory. This clearly con- 200
firms the above-mentioned importance of topology. Similar 180 |
results, albeit using a different technique, have been obtained
previously?® At this point, we want to mention that the im-

16.0 |

/%

portance of topology will play a role for the localization of 1ot
classical waves, to¢c.f. Sec. V. 120 |
&8 10.0 -
IV. FINITE FREQUENCIES 8or
For finite frequencies, of course, no analytical solution of oy
Eqg. (1) is possible. Fortunately, it turns out that E4) is 40y
numerically much easier to deal with than the self- 20}
consistency equations of the coated CPA apprdathTo R : ‘ ‘ ‘ , ,
obtain a converged result, we used a simple fixpoint iteration 6o0 025 050 075 100 125 180 175 200
with the long-wavelength limit as a starting value for the i

effective medium dielectric constart. The convergence FIG. 2. The scattering mean free path for the scalar@) and

(relative change ofe from one iteration step to the next vector(b) polarization in units of the cylinder radi®as a function
being less than 10%) was obtained in almost all cases with of d/, for filling fractions f =0.15(solid line), f = 0.4 (dotted ling,
less than 10 iterations. After a successful convergence for andf=0.6 (dashed ling respectively. The values of the dielectric
we compute the self-energy according to Eq(6) and then ~ constants are; =9 (cylinders ande,=1.
evalute Eq.(3) and Eq.(4) for the energy transport velocity
ve and the scattering mean free pafl), respectively. We cal waves, respectively, versdé\; for the same configura-
chose to present these results #grand /s as a function of  tions are shown in Figs.(8 and 3b). A direct measurement
d/\;, whered is the diameter of the dielectric cylinders and of the energy transport velocity as a function of frequency
\;=2mcl/w /e, is the wavelength inside the cylinders. The along the lines of Ref. 29 rather than an indirect measure-
reason behind that is the fact that strong Mie resonances afient via diffusion coefficient and transport mean free path
the isolated cylinder appear in the limi¢;/e,— at  could validate the interesting behavior predicted in these fig-
d/nj=(n+1)/2, with n=1,23... for the vector and ures. In particular, the absence sfvave scattering for the
n=0,1,2,... for the scalar case. Furthermore, it should be&ector polarization leads to pronounced differences around
noted that we used different numbers of scattering coeffithe first Mie resonance.
cients in the series given by the left-hand side of @g,i.e., It can be seen that for low values of the filling factar
in Egs.(B2) and(B3). We found that increasing the maximal exhibits large dips near the Mie resonances that become
number of scattering coefficients beyond 25 does not altesmeared out as the filling factor increases. This behavior is in
the results in the range af/\; that we have considered. conformity with the fact that due to the multiple-scattering
Figures 2a) and 2b) show the scattering mean free path contributions the effective medium gets stronger renormal-
/s in units of the cylinder radiuRR for scalar and vector ized asf increases, thus competing with the single scatterer
classical waves, respectively, veraiis\; for a possible fu- effects which dominate at low filling factors. Clearly a
ture experimental setup similar to the one used for demonlow-density theory is unable to capture this efféor figures
strating the existence of photonic band g&b3his setup of vg vs d/\ ; for similar parameter values, we refer to Ref.
consisted of longas compared to their diameteslumina  15). However, the qualitative behavior of (or ratherD) as
cylinders (,=9) standing freely é,~1) in an anechoic a function of frequency for various filling fractions has
chamber, for which different values of the filling factbof ~ been confirmed by experiméfit only for the three-
the alumina cylinders can easily be realized. Figures showindimensional case.
the energy transport velocityg for scalar and vector classi- We also investigated the behavior of the inverse structure,
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strength of the multiple-scattering effects. Here, we wish to
recall that within the effective-medium theory we have

/ =~/ . For k/>1 radiative transfer theory, which may be
viewed as a Boltzmann theory for EM waves, becomes a
good approximation. For values &/ ;=1 this ceases to be

a good description of the propagation of waves, since, speak-
ing in the picture of Feynman paths, constructive interfer-
ence of time-reversed paths notably renormalizes the diffu-
sion coefficient and may ultimately lead to a change in wave
functions’ nature from extended to localized. This phenom-
enon, called Anderson localizatidris a generic wave prop-
erty and may be studied in the context of classical waves,
although is was originally proposed for electron waves. In
fact, it is still an open problem whether classical waves can
be localized in the sense of Anderson. There exist various
theories that provide localization criteria for waves: if the

value of k/; falls below a certain value, localization is
achieved. Probably, one of the most accurate among these is
the potential well analogsf, which sets the critical value for
k/; to 0.844.

Clearly, in a mean-field theory like the new effective-
medium theory no quantitative statements as to when a wave
system is crossing from extended to localized can be made.
However, the value of the localization parameter’; can
still be evaluated and, as a function of the system parameters,

—- f=0.15

02} T ] may exhibit certain trends towards parameter values optimal
T 1=080 for localization. In this spirit, we have performed a system-
® atic study of the localization parametkr’; as a function of
0000 025 050 075 100 125 150 175 200 the dielectric contrast, /e, and filling fractionf for scalar

o and vector polarization for the direct as well as for the in-
verse structure. We assigned to every parameter value com-

FIG. 3. The energy transport velocity for the scalar@ and  pjination the minimum ok /; as a function of frequency. In

vector (b) polarization in units of the vacuum speed of hgilas 2 this way we were able to obtain contours of consth,

function of d/\; for filling fractions f=0.15 (solid line), f=0.4 . . . " .

(dotted ling, andf= 0.6 (dashed ling respectively. The values of value as a function of dielectric contrast and filling fraction.

the dielectric constants akg =9 (cylinders and e 1 The results of this cumbersome study are displayed in Figs.
Z 4(a) and 4b) for scalar and vector polarization in the direct

i.e., cylinders of low dielectric material situated in a high Structure and in Figs. (8) and §b) for scalar and vector

dielectric material matrix. Such systems, like air cylindersaVes in the inverse structure. It is clearly seen that in all
etched into macroporous silicon, have recently been investfaSes, for a given d|ele_ctr|c CO“tFaSt there e>§|s'§s an optimal
gated experimentally in the context of photonic crysfals range of the filling fraction for which the localiation param-
and, as will be discussed in the following section, may pro-eterk/; takes on its lowest values. As the contrast increases,
vide a better environment for observing the localizaton ofthese ranges decrease, pointing towards an optimal filling
classical waves in both two and three dimensions. For th&atio. For the direct structure the optimal filling ratio for both
inverse structure, the numerical effort to obtain convergedpolarizations is around~0.25, whereas for the inverse
results increases drastically for parameter regimes in whichtructure, the scalar polarization has its optimal filling ratio

the localization parametdr/, takes on very low valueg.f. &t 7~0.8 while the vector polarization has its optimum
Sec. \J. We attribute this fact to the upcoming of a break- around f~0.6. Furthermore, the values fd¢/; achieved
down of the effective-medium theory for strongly localized Within the same parameter range are much lower for the
waves: Near the Anderson transition or inside the localizednverse structure than they are for the direct structure. As
regime a mean-field theory does not anymore adequately d&entioned before, we conclude from this analysis that the
scribe the system. However, in terms of the behavior of thénverse structure may be prefered when looking for localiza-

scattering mean free patty or the energy transport velocity tion of classical waves. Finally, in the direct structure, vector
ve we did not find a qualitative difference to the direct struc-waves are much harder to localize than scalar waves as can

ture (high dielectric material in low dielectric matpix be seen from comparing the valueslof, of Fig. 4(a) with
4(b). This result has already been obtained on the basis of
V. STUDY OF THE LOCALIZATION PARAMETER numerical simulation$’ For the inverse structure, however,

o o the opposite is true, i.e., vector waves are easier to localize
The productk /;, wherek is the renormalized wave vec- than scalar wavesc.f. Figs. %a) and 8b)].
tor and/’; the transport mean free path, is a measure for the The interpretation of these results is transparent: In two
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FIG. 4. Contour plot of the localization parameter’; for the FIG. 5. Contour plot of the localization parameter’ for the
scalar(a) and vector(b) polarization in the direct structure for vari- Scalar(a and vector(b) polarization in the inverse structure for
ous filling factorsf and dielectric contrasts,> e,. various filling factorsf and dielectric contraste,> €.

dimensions we expect on the basis of the scaling theory dflling factor f is aroundf~0.45 for the direct andi~0.7 for
localization®! the waves to be always localized. However, the inverse structure. However, the values kof, are gen-
the localization lengths may be very much different for dif- erally much higher than in the corresponding parameter re-
ferent dielectric contrast, /e, and/or filling ratiof. There- gime in two dimensions(the lowest values are around

fore, the above analysis of the localization parametet, k/~2.5 for the contrast ranges considered aboVéis is
indicates the optimal parameter regime for realizing thecertainly consistent with the results of the scaling theory of
smallest localization lengths. It would, therefore, be ex-localization, which predicts that, in contrast to two-
tremely interesting to measure the localization length fordimensional systems, there is a critical disorder to be ex-
various scenarios, in order to compare with the above preseeded in three dimensions before a wave becomes localized.
dictions. This could probably best be done along the lines or
Ref. 32 in which similar experimental studies were carried
out on one-dimensional systems. In addition, we have per-
formed an analogous study of the localization parameter for In summary, we have succesfully applied the effective
EM waves in three dimensions. The results for the direct andnedium theory of Refs. 18 and 19 to two-dimensional dis-
the inverse structure are shown in Fig&)@nd Gb), respec- ordered classical wave systems for both scalar and vector
tively. Here, too, we obtain that localization may be morepolarization. In both cases a careful analysis of the long-
easily achieved for the inverse structure, where the optimalvavelength limit rediscovered well-known results and, in ad-

VI. DISCUSSION



284 A. KIRCHNER, K. BUSCH, AND C. M. SOUKQOULIS 57

clude that in the direct structure scalar waves are easier to
localize than vector waves, whereas the opposite is true in
the inverse structure. However, localization is generally fa-

vored in the inverse structure, since the localization param-

eter k/; takes on lower values in the inverse structure. Fur-
thermore, we found that for optimal realization of
localization there exists a relatively narrow range for the fill-
ing factor that depends on the polarization and the structure.
These very interesting predictions could be studied experi-
mentally by measuring the localization length near the opti-
mal parameter values in a way similar to existing studies in
one-dimensional systenis.
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APPENDIX A: SCATTERING BY A COATED CYLINDER

In this appendix, we define the notations for scattering of
plane waves by an infinitely extended coated cylinder. The
direction of propagation of the plane wave is assumed to be
perpendicular to the cylinders axis. Compared to Ref. 14 we
have made the notation more compact and corrected two
0.1 0.3 0.5 0.7 0.9 minor misprints.

The vector cylindrical harmonics for perpendicular inci-
f dence ar®

FIG. 6. Contour plot of the localization parameE{/t for elec- Z.(kr)
. . . ) . ) - A
tromagnetic waves in three dimensions in the dir@tand the Ma(r,¢)=|in———
inverse(b) structure for various filling factor and dielectric con- kr
trastse; > €, (a) and e,>€; (b).

r—2z\(kr)g |ke"® (A1)

dition, we have compared them with independent studies on ,\]zk(r’d)): EVX |\7|Zk(kr)=Zn(kr)e‘”¢fﬁ, (A2)
the long-wavelength behavior of two-dimensional photonic : k "

crystals. Notably, for the vector polarization pronounced dif-
ferences appear for different topologies, i.e_., fpr direct.anthere, in cylindrical coordinatesf,=(cos¢>,sin¢,0), ;ﬁ:
inverse structures, whereas the scalar polarizations are msep; . A k=1ewlc is th

sitive to topology. For finite frequencies the computational sm¢,gosf>,0), and z=(0,0,1). = VewiC IS t € wave
effort as compared to approaches based on an average T@gmper in the homogeneous medlgm W-Ith dlelectrlc constant
(Refs. 14 and 1bis drastically reduced and reliable results €. N is the order of the Bessel functions involveds|r|, and

for transport properties for all values of filling fractions and the prime denotes the derivative with respect to the argu-
dielectric contrasts have been obtained. These results afeent. Z, may be any of the following functionsl,, Yy
consistent with the results of the theory of van Albhda  (Bessel function of first or second kind of orden),
well as the coated CP/Ref. 15 in their respective regimes Hp =Jn*=iY, (Hankel function of the first or second kind of
of applicability. Interesting differences in the transport prop-ordern). We consider a coated cylindécoating and core
erties between scalar and vector polarization are predictedielectric constantg, and €, respectively embedded in a
Unfortunately, to date there are no experimental data availhomogeneous medium with dielectric constagt Defining
able to judge about these findings. We also have performedfar i =1,2,3 the wave numbels= \/e;w/c we may write the
detailed study of the localization parameter in both two- andexpansion of the electric fields inside the core, coating, and
three-dimensional systems. As a result we were led to corsurrounding medium as
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o0

- 1 - -3 -3 Egs.(Al) and(A2). The incident fieldﬁi for the scalar po-
Baro )= 2 (7D (EaMi #FaN) (A3) arization is

- 1 < ) - - - 2| — Sa—ikrcosp
Exr,d)= 10 2 (1" (GoMA, LN LMY, Bi(r¢)=ze T, A7)

- whereas for the vector polarization it is given b
+KoNi,) (A4) P 9 y

Ea(r,¢)=E(r,¢)+ELr, ) (A5) Ef (r,¢)=(rsing+ cosp)e 1%, (A8)

- 1 < o n S S It is now straightforward to match the boundary conditions at
Es(r'(ﬁ):k_sn;w (=D)™(CMpi, +DaNni ). (AB)  the inner radiusR (coating-corg and the outer radiu.
(surrounding medium coatingfor the two polarizations.
The expressions for the magnetic fields can be obtained frorﬂowever, before we give the resu|ts, we find it useful to
Egs. (A3), (A4), and (A6) by usingH=VXxE/iwu, and define a set of abbreviations:

Pﬁ=w7R[k1J,g(k1 R)Jn(ka R)—Kadn(ky RIJ)(ka R, (A9)
, TR :
Pi=—5-TkaJ(ky R)Jn(ka R) —kada(ks R)J; (ks R)1, (A10)
P2=" kel RIYal R)~kidu(ky RIVi( R (ALY)
=" Sla3i(ks RYa(ke R)~kedu(ky RIY (ks R)1 (A12)
PA0=KksJn(kz R)Hp(ks Ro) —kzJh(kz R)Hn(ks Ro), (A13)
PL=k,J,(ky ROH! (kg R) — k3! (ko R)H (ks Ry, (A14)
PE2=K,Y (ko ROH/ (K3 R) —ksY/ (ko R)Hq(ks Ro), (A15)
PA3=k3Yn(ka RoH (k3 Ro) — koY (Ko RoHn(ks Ro), (A16)
Pr=kaJ(ky R JIn(ks R —Kadn(ky R)JIA(Ks R, (AL7)
PE=K,Y(Kz R)Jn(Kg Re) —KaY (ko ROJIN(Ks Re), (A18)
Pa®=k3J}(Ka R)JIn(ks Re) —kadn(ka R Jn(ks Ry, (A19)
PL/=K,Y 1Ky Ro)Jn(ks Ro) —KsYn(kz Ro)Jn(ks Ro). (A20)
[
For the scalar polarization the results for the scattering coef- Kl =PLFl, (A24)
ficients then read as
cl=el=cl=1l=o0, (A21) PlpLi- piplo

=" (A25)
" plpls_pipls
el 2 1

"7 Re PLp_ pApio’

(A22) whereas we obtain for the vector polarization

Ll = —paF! (A23) Dy =Fp=Ly =Ky =0, (A26)

n" n»



286 A. KIRCHNER, K. BUSCH, AND C. M. SOUKOULIS 57
2 1 7 =
L R (27 )= | o070 (85)
T R P2pr2— P3P},
Gi=—P3EL, (A28) k2% (a,b)=kZ%(a,b) —2n[Z,(X)Za(x)]E.  (B6)
L= Pp2EL (A29) Since thezrzecursmn is Q;mencilly stable, we only need to
computex{“(a,b) and x5-(a,b):
p3plé_ p2pl7 5 )
Jr] i n" n n" n (A30)

|\ .
p2pl2_p3pll

The problem of obtaining thiematrix for the coated cylinder
is thus reduced to a study of the asymptotic behavior of the
scattered field, i.e., EQA6). Using the asymptotic expan-

sions of the Hankel functiofi$* we obtain

tie(w)=—4i| allt +2 Z}O a,“) : (A31)

Here aL“ denote the scattering coefficients for the outside

field for the respective polf:lrizr:ltion:s:a‘,‘=D||| and
af =—iCy .

APPENDIX B: ENERGY CONTENT
OF A COATED CYLINDER

77 _1x 5 5
Ko (a,b)—[ 5 [Zo(X) Zo(X) +Z1(X) Z,4(X)]

., (B7)

a

77 _ X_Z 5 5
k1°(a,b) 5 [Zo(X) Zo(X) +2Z4(X) Z1(X)

b
—[Z,(0)Z1(0)15. (B8

a

+Z5(X) Z5(x)]

APPENDIX C: LONG-WAVELENGTH LIMIT
FOR TWO-DIMENSIONAL PHOTONIC CRYSTALS

In this appendix we present the details of obtaining the
long-wavelength dielectric constant for two-dimensional
photonic crystals. We closely follow the lines of Ref. 27. It is
worth mentioning that, although we used this technique for
cylindrical scatterers only, it can be applied to any kind of

Using the notations of Appendix A we derive the expres-scatterer.
sions for the energy content of a coated cylinder illuminated We begin with the scalar polarization in which case zhe
by a plane wave and briefly outline its numerical evaluatloncomponem of the electric fielE(r) obeys the scalar wave

(for a similar treatment see Ref. 85

The energy contentd/| andwW* per unit length for scalar

equation

and vector polarization, respectively, may be calculated by w2

integrating Eq.(2) over a disk of radiu®R; and using the

expressions for the fields, i.e., E§8.3) and(A4). The result
may be expressed compactly in terms of

2

1+ — | +ZL(X)ZH(x)

ot4(a,b)= fbdxx{z (X)Zn(x) =
n 1 a n n X2
(B1)

whereZ andZ stand for any Bessel or Hankel function:

[

» .2 [FAZLo’(ky RO
0 =—0C

Wi=

+(PH2022(k; Re ko R) + (PH20Y (ko Re,ka R)

n

—2PIPRanY(Ky Re ky R)] (B2)

[

aa
EP =2, [Ello RO
0 = —oC

WJ_

+(P3)202(ky Re ko R) +(P2)20Y Y(k,y Ry Kz R)

n

—2P2P307"(ky Re ky R)]. (B3)

For numerical purposes it is more efficient to transform Eq.
(B1) with the help of the recurrence relations for the Bessel
into an expression that allows a recursive

functions
calculation®

o=k Z0Z, 0012 (B4

AE(r)+ — ex(NE(r)=0, (C1)
c

whereA=g2+d2, r=(x,y) ande,(r) is the lattice periodic

dielectric function,

ep(N=€t(e1—€)> S(r—R). (C2

R
Here,k=(ky.k,) andS(r)=1 if |r| < R and zero elsewhere.
R=1,a;+1,a, (1,1, intege), are the lattice vectors
spanned by the primitive translatiorss = (a{®,a{?) and
a,=(aV,al?). Then, the Fourier expansions of the electric

field E and the dielectric constart, are of the following
form:

EN=XE gel(keor (C3
G
ep(N=2, €ge’®’ (C4)
G
— 1 iz
Eézﬁf Wscdzrep(r)e"er, (C5

where () stands for the volume of the Wigner-Seitz cell
(WSQ). G=h,b;+h,b,, (hy,h, integed, are the corre-
sponding two-dimensional reciprocal lattice vectors gener-



57 TRANSPORT PROPERTIES OF RANDOM ARRAYSHD . .

ated by the primitive vectors; = (27/Q)(a®?,—a{?) and

b,=(27/Q)(—a,aV). Inserting Eqs(C3) and(C4) into
Eq. (C1) results in

w? k2~
Eg==— ——=—<€eg_¢ Eg (CG)
¢ Rec?E |k+G2 e
(1)2~
:@EOEG. (C7

287

wherek andG are, again, two-dimensional vectors. The ma-
trix O is given byQg=|k|2(E—kk™) k=k/|K|, wherekk™ is
the dyadic formed b;f( and £ is the 2< 2 unit matrix. We
now introduce a unit vectaeg parallel and another unit vec-

tor ng perpendicular to the vectdr+ G and define the com-
ponents of the electric fields Fourier components along these
vectors:

Eg=ELes+Esns. (C1D)

Furthermore, we define the matricgs , €. 1, €7, ande

Here we have used the fact that in the long-wavelength limi

. > _ o tdccording to
|[k|—0 only theG=0 term survives. In this limit, we may

define the effective dielectric constant for photonic crystals €S8 =" _a(8g-8a1), (C12
via e, 1= (w?/c?)/k? as|k|—0 and, thus, we obtain the sca- o o
lar long-wavelength result of Eq9), i.e., ETG‘ =eg_g/(eg-ng.), (C13
e ="e=fe,+(1-f)e,. (C8) e —Ta e (Rg-a), (C14)
A similar procedure may be utilized in the case of vector &ér ~ ~ A
€T = €6-6/(NG-NGr). (C19

polarization: The electric field is now perpendicular to the

axis E(r)=[E,(r),E,(r),0] and obeys the vector wave Projecting now Eq(C10) ontoég andng, respectively, in-

equation

2

~VXVXE(N) + o5 eo(NEMN=0.  (CY)
C

Since thez component is irrelevant, we may switch to a

two-component description of the electric fiel&(r)
=[EX(F),Ey(F)], where F=(x,y). A Fourier expansion

analogous to Eq(C3) and (C4) yields the corresponding

wave equation in Fourier space,

- w2 —~ >
Qﬁ+éEé=§Z es-aEsr, (C10
G/

serting the first projected equation into the second and taking
the |k|—0 limit results in an expression for the long-
wavelength effective dielectric constast for the vector
polarization,

— ézo,é/zo é:ové" -1 é/',é/// é///é/:O
€= €7y _Z E er. - (e) €T .
c" G"'
(C16

We have evaluated EqC16) numerically as a function of
the filling ratiof for the case of square and triangular lattices
and dielectric constants;=9 ande,=1 using 717 plane
waves to ensure convergence. The results of this evaluation
are shown in Fig. 1.
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