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Transport properties of random arrays of dielectric cylinders
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We apply a recently developed approach for calculating the transport properties of random media to the case
of disordered arrays of parallel oriented and normally illuminated cylinders. Within this effective-medium
theory resonant scattering of the individual scatterer is treated exactly, and by using a coated cylinder as the
basic scattering unit, multiple scattering contributions are incorporated in a mean-field sense. In the long-
wavelength limit we are able to calculate the effective dielectric constant analytically. We compare our
findings with results for periodic systems. For both ‘‘scalar’’ and ‘‘vector’’ polarization, we reliably calculate
the mean-free path, the transport velocity, and the diffusion coefficient for finite frequencies for all densities of
scatterers and dielectric contrasts. Furthermore, within this effective-medium approach, we present our results
for the localization parameterk̄ l t for both two- and three-dimensional systems, thereby identifying the opti-
mal parameters for observing localization.@S0163-1829~97!02546-0#
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I. INTRODUCTION

The interest in studying the propagation of classi
waves in strongly scattering random media has experienc
considerable boost over the last decade.1,2 Starting with the
observation of the coherent backscattering effect in class
wave systems,3 the analogous effect to weak localization
the electronic case, it has soon been realized that many q
tum effects have their analogy in classical wave syste
This has opened the field for technological applications l
photonic band-gap materials4 as well as new fundamenta
research such as the photonic Hall effect5 and anisotropic
light diffusion.6.

Although the analogy between quantum and class
waves carries very far, there are certain differences tha
not allow a simple translation of the many results of dis
dered electronic to strongly scattering classical wave s
tems: For example, the Anderson localization7 of classical
waves has not been observed as yet, despite the fact
theoretical work8 indicated its existence in an intermedia
frequency regime and recent experimental investigation9,10

along these lines reported very low values for the diffus
coefficient D. In fact, the pioneering work of van Albad
et al.9 showed that, unlike electronic systems, there ex
another renormalization mechanism of the diffusion coe
cientD for classical waves. Using a scalar theory in the lo
density regime, van Albadaet al.9 were able to show that th
presence of resonant scatterers may cause the energy
port velocity vE to decrease sharply close to the sing
scatterer resonances. This renormalized transport velo
enters the three-dimensional diffusion coefficient v
D5vEl t/3,10,11 wherel t is the transport mean free path.
can be viewed as either being the result of a different Wa
570163-1829/98/57~1!/277~12!/$15.00
l
a

al

an-
s.
e

al
o

-
s-

hat

n

ts
-

ns-
-
ity

-

Identity due to an energy-dependent scattering potential~mi-
croscopic viewpoint! or caused by a scattering delay due
temporal storage of wave energy inside the scatterers~phe-
nomenological viewpoint!. In addition, yet another renorma
ization mechanism, which originates in the asymmetric sc
tering from finite sized spheres, has recently been identi
by Livdan and Lisyansky.12 In contrast to the above
mentioned energy-storage effect this asymmetry renorm
izes the transport mean free pathl t rather than the energy
transport velocityvE. In the low-density regime it smooth
ens the very sharp spikes of the ripple structure, which
superimposed on the much broader Mie resonance struc
of the energy transport velocity renormalization. Howev
while these additional corrections are certainly very imp
tant for quantitative considerations they do not change
overall physical picture. In essence, considerable care ha
be exerted when interpreting low values of the diffusion c
efficient D for classical wave systems.

Besides the presence of Mie resonances in the interm
ate frequency regime, polarization effects may play an ad
tionally important role for electromagnetic~EM! waves. The
different polarizations of the EM waves have to be taken i
account on a full vector calculation in deriving the Bolt
mann equation, starting from the Bethe-Salpeter equatio
task that has been partially solved only very recently.13 In
addition, experimental results10 for alumina spheres hav
shown that as the volume fraction of the scatterersf in-
creases towards close packing (f .0.60!, there is no structure
in the diffusion coefficient versus frequency. This clea
suggests that there is no structure in the transport veloc
Such a behavior is not observed when extending the l
density theory of van Albadaet al.9 to this high f regime.
Thus, it is by now well understood that tolowest order in
277 © 1998 The American Physical Society
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278 57A. KIRCHNER, K. BUSCH, AND C. M. SOUKOULIS
densityof the dielectric scatterers, the strong decrease in
transport velocity is due to the~single scatterer! Mie reso-
nances. For higher values of the density multiple-scatte
corrections become appreciable and tend to wash out
single-scatterer resonances, as observed experimentally10 In
the spirit of the coherent-potential approximation~CPA! a
conceptually different approach to the problem of class
wave propagation in strongly scattering random media
recently been developed14 and obtained CPA velocities fo
high densities of scatterers, which has been qualitatively c
sistent with experiment, in not showing any structure a
function of frequency. Not surprisingly, the new
developed14 coated CPA for lowf gives a CPA velocity that
reduces to the regular phase velocity that may exceed
velocity of light near Mie resonances. This is an undesira
feature of the CPA that can be understood to be the resu
underestimating the above-mentioned energy-storage ef
Thus, for smallf , it is the theory of van Albadaet al.9 that
seems to give the correct energy transport velocityv E,
while for large f , it is the coated CPA approach14 that ap-
pears to give energy transport velocities consistent w
experiment.10

In an effort to investigate the differences between sca
classical waves and the vector character of EM waves, b
theories, the low-density theory of van Albadaet al. and the
coated CPA, have recently been extended to the t
dimensional case, i.e., to random arrangements of par
oriented and normally illuminated cylinders.15 In such sys-
tems, the two polarizations of an EM wave decouple, eff
tively leading to two separate problems: If the light is pola
ized parallel to the cylinders axis a standard scalar w
problem is obtained, whereas the polarization perpendic
to the cylinders axis manifests the vector character of the
waves in, e.g., the absence ofs-wave scattering. Pronounce
differences between these two polarizations have alre
been reported for ordered systems, i.e., the band structu
two-dimensional photonic crystals differ substantially f
scalar and vector polarization.16 Similarly, the application of
the low-density theory of van Albadaet al.15 as well as the
coated CPA~Ref. 15! revealed pronounced differences
their respective regimes of applicabilty. However, the coa
CPA has been somewhat hampered by numerical probl
and not very reliable statements, especially concerning lo
ization, could be made. Recent numerical studies,17 however,
clearly demonstrate that localization for high dielectric c
inders in a low dielectric medium is achieved much mo
easily for the scalar-polarized than it is for the vecto
polarized case.

The above situation with different theories for differe
parameter regimes and the lack of an interpolation sch
between them is clearly very unsatisfactory. Therefore,
of us have recently developed an approach to the problem
classical wave propagation in random media.18,19 This
effective-medium theory captures the effects of reson
scattering from single scatterers exactly and incorpora
multiple-scattering effects in a mean-field sense. Its appl
tion to three-dimensional systems has led to results for
transport quantities consistent with the theory of van Alba
et al.9 in the low-density regime as well as with the coat
CPA ~Ref. 14! in the high-density regime. In addition, with
out adjustable parameters, the effective-medium theory
e
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obtained quantitative agreement with experiments in
strong scattering regime.19 In view of the above discussion
attempting to apply the new effective-medium theory to tw
dimensional systems appears to be very desirable, indee
the present paper, we, therefore, report the findings of
investigation of the transport properties of classical wave
two-dimensional random media within the framework of th
effective-medium theory.

The paper is organized as follows. In Sec. II we revie
the formalism of the new effective-medium theory and ap
it to two-dimensonal systems. For the long-wavelength lim
analytical results are presented in Sec. III. In addition,
contrast these findings with results for the effective dielec
constant of two-dimensional photonic crystals. Section
contains detailed results on transport properties for finite
quencies such as the mean free path, energy transport v
ity, and diffusion coefficient for various densities of scatte
ers and dielectric contrasts. In Sec. V we present results
the localization parameterk̄ l t obtained within this ap-
proach. The optimal parameters and structures for achie
localization are discussed. Finally, Sec. VI is devoted to
discussion of the results and in the Appendixes we cla
some notational matters for scattering of EM waves by c
inders and give details of calculations that would unnec
sarily complicate the text.

II. THE EFFECTIVE-MEDIUM THEORY

We consider a composite medium of two lossless mat
als, with dielectric constantse1 and e2. Our composite me-
dium is assumed to consist of infinitely extended, para
oriented, and randomly placed cylinders with diame
d52R and dielectric constante1 embedded within a hos
material with dielectric constante2. The random medium is
characterized also byf , the volume fraction occupied by th
cylinders.

The basic idea of any effective-medium theory of diso
dered systems is to focus on one particular scatterer an
replace the surrounding random medium by an effective
mogeneous medium. The effective medium is determin
self-consistently by taking into account the fact that a
other scatterer could have been chosen. This procedure m
fests the homogeneity of the random medium on average
conventional effective-medium theories, such as the C
the effective medium is determined by demanding that
total cross section~TCS! of the difference between scatterin
medium and the effective medium vanishes on average14,15,20

or takes on a minimal value.21,22 In the effective medium the
energy density is homogeneous by construction.

However, the position of a cylinder in the medium
completely random, with the exception that the cylinde
cannot overlap. This implies that the distributionP(R) of
spacings between neighboring cylinders is sharply peake
a distanceRc.R. If we approximate this distribution by ad
function, i.e.,P(R)}d(Rc2R) and take into account the on
average isotropy of the random medium, we may consid
coated cylinder as the basic scattering unit. The radiusRc of
the coated cylinder isRc5R/ f 1/2. The dielectric constants o
the core and the coating aree1 ande2, respectively. Using a
coated cylinder as the basic scattering unit also incorpor
some of the multiple-scattering effects at different cente
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57 279TRANSPORT PROPERTIES OF RANDOM ARRAYS OF . . .
With this technique it is, therefore, possible to obtain relia
information about transport properties for the whole range
disorder, i.e., all values of scatterer density and dielec
contrast, as has been demonstrated in recent works.18,19,21,22

The use of a coated cylinder as the basic scattering
also implies that the homogeneity of the energy density
not anymore trivially fulfilled. This is where the conven
tional CPA for electrons fails for classical waves: In the
termediate frequency or Mie scattering regime of class
wave systems the internal~shape! resonances of the scatte
ers may be thought of as resonant cavities that lead
temporary energy storage inside the scatterers, i.e., to a
tering delay that the conventional CPA does not fully a
count for in the low-density regime where the coating rad
Rc is large. Therefore, in the new effective-mediu
theory18,19 we explicitly chose the averaged energy dens
homogeneity as the criterion for determining the effect
medium. Since we are exclusively considering lossless
electrics the effective-medium dielectric constantē has to be
real due to energy conservation. This is in contrast to
conventional approaches and forces us to proceed in
steps: First, we determine for every frequencyv the real
effective dielectric constantē by demanding theenergy den-
sity to be homogeneous on scales larger than the basic s
tering unit ~coated cylinder!. Then, in a second step, th
physical quantities are calculated from the~now nonvanish-
ing! scattering cross sections. In this theory all multiple sc
tering effects are contained in the effective dielectric co
stant and, thus, we may consider the random medium
consisting of independent scatterering units, i.e., coated
inders, immersed in the effective medium.

Since in the above-mentioned arrangement the effect
medium dielectric constant is real and the energy densit
homogeneous on scales larger than the basic scattering
we may neglect the energy-storage effect in calculating
energy transport velocityvE. Accordingly, vE may now be
obtained from the phase velocityvp , i.e., vE5cm

2 /vp ,19,22

wherecm5c/A ē . vp , in turn, is determined by the TCS~or
equivalently by the self-energyS) of a coated cylinder em
bedded in the effective medium:vp5cm/A12 Re(S)/km

2 ,
wherekm5v/cm. The requirement that the energy conte
per unit length of a coated cylinder embedded in the eff
tive medium and being hit by a plane wave should be
same as the energy stored by the plane wave in an eq
sized volume of the effective medium can be formula
quantitatively by the self-consistency equation

E
0

Rc
d2rr E

~1!~rW !5E
0

Rc
d2rr E

~2!~rW !, ~1!

whererW is a two-dimensional vector.r E
(1)(rW) andr E

(2)(rW) are
the energy densities per unit length for a coated cylinder
a plane wave, respectively. Clearly, this very general p
ciple can be applied to any kind of classical wave propa
tion, such as, e.g., elastic waves.23

In the present case, the energy density of EM waves w
electric and magnetic fields,EW (rW) andHW (rW), is given by

r E~rW !5
1

2
@e~rW !uEW ~rW !u21muHW ~rW !u2#. ~2!
e
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Here,m is the magnetic permeability, which is taken to b
the same in both materials. The specific form of the scatte
fields inside the coating and the core are given in Appen
A, Eqs. ~A3! and ~A4! and the complete evaluation of th
integral on the left-hand side of Eq.~1! is described in Ap-
pendix B, Eqs.~B2! and~B3!. At this point it suffices to note
that while the right-hand side of Eq.~1! is an obvious func-
tion of the effective-medium dielectric constantē , the left-
hand side through its complicated dependence of the fie
scattering coefficients@c.f. Eqs.~B2! and~B3! as well as Eqs.
~A9!–~A30!# is a nontrivial function of the effective-medium
dielectric constantē , too. Consequently, Eq.~1! together
with Eq. ~2! and the respective expressions for the fie
determine the~real! dielectric constantē of the effective
medium for every frequency. The differences between
two polarizations enter via the different scattered wave fie
needed for evaluating the left-hand side of Eq.~1!. As men-
tioned above, the energy transport velocityvE is obtained
from the phase velcityvp ~Refs. 19 and 22! and the renor-
malized wave vectork̄ as well as the scattering mean fre
path l s can be calculated via19,22

vE.
c

A ē

A12 Re~S!/km
2 , ~3!

l s5
1

A2 Im~S!
$@km

2 2 Re~S!#

1A@km
2 2 Re~S!#21@ Im~S!#2%1/2, ~4!

k̄ 5
1

A2
$@km

2 2 Re~S!#1A@km
2 2 Re~S!#21@ Im~S!#2%1/2.

~5!

All the multiple scattering contributions enter the ne
effective-theory through the effective dielectric constantē ,
which allows us to calculate the self-energyS in the inde-
pendent scatterer approximation:

S5ntkWkW~v!, ~6!

where, tkWkW8(v) denotes thet matrix of a coated cylinder
embedded in the effective medium,ukW u is equal tokm, and
n51/ Rc

2 is the density of scatterers. We have that

tkWkW~v!524i S a0
i /'12 (

l 50

`

al
i /'D . ~7!

Here al
i /' denote the scattering coefficients for the outs

field, i.e.,al
i5Dl

i andal
'52 iCl

' ~c.f. Appendix A!. Further-
more, in the same spirit as that in which we obtained
energy transport velocity, we approximate the transp
mean free pathl t by the scattering mean free pathl s, i.e.,
l t'l s. Then, the two-dimensional diffusion constantD is
given byD5vEl t/2. This approximation is supported by th
fact that, as a mean-field theory, the new effective-medi
theory is unable to make detailed predictions close to
Anderson transition where the distinction between scatte
and transport mean free paths would become important
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280 57A. KIRCHNER, K. BUSCH, AND C. M. SOUKOULIS
addition, previous studies of the transport and scatte
mean free paths14 obtained results consistent with this a
proximation.

The above set of formulas comprises the basis of the
effective-medium theory. In what follows we first examin
their long-wavelength limit, where analytical results can
derived. For finite frequencies numerical studies have to
performed.

III. LONG-WAVELENGTH LIMIT

If a wave with wavelength much larger than the scatte
size and mean scatterer spacing propagates through a ra
medium, it cannot resolve the disorder and, therefore,
may define a frequency-independent, long-wavelength
electric constante` according to

e`5 lim
v→0

S c

vE~v! D
2

. ~8!

The theory of such long-wavelength dielectric constants
EM waves itself is an old but, nevertheless, still very act
field. Without trying to be complete, we want to mention t
classic theories of Bru¨ggeman24 and Maxwell-Garnett25 and
the more modern works of Bergman,26 who showed that the
classic theories follow from a more general expression
making special choices for the so-called Bergman spec
function.

The main difference between three-dimensional Maxw
Garnett and Bru¨ggeman theory lies in the topology of th
random medium. While Maxwell-Garnett theory conside
isolated spheres of one dielectric constant embedded
material with different dielectric constant, Bru¨ggeman theory
starts from a symmetric arrangement of ‘‘lumps’’ of bo
materials. As a consequence, Bru¨ggeman theory leads to a
expression for the long-wavelength dielectric constant tha
symmetric upon interchanging the two dielectric constantse1
ande2 as well asf with 12 f , wheref is the filling fraction
of one type of material. In contrast, Maxwell-Garnett theo
leads to a formula that does not exhibit this symmetry. F
the topology of our model system, i.e., cylinders of dielect
constante1 embedded in a medium with dielectric consta
e2 and a filling fractionf of the cylinders, it is well known22

that the scalar case is insensitive to this distinction and
correct result fore` is given by the volume averaged diele
tric constant, whereas in the vector case it is Maxwe
Garnett theory which gives the right answer. To calculatee`

within the new effective medium theory, according to E
~8!, we, first, need to computeē for v→0 from Eq. ~1!
using a Taylor expansions of all quantities involved to e
tract the leading order inv. Then we use this results t
obtain an expression forvE(v) as v→0 from Eq. ~8! in
connection with Eqs.~3! and ~6!.

The calculations are very straightforward but also ve
tedious and proceed along the same lines as outlined in
19, so that we may only state the results. Indeed, in the c
of scalar polarization we obtain as the long-wavelength
electric constant the volume avarage ofe1 ande2, i.e.,

e`
i [ ē [ f e11~12 f !e2. ~9!
g
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This result originates from the fact that for the scalar pol
ization s-wave scattering dominates in the long waveleng
limit.

In the case of the vector polarization, however,s-wave
scattering is absent and a careful analysis of the domin
p-wave scattering for long wavelengths in Eq.~8! leads in-
deed to the expected Maxwell-Garnett result, i.e.,

e`
'5 ē 5e2S 11

2 f a

12 f a D , ~10!

wherea5(e12e2)/(e11e2) is the depolarization factor o
the cylinder for the vector polarization. In order to obta
more insight into Eqs.~9! and~10! we wish to compare them
to the long-wavelength limit of corresponding ordered s
tems, i.e., with long-wavelength dielectric constants obtain
from the linear part of the dispersion relation of photon
band structures with respective filling factorsf . Since in the
long-wavelength limit the wave can neither resolve the d
order of the random medium nor the structure of the pho
nic crystal, we expect the results of this study to be simila
not identical to the results of the new effective-mediu
theory for respective polarizations. However, in the photo
crystal, we may state exactly for which filling ratio the cy
inders start to overlap, effectively changing the topology
the system. This is a feature that is absent in the effect
medium theory for obvious reasons.

For periodic structures, the most straightforward appro
is to operate in Fourier space, where the periodic bound
condition can be put in trivially by imposing Bloch’
theorem.27 We leave details of the calculation for Append
C and report here only the results: For the scalar polariza
we, once again, obtain the volume average of the two die
tric constants, i.e., Eq.~9! as the long-wavelength dielectri
constant for a two-dimensional photonic crystal. In Fig. 1
show results for the long-wavelength dielectric constant
the vector polarized case for a square~dotted line! and a
triangular lattice~dashed-dotted line!. The arrows indicate a
which filling fraction the high dielectric cylinders start t

FIG. 1. Long-wavelength dielectric constants for various str
tures as a function of the filling fractionf for dielectric constants
e159 ~cylinders! ande251. Arrows indicate the filling factorsf 0

for which the cylinders of the two-dimensional photonic crysta
start overlapping.
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overlap. In addition, we plotted in Fig. 1 the two versions
the Maxwell-Garnett theory that are obtained from int
changing the dielectric constants and the filling fractionf
and 12 f . In what follows we will refer to these two struc
tures as the direct~solid line! and the inverse structur
~dashed line!, respectively, where we assume, without loss
generality, thate1.e2. Here we have in mind that the direc
structure usually consists of free standing high dielectric c
inders in air,16 whereas the inverse structure is most co
monly manufactured by drilling cylindrical holes in a bloc
of high dielectric material.16

Obviously, the long wavelength dielectric constants
photonic crystals for the vector polarization are reasona
well described by the Maxwell-Garnett result for small a
very high f . However, around the filling factorf 0 for which
the cylinders start to overlap, we observe a crossover f
direct to inverse Maxwell-Garnett theory. This clearly co
firms the above-mentioned importance of topology. Sim
results, albeit using a different technique, have been obta
previously.28 At this point, we want to mention that the im
portance of topology will play a role for the localization o
classical waves, too~c.f. Sec. V!.

IV. FINITE FREQUENCIES

For finite frequencies, of course, no analytical solution
Eq. ~1! is possible. Fortunately, it turns out that Eq.~1! is
numerically much easier to deal with than the se
consistency equations of the coated CPA approach.14,15 To
obtain a converged result, we used a simple fixpoint itera
with the long-wavelength limit as a starting value for t
effective medium dielectric constantē . The convergence
~relative change ofē from one iteration step to the nex
being less than 1024) was obtained in almost all cases wi
less than 10 iterations. After a successful convergence foē
we compute the self-energyS according to Eq.~6! and then
evalute Eq.~3! and Eq.~4! for the energy transport velocit
vE and the scattering mean free pathl s, respectively. We
chose to present these results forvE and l s as a function of
d/l i , whered is the diameter of the dielectric cylinders an
l i52pc/vAe1 is the wavelength inside the cylinders. Th
reason behind that is the fact that strong Mie resonance
the isolated cylinder appear in the limite1 /e2→` at
d/l i5(n11)/2, with n51,2,3 . . . for the vector and
n50,1,2, . . . for the scalar case. Furthermore, it should
noted that we used different numbers of scattering coe
cients in the series given by the left-hand side of Eq.~1!, i.e.,
in Eqs.~B2! and~B3!. We found that increasing the maxim
number of scattering coefficients beyond 25 does not a
the results in the range ofd/l i that we have considered.

Figures 2~a! and 2~b! show the scattering mean free pa
l s in units of the cylinder radiusR for scalar and vector
classical waves, respectively, versusd/l i for a possible fu-
ture experimental setup similar to the one used for dem
strating the existence of photonic band gaps.16 This setup
consisted of long~as compared to their diameter! alumina
cylinders (e159) standing freely (e2'1) in an anechoic
chamber, for which different values of the filling factorf of
the alumina cylinders can easily be realized. Figures show
the energy transport velocityvE for scalar and vector class
f
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n-
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cal waves, respectively, versusd/l i for the same configura
tions are shown in Figs. 3~a! and 3~b!. A direct measuremen
of the energy transport velocity as a function of frequen
along the lines of Ref. 29 rather than an indirect measu
ment via diffusion coefficient and transport mean free p
could validate the interesting behavior predicted in these
ures. In particular, the absence ofs-wave scattering for the
vector polarization leads to pronounced differences aro
the first Mie resonance.

It can be seen that for low values of the filling factorvE
exhibits large dips near the Mie resonances that beco
smeared out as the filling factor increases. This behavior i
conformity with the fact that due to the multiple-scatterin
contributions the effective medium gets stronger renorm
ized asf increases, thus competing with the single scatte
effects which dominate at low filling factorsf . Clearly a
low-density theory is unable to capture this effect~for figures
of vE vs d/l i for similar parameter values, we refer to Re
15!. However, the qualitative behavior ofvE ~or ratherD) as
a function of frequency for various filling fractionsf has
been confirmed by experiment10 only for the three-
dimensional case.

We also investigated the behavior of the inverse structu

FIG. 2. The scattering mean free pathl s for the scalar~a! and
vector~b! polarization in units of the cylinder radiusR as a function
of d/l i for filling fractions f 50.15~solid line!, f 50.4 ~dotted line!,
and f 50.6 ~dashed line!, respectively. The values of the dielectr
constants aree159 ~cylinders! ande251.
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i.e., cylinders of low dielectric material situated in a hig
dielectric material matrix. Such systems, like air cylinde
etched into macroporous silicon, have recently been inve
gated experimentally in the context of photonic crystal16

and, as will be discussed in the following section, may p
vide a better environment for observing the localizaton
classical waves in both two and three dimensions. For
inverse structure, the numerical effort to obtain converg
results increases drastically for parameter regimes in wh
the localization parameterk̄ l t takes on very low values~c.f.
Sec. V!. We attribute this fact to the upcoming of a brea
down of the effective-medium theory for strongly localize
waves: Near the Anderson transition or inside the locali
regime a mean-field theory does not anymore adequately
scribe the system. However, in terms of the behavior of
scattering mean free pathl s or the energy transport velocit
vE we did not find a qualitative difference to the direct stru
ture ~high dielectric material in low dielectric matrix!.

V. STUDY OF THE LOCALIZATION PARAMETER

The productk̄ l t , where k̄ is the renormalized wave vec
tor andl t the transport mean free path, is a measure for

FIG. 3. The energy transport velocityvE for the scalar~a! and
vector~b! polarization in units of the vacuum speed of lightc as a
function of d/l i for filling fractions f 50.15 ~solid line!, f 50.4
~dotted line!, and f 50.6 ~dashed line!, respectively. The values o
the dielectric constants aree159 ~cylinders! ande251.
ti-

-
f
e
d
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d
e-
e

-

e

strength of the multiple-scattering effects. Here, we wish
recall that within the effective-medium theory we ha

l t'l s. For k̄ l t@1 radiative transfer theory, which may b
viewed as a Boltzmann theory for EM waves, become
good approximation. For values ofk̄ l t.1 this ceases to be
a good description of the propagation of waves, since, spe
ing in the picture of Feynman paths, constructive interf
ence of time-reversed paths notably renormalizes the di
sion coefficient and may ultimately lead to a change in wa
functions’ nature from extended to localized. This pheno
enon, called Anderson localization,7 is a generic wave prop
erty and may be studied in the context of classical wav
although is was originally proposed for electron waves.
fact, it is still an open problem whether classical waves c
be localized in the sense of Anderson. There exist vari
theories that provide localization criteria for waves: if th
value of k̄ l t falls below a certain value, localization i
achieved. Probably, one of the most accurate among the
the potential well analogy,30 which sets the critical value fo
k̄ l t to 0.844.

Clearly, in a mean-field theory like the new effectiv
medium theory no quantitative statements as to when a w
system is crossing from extended to localized can be ma
However, the value of the localization parameterk̄ l t can
still be evaluated and, as a function of the system parame
may exhibit certain trends towards parameter values opti
for localization. In this spirit, we have performed a syste
atic study of the localization parameterk̄ l t as a function of
the dielectric contraste1 /e2 and filling fraction f for scalar
and vector polarization for the direct as well as for the
verse structure. We assigned to every parameter value c
bination the minimum ofk̄ l t as a function of frequency. In
this way we were able to obtain contours of constantk̄ l t
value as a function of dielectric contrast and filling fractio
The results of this cumbersome study are displayed in F
4~a! and 4~b! for scalar and vector polarization in the dire
structure and in Figs. 5~a! and 5~b! for scalar and vector
waves in the inverse structure. It is clearly seen that in
cases, for a given dielectric contrast there exists an opti
range of the filling fraction for which the localiation param
eter k̄ l t takes on its lowest values. As the contrast increas
these ranges decrease, pointing towards an optimal fil
ratio. For the direct structure the optimal filling ratio for bo
polarizations is aroundf '0.25, whereas for the invers
structure, the scalar polarization has its optimal filling ra
at f '0.8 while the vector polarization has its optimu
around f '0.6. Furthermore, the values fork̄ l t achieved
within the same parameter range are much lower for
inverse structure than they are for the direct structure.
mentioned before, we conclude from this analysis that
inverse structure may be prefered when looking for locali
tion of classical waves. Finally, in the direct structure, vec
waves are much harder to localize than scalar waves as
be seen from comparing the values ofk̄ l t of Fig. 4~a! with
4~b!. This result has already been obtained on the basi
numerical simulations.17 For the inverse structure, howeve
the opposite is true, i.e., vector waves are easier to loca
than scalar waves.@c.f. Figs. 5~a! and 5~b!#.

The interpretation of these results is transparent: In t



y
r
if-

th
x
fo
r
o

ie
e
f

an

re
m

re-
d

of
o-
ex-
ized.

ive
is-
ctor
ng-
d-

i- r

57 283TRANSPORT PROPERTIES OF RANDOM ARRAYS OF . . .
dimensions we expect on the basis of the scaling theor
localization,31 the waves to be always localized. Howeve
the localization lengths may be very much different for d
ferent dielectric contraste1 /e2 and/or filling ratio f . There-
fore, the above analysis of the localization parameterk̄ l t
indicates the optimal parameter regime for realizing
smallest localization lengths. It would, therefore, be e
tremely interesting to measure the localization length
various scenarios, in order to compare with the above p
dictions. This could probably best be done along the lines
Ref. 32 in which similar experimental studies were carr
out on one-dimensional systems. In addition, we have p
formed an analogous study of the localization parameter
EM waves in three dimensions. The results for the direct
the inverse structure are shown in Figs. 6~a! and 6~b!, respec-
tively. Here, too, we obtain that localization may be mo
easily achieved for the inverse structure, where the opti

FIG. 4. Contour plot of the localization parameterk̄ l t for the
scalar~a! and vector~b! polarization in the direct structure for var
ous filling factorsf and dielectric contrastse1.e2.
of
,

e
-
r
e-
r

d
r-
or
d

al

filling factor f is aroundf '0.45 for the direct andf '0.7 for
the inverse structure. However, the values fork̄ l t are gen-
erally much higher than in the corresponding parameter
gime in two dimensions~the lowest values are aroun
k̄ l t'2.5 for the contrast ranges considered above!. This is
certainly consistent with the results of the scaling theory
localization, which predicts that, in contrast to tw
dimensional systems, there is a critical disorder to be
ceeded in three dimensions before a wave becomes local

VI. DISCUSSION

In summary, we have succesfully applied the effect
medium theory of Refs. 18 and 19 to two-dimensional d
ordered classical wave systems for both scalar and ve
polarization. In both cases a careful analysis of the lo
wavelength limit rediscovered well-known results and, in a

FIG. 5. Contour plot of the localization parameterk̄ l t for the
scalar ~a! and vector~b! polarization in the inverse structure fo
various filling factorsf and dielectric contrastse2.e1.
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dition, we have compared them with independent studies
the long-wavelength behavior of two-dimensional photo
crystals. Notably, for the vector polarization pronounced d
ferences appear for different topologies, i.e., for direct a
inverse structures, whereas the scalar polarizations are in
sitive to topology. For finite frequencies the computation
effort as compared to approaches based on an average
~Refs. 14 and 15! is drastically reduced and reliable resu
for transport properties for all values of filling fractions an
dielectric contrasts have been obtained. These results
consistent with the results of the theory of van Albada9 as
well as the coated CPA~Ref. 15! in their respective regime
of applicability. Interesting differences in the transport pro
erties between scalar and vector polarization are predic
Unfortunately, to date there are no experimental data av
able to judge about these findings. We also have perform
detailed study of the localization parameter in both two- a
three-dimensional systems. As a result we were led to c

FIG. 6. Contour plot of the localization parameterk̄ l t for elec-
tromagnetic waves in three dimensions in the direct~a! and the
inverse~b! structure for various filling factorsf and dielectric con-
trastse1.e2 ~a! ande2.e1 ~b!.
n
c
-
d
en-
l
CS

re

-
d.
il-

a
d
n-

clude that in the direct structure scalar waves are easie
localize than vector waves, whereas the opposite is tru
the inverse structure. However, localization is generally
vored in the inverse structure, since the localization para
eter k̄ l t takes on lower values in the inverse structure. F
thermore, we found that for optimal realization o
localization there exists a relatively narrow range for the fi
ing factor that depends on the polarization and the struct
These very interesting predictions could be studied exp
mentally by measuring the localization length near the o
mal parameter values in a way similar to existing studies
one-dimensional systems.32
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APPENDIX A: SCATTERING BY A COATED CYLINDER

In this appendix, we define the notations for scattering
plane waves by an infinitely extended coated cylinder. T
direction of propagation of the plane wave is assumed to
perpendicular to the cylinders axis. Compared to Ref. 14
have made the notation more compact and corrected
minor misprints.

The vector cylindrical harmonics for perpendicular inc
dence are33

MW nk
Z ~r ,f!5S in

Zn~kr !

kr
r̂ 2Zn8~kr !f̂ D keinf ~A1!

NW nk
Z ~r ,f!5

1

k
¹3MW nk

Z ~kr !5Zn~kr !einff̂, ~A2!

where, in cylindrical coordinates,r̂ 5(cosf,sinf,0), f̂5

(2sinf,cosf,0), and ẑ5(0,0,1). k5Aev/c is the wave
number in the homogeneous medium with dielectric cons
e, n is the order of the Bessel functions involved,r 5urWu, and
the prime denotes the derivative with respect to the ar
ment. Zn may be any of the following functions:Jn , Yn
~Bessel function of first or second kind of ordern),
Hn

65Jn6 iYn ~Hankel function of the first or second kind o
order n). We consider a coated cylinder~coating and core
dielectric constantse2 and e1, respectively! embedded in a
homogeneous medium with dielectric constante3. Defining
for i 51,2,3 the wave numberski5Ae iv/c we may write the
expansion of the electric fields inside the core, coating,
surrounding medium as
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EW 1~r ,f!5
1

k1
(

n52`

`

~2 i !n~EnMW nk1

J 1FnNW nk1

J ! ~A3!

EW 2~r ,f!5
1

k2
(

n52`

`

~2 i !n~GnMW nk2

J 1LnNW nk2

J I nMW nk2

Y

1KnNW nk2

Y ! ~A4!

EW 3~r ,f!5Ei~r ,f!1Es~r ,f! ~A5!

EW s~r ,f!5
1

k3
(

n52`

`

~2 i !n~CnMW nk3

H 1
1DnNW nk1

H 1

!. ~A6!

The expressions for the magnetic fields can be obtained f
Eqs. ~A3!, ~A4!, and ~A6! by using HW 5¹3EW / ivm0 and
oe
m

Eqs. ~A1! and ~A2!. The incident fieldEW i for the scalar po-
larization is

EW i
i~r ,f!5 ẑe2 ikrcosf, ~A7!

whereas for the vector polarization it is given by

EW i
'~r ,f!5~ r̂sinf1f̂cosf!e2krcosf. ~A8!

It is now straightforward to match the boundary conditions
the inner radiusR ~coating-core! and the outer radiusRc
~surrounding medium coating! for the two polarizations.
However, before we give the results, we find it useful
define a set of abbreviations:
Pn
15

p R

2
@k1Jn8~k1 R!Jn~k2 R!2k2Jn~k1 R!Jn8~k2 R!#, ~A9!

Pn
25

p R

2
@k2Jn8~k1 R!Jn~k2 R!2k1Jn~k1 R!Jn8~k2 R!#, ~A10!

Pn
35

p R

2
@k2Jn8~k1 R!Yn~k2 R!2k1Jn~k1 R!Yn8~k2 R!#, ~A11!

Pn
45

p R

2
@k1Jn8~k1 R!Yn~k2 R!2k2Jn~k1 R!Yn8~k2 R!#, ~A12!

Pn
105k3Jn~k2 Rc!Hn8~k3 Rc!2k2Jn8~k2 Rc!Hn~k3 Rc!, ~A13!

Pn
115k2Jn~k2 Rc!Hn8~k3 Rc!2k3Jn8~k2 Rc!Hn~k3 Rc!, ~A14!

Pn
125k2Yn~k2 Rc!Hn8~k3 Rc!2k3Yn8~k2 Rc!Hn~k3 Rc!, ~A15!

Pn
135k3Yn~k2 Rc!Hn8~k3 Rc!2k2Yn8~k2 Rc!Hn~k3 Rc!, ~A16!

Pn
145k2Jn8~k2 Rc!Jn~k3 Rc!2k3Jn~k2 Rc!Jn8~k3 Rc!, ~A17!

Pn
155k2Yn8~k2 Rc!Jn~k3 Rc!2k3Yn~k2 Rc!Jn8~k3 Rc!, ~A18!

Pn
165k3Jn8~k2 Rc!Jn~k3 Rc!2k2Jn~k2 Rc!Jn8~k3 Rc!, ~A19!

Pn
175k2Yn8~k2 Rc!Jn~k3 Rc!2k3Yn~k2 Rc!Jn8~k3 Rc!. ~A20!
For the scalar polarization the results for the scattering c
ficients then read as

Cn
i 5En

i 5Gn
i 5I n

i 50, ~A21!

Fn
i 5

2i

p Rc

1

Pn
1Pn

132Pn
4Pn

10
, ~A22!

Ln
i 52Pn

4Fn
i , ~A23!
f- Kn
i 5Pn

1Fn
i , ~A24!

Dn
i 5

Pn
1Pn

132Pn
4Pn

10

Pn
1Pn

152Pn
4Pn

14
, ~A25!

whereas we obtain for the vector polarization

Dn
'5Fn

'5Ln
'5Kn

'50, ~A26!
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En
'5

2

p Rc

1

Pn
2Pn

122Pn
3Pn

11
, ~A27!

Gn
'52Pn

3En
' , ~A28!

I n
'5Pn

2En
' , ~A29!

Cn
'5 i

Pn
3Pn

162Pn
2Pn

17

Pn
2Pn

122Pn
3Pn

11
. ~A30!

The problem of obtaining thet matrix for the coated cylinde
is thus reduced to a study of the asymptotic behavior of
scattered field, i.e., Eq.~A6!. Using the asymptotic expan
sions of the Hankel functions33,34 we obtain

tkWkW~v!524i S a0
i /'12 (

l 50

`

al
i /'D . ~A31!

Here al
i ,' denote the scattering coefficients for the outs

field for the respective polarizations:al
i5Dl

i and
al

'52 iCl
' .

APPENDIX B: ENERGY CONTENT
OF A COATED CYLINDER

Using the notations of Appendix A we derive the expre
sions for the energy content of a coated cylinder illumina
by a plane wave and briefly outline its numerical evaluat
~for a similar treatment see Ref. 35!

The energy contentsWi andW' per unit length for scalar
and vector polarization, respectively, may be calculated
integrating Eq.~2! over a disk of radiusRc and using the
expressions for the fields, i.e., Eqs.~A3! and~A4!. The result
may be expressed compactly in terms of

sn
ZZ̃~a,b!5E

a

b

dxxFZn~x! Z̃n~x!S 11
n2

x2D 1Zn8~x! Z̃n8~x!G ,

~B1!

whereZ and Z̃ stand for any Bessel or Hankel function:

Wi5
p

2m0v2 (
n52`

`

uFn
i u2@sn

JJ~k1 R,0!

1~Pn
4!2sn

JJ~k2 Rc ,k2 R!1~Pn
1!2sn

YY~k2 Rc ,k2 R!

22Pn
1Pn

4sn
JY~k2 Rc ,k2 R!# ~B2!

W'5
p

2m0v2 (
n52`

`

uEn
'u2@sn

JJ~k1 R,0!

1~Pn
3!2sn

JJ~k2 Rc ,k2 R!1~Pn
2!2sn

YY~k2 Rc ,k2 R!

22Pn
2Pn

3sn
JY~k2 Rc ,k2 R!#. ~B3!

For numerical purposes it is more efficient to transform E
~B1! with the help of the recurrence relations for the Bes
functions into an expression that allows a recurs
calculation:34

sn
ZZ̃5kn

ZZ̃1kn21
ZZ̃ 2n@Zn~x! Z̃n~x!#a

b ~B4!
e

e

-
d
n

y

.
l

e

kn
ZZ̃~a,b!5E dxxZn~x! Z̃n~x! ~B5!

kn11
ZZ̃ ~a,b!5kn21

ZZ̃ ~a,b!22n@Zn~x! Z̃n~x!#a
b. ~B6!

Since the recursion is numerically stable, we only need

computek1
ZZ̃(a,b) andk0

ZZ̃(a,b):34

k0
ZZ̃~a,b!5Fx2

2
@Z0~x! Z̃0~x!1Z1~x! Z̃1~x!#G

a

b

, ~B7!

k1
ZZ̃~a,b!5Fx2

2
@Z0~x! Z̃0~x!12Z1~x! Z̃1~x!

1Z2~x! Z̃2~x!#G
a

b

2@Z1~x! Z̃1~x!#a
b . ~B8!

APPENDIX C: LONG-WAVELENGTH LIMIT
FOR TWO-DIMENSIONAL PHOTONIC CRYSTALS

In this appendix we present the details of obtaining
long-wavelength dielectric constant for two-dimension
photonic crystals. We closely follow the lines of Ref. 27. It
worth mentioning that, although we used this technique
cylindrical scatterers only, it can be applied to any kind
scatterer.

We begin with the scalar polarization in which case thez

component of the electric fieldE(rW) obeys the scalar wave
equation

DE~rW !1
v2

c2
ep~rW !E~rW !50, ~C1!

whereD5]x
21]y

2 , rW5(x,y) andep(rW) is the lattice periodic
dielectric function,

ep~rW !5e21~e12e2!(
RW

S~rW2RW !. ~C2!

Here,kW5(kx ,ky) andS(rW)51 if urWu, R and zero elsewhere
RW 5 l 1aW 11 l 2aW 2, (l 1 ,l 2 integer!, are the lattice vectors
spanned by the primitive translationsa1

W5(a1
(1) ,a1

(2)) and

a2
W5(a2

(1) ,a2
(2)). Then, the Fourier expansions of the elect

field E and the dielectric constantep are of the following
form:

E~rW !5(
GW

E GW ei ~kW1GW !rW ~C3!

ep~rW !5(
GW

ẽ GW eiGW rW ~C4!

ẽ GW 5
1

VE
WSC

d2r ep~rW !e2 iGW rW, ~C5!

where V stands for the volume of the Wigner-Seitz ce
~WSC!. GW 5h1bW 11h2bW 2, (h1 ,h2 integer!, are the corre-
sponding two-dimensional reciprocal lattice vectors gen
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ated by the primitive vectorsb1
W5(2p/V)(a2

(2) ,2a1
(2)) and

b2
W5(2p/V)(2a2

(1) ,a1
(1)). Inserting Eqs.~C3! and~C4! into

Eq. ~C1! results in

EGW 5
v2

kW2c2(
GW 8

kW2

ukW1GW u2
ẽ GW 2GW 8EGW 8 ~C6!

.
v2

kW2c2
ẽ 0EGW . ~C7!

Here we have used the fact that in the long-wavelength li
ukW u→0 only theGW 50 term survives. In this limit, we may
define the effective dielectric constant for photonic cryst
via e`

215(v2/c2)/kW2 asukW u→0 and, thus, we obtain the sca
lar long-wavelength result of Eq.~9!, i.e.,

e`
i [ ẽ 0[ f e11~12 f !e2 . ~C8!

A similar procedure may be utilized in the case of vec
polarization: The electric field is now perpendicular to thez

axis EW (rW)5@Ex(rW),Ey(rW),0# and obeys the vector wav
equation

2¹W 3¹W 3EW ~rW !1
v2

c2
ep~rW !EW ~rW !50. ~C9!

Since thez component is irrelevant, we may switch to
two-component description of the electric fieldEW (rW)
5@Ex(rW),Ey(rW)#, where rW5(x,y). A Fourier expansion
analogous to Eq.~C3! and ~C4! yields the corresponding
wave equation in Fourier space,

QkW1GW EW GW 5
v2

c2(
GW 8

ẽ GW 2GW 8E
W

GW 8, ~C10!
,

it

ls
-

or

a

wherekW andGW are, again, two-dimensional vectors. The m
trix QkW is given byQkW5ukW u2(E2 k̂k̂T) k̂5kW /ukW u, wherek̂k̂T is
the dyadic formed byk̂ and E is the 232 unit matrix. We
now introduce a unit vectorêGW parallel and another unit vec
tor n̂GW perpendicular to the vectorkW1GW and define the com-
ponents of the electric fields Fourier components along th
vectors:

EW G5EGW
i

êGW 1EGW
'

n̂GW . ~C11!

Furthermore, we define the matriceseLL , eLT , eTL , andeLL
according to

eLL
GW GW 85 ẽ GW 2GW 8~ êGW •êGW 8!, ~C12!

eLT
GW GW 85 ẽ GW 2GW 8~ êGW •n̂GW 8!, ~C13!

eTL
GW GW 85 ẽ GW 2GW 8~ n̂GW •êGW 8!, ~C14!

eTT
GW GW 85 ẽ GW 2GW 8~ n̂GW •n̂GW 8!. ~C15!

Projecting now Eq.~C10! onto êGW and n̂GW , respectively, in-
serting the first projected equation into the second and tak
the ukW u→0 limit results in an expression for the long
wavelength effective dielectric constante`

' for the vector
polarization,

e`
'5eTT

GW 50,GW 8502(
GW 9

(
GW 98

eTL
GW 50,GW 9~eLL

21!GW 9,GW 98eLT
GW 98GW 850 .

~C16!

We have evaluated Eq.~C16! numerically as a function of
the filling ratio f for the case of square and triangular lattic
and dielectric constantse159 and e251 using 717 plane
waves to ensure convergence. The results of this evalua
are shown in Fig. 1.
,
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