First Run II Measurement of the W Boson Mass with CDF

SLAC Experimental Seminar April 10, 2007

The Standard Model

Electroweak Symmetry Breaking

Non-zero particle mass breaks the weak symmetry

QUARK MASSES

Fermilab 01-XXX

Particle Mass

Particle mass determined by viscosity in the Higgs sea

Higgs Boson

Vacuum expectation value determined by effective weak coupling: $\langle \phi \rangle = 1/(\sqrt{8}G_F)^{1/2} = 174 \text{ GeV}$

(G_{r} measured from muon decay to 0.0009%)

Higgs mass and self-couplings not predicted by Standard Model

→ However, Higgs mass indirectly affects gauge boson masses via loop corrections:

 $\Delta m_W \propto ln (m_H/m_Z)$

W Boson Mass

Given precise measurements of m_z and $\alpha_{EM}(m_z)$, we can predict m_W :

$$m_W^{2} = \frac{\pi \alpha_{EM}}{\sqrt{2G_F (1 - m_W^{2}/m_Z^{2})(1 - \Delta r)}}$$

("on-shell scheme")

 Δr : O(3%) radiative corrections dominated by *tb* and Higgs loops

Measured Top Mass

Top mass now measured to 1.8 GeV (1.1%)

W Mass Prediction and Measurement

W mass uncertainty from input parameters:

Parameter Shift	m_W Shift (MeV/ c^2)
$\Delta m_H = +100 \; { m GeV}/c^2$	-41.3
$\Delta m_t = +2.1 \; {\rm GeV}/c^2$	12.8
$\Delta m_Z = +2.1 \; { m MeV}/c^2$	2.6
$\Delta \alpha_{EM} = +0.00013$	-2.3

Direct W mass measurement

W mass predicted much more precisely (13 MeV) *than measured* (29 MeV) Need to reduce δm_{W} to further constrain Higgs mass

Higgs Mass Prediction

Predicted Higgs mass from W loop corrections: $m_{_{H}} = 85^{+39}_{_{-28}} \text{ GeV} (< 166 \text{ GeV at } 95\% \text{ CL})$ Direct search from LEP II: $m_{_{H}} > 114.4 \text{ GeV at } 95\% \text{ CL}$ C. Hays, University of Oxford

Tevatron W Mass Measurement

Projection with 2 fb⁻¹ of data: $\delta m_{W} = 40$ MeV per experiment

Tevatron Run I Uncertainties

	CDF µ	CDF e	DØ e
W statistics	100	65	60
Lepton energy scale	85	75	56
Lepton resolution	20	25	19
Recoil model	35	37	35
pT(W)	20	15	15
Selection bias	18	-	12
Backgrounds	25	5	9
Parton dist. functions	15	15	8
QED rad. corrections	11	11	12
$\Gamma(W)$	10	10	10
Total	144	113	84

Tevatron Run II

Each experiment has collected >2 fb⁻¹ of 1.96 TeV √s pp̄ collisions Current Run II: 15x Run I data set

 $(CDF 200 \ pb^{-1})$

W & Z Boson Production and Decay

Dominant production mechanism: $q\bar{q}^{(\prime)}$ annihilation

 $\sigma(W \rightarrow lv) = 2775 \text{ pb}$

After event selection $(l, v E_T > 30 \text{ GeV})$: 51,128 W $\rightarrow \mu v$ candidates 63,964 W $\rightarrow ev$ candidates

 $\sigma(Z \rightarrow ll) = 254.9 \text{ pb}$

After event selection $(l E_T > 30 \text{ GeV}):$ $4,960 Z \rightarrow \mu\mu$ candidates $2,919 Z \rightarrow ee$ candidates

CDF Detector

High-precision tracking drift chamber $\delta p_T/p_T = 0.05\% p_T : 2\%$ for 40 GeV μ

High-precision electromagnetic calorimeter $\delta E_T / E_T = 13.5\% / \sqrt{E_T} \oplus 1.7\%$:

3% for 40 GeV *e*

Measurement Strategy

Calibrate recoil measurement with Z decays to e, μ

Cross-check with W recoil distributions

Combine information into transverse mass: $m_T = \sqrt{E_T E_T (1 - \cos \Delta \phi)}$

Statistically most powerful quantity for m_w fit

C. Hays, University of Oxford

Calibrate l^{\pm} track momentum with mass measurements of J/ψ and Y decays to μ

Calibrate calorimeter energy using track momentum of *e* from *W* decays

Cross-check with Z mass measurement, then add Z's as a calibration point

Transverse Mass Distribution

Distribution peaks just below m_{W} and falls sharply just above m_{W}

Momentum Scale Calibration

Magnetic field along z-axis causes curvature in transverse plane: $mv^2/R = evB$, $p_T = eBR$

CDF: Insufficient precision on *B* and *R* for *W* mass measurement

In-situ calibration:

- (1) Apply relative alignment of drift chamber wires
- (2) Determine momentum scales such that J/ψ , Y, and Z mass measurements result in the world-average values

Combine results to obtain scale for $m_{_{W}}$

measurement

Tracker Alignment

Central Outer Tracker: Open-cell drift chamber Wires strung under tension between two endplates

Model endplate distortions and constructional variations using a cell-to-cell endplate alignment

Determine individual cell tilts & shifts using cosmic-ray data *Fit a single 'dicosmic' to track segments on opposite sides of the chamber Measure cell displacement*

C. Hays, University of Oxford

(Kotwal, Gerberich, Hays, NIM A 506, 110 (2003)) 18

Alignment Example

Inner 'Superlayer:'

Wire Alignment

- Wire shape along z-axis determined by: Gravitational sag Electrostatic effects
- Apply additional correction based on cosmic ray study *Compare parameters of incoming and outgoing tracks from a cosmic ray muon*

Final correction removes *z*-dependent curvature biases

Track-Level Corrections

Determine curvature corrections from electron-positron differences Use ratio of calorimeter energy to track momentum *Curvature biases affect e*⁺, *e*⁻ *differently, but calorimeter measurement independent of charge*

Mass Measurements

Template mass fits to J/ψ , Y, Z resonances in muon decay channels

Fast detector simulation models relevant physical processes internal bremsstrahlung ionization energy loss multiple scattering

Simulation includes event reconstruction and selection

Detector material model

Map energy loss and radiation lengths in each detector layer

One material parameter determined from data: *Overall material scale*

J/ψ Mass Measurement

Measurement dominated by systematic uncertainties

QED and energy loss model: 0.20×10^{-3}

606,701 $J/\psi \rightarrow \mu\mu$ candidates

Fit mass as a function of mean inverse p_{τ}

Slope affected by energy loss modelling Scale detector material by 0.94 to remove slope

23

Mass Measurement

34,618 Y→µµ candidates

Short lifetime allows a track constraint to the
 beam line
Improves resolution by a factor of ≈3

Combined Momentum Scale

 $\Delta p/p = (1.50 \pm 0.19) \times 10^{-3}$

Systematic uncertainties:

Source	$J/\psi \; (\times 10^{-3})$	Υ (×10 ⁻³)	Common $(\times 10^{-3})$
QED and energy loss model	0.20	0.13	0.13
Magnetic field nonuniformities	0.10	0.12	0.10
Beam constraint bias	N/A	0.06	0
Ionizing material scale	0.06	0.03	0.03
COT alignment corrections	0.05	0.03	0.03
Fit range	0.05	0.02	0.02
p_T threshold	0.04	0.02	0.02
Resolution model	0.03	0.03	0.03
Background model	0.03	0.02	0.02
World-average mass value	0.01	0.03	0
Statistical	0.01	0.06	0
Total	0.25	0.21	0.17

Momentum Scale Cross-Check

Measurement Strategy

Calibrate l^{\pm} track momentum with mass measurements of J/ψ and Y decays to μ

Calibrate calorimeter energy using track momentum of *e* from *W* decays

Cross-check with Z mass measurement, then add Z's as a calibration point

Calibrate recoil measurement with Z decays to e, μ

Cross-check with W recoil distributions

Combine information into transverse mass: $m_T = \sqrt{E_T E_T (1 - \cos \Delta \phi)}$

Statistically most powerful quantity for m_w fit

Calorimeter Energy Calibration

Calibrate electron energy using electron track momentum First step: validate model of electrons in tracker

Additional physical effects beyond those associated with muons: *Photon radiation and conversion in tracker*

Electron Track Model Validation

Fit Z mass reconstructed from electron track momenta

Measured value consistent with world average value (91188 MeV)

Full Electron Simulation

Energy Loss Model

Use GEANT to parametrize energy loss in solenoid and hadronic calorimeter

Energy loss in hadronic calorimeter:

Energy Scale Calibration

Calibrate calorimeter energy with peak of *W* electron *E/p* distribution

One free parameter for X_0 scale (set with high *E/p* region) Material scale: 1.004 ± 0.009

C. Hays, University of Oxford

Scale Energy Dependence

Apply energy-dependent scale to each simulated electron and photon

Determine energy dependence from E/p fits as functions of electron E_T Scale: $1 + (6 \pm 7) \times 10^{-5} [E_T/GeV - 39]$ ($\delta m_W = 23 \text{ MeV}$) Most energy dependence implicitly accounted for by detector model

C. Hays, University of Oxford

Z Mass Measurement

Fit Z mass using scale from E/p calibration

Measured value consistent with world average value (91188 MeV) Incorporate mass fit into calibration to reduce scale uncertainty

 $\delta m_{W} = 30 \text{ MeV}$

Measurement Strategy

Cross-check with W recoil distributions

Combine information into transverse mass: $m_T = \sqrt{E_T E_T (1 - \cos \Delta \phi)}$

Statistically most powerful quantity for m_w fit

Calibrate l^{\pm} track momentum with mass measurements of J/ψ and Y decays to μ

Calibrate calorimeter energy using track momentum of *e* from *W* decays

Cross-check with Z mass measurement, then add Z's as a calibration point

Boson p_T Model

Model boson p_{τ} using RESBOS generator with tunable non-perturbative parameters

" g_2 " parameter determines position of peak in p_{τ} distribution

Measure g_2 , with Z boson data (other parameters have negligible effect on W mass)

 $g_2 = 0.685 \pm 0.048$: $\delta m_w = 3 \text{ MeV}$

Recoil Measurement

Calculate recoil by summing over calorimeter towers, excluding:

Towers with lepton energy deposits

Towers near the beam line

Electron Electromagnetic E_T (MeV)

Electron: Remove 7 towers (shower) Muon: Remove 3 towers (MIP)

Model tower removal in simulation $\delta m_w = 8$ (5) MeV for *e* (μ)

Recoil Model

38

Recoil Model Checks

Apply model to *W* boson sample, test consistency with data

Recoil distribution

Sensitive to scale, resolution, boson $p_{_{T}}$

u_{\parallel} distribution

Sensitive to lepton removal, efficiency model, scale, resolution, W decay Directly affects $m_{_{T}}$ fit result

Production, Decay, Background

u

Boson p_z determined by parton distribution functions *Vary PDFs according to uncertainties* $\delta m_w = 11 \text{ MeV}$

Bremsstrahlung reduces charged lepton p_T Predict using NLO QED calculation, apply NNLO correction $\delta m_w = 11$ (12) MeV for $e(\mu)$

1

W

Q²

x_₽ E_₽

d

u

ū

 $\mathbf{x}_{\mathbf{p}}\,\mathbf{E}_{\mathbf{p}}$

	Background	% (μ)	% (e)
Background affects fit distributions	Hadronic Jets	0.1 ± 0.1	0.25 ± 0.15
QCD: Measure with data	Decays in Flight	0.3 ± 0.2	-
Electroweak: Predict with MC	Cosmic Rays	0.05 ± 0.05	-
$\delta m = 8$ (9) MeV for e (11)	Z→ll	6.6 ± 0.3	0.24 ± 0.04
$M_W = 0$ (3) for c (μ)	$W \longrightarrow \tau v$	0.89 ± 0.02	0.93 ± 0.03

Measurement Strategy

Calibrate l^{\pm} track momentum with mass measurements of J/ψ and Y decays to μ

- Calibrate calorimeter energy using track momentum of *e* from *W* decays
- Cross-check with Z mass measurement, then add Z's as a calibration point

Calibrate recoil measurement with Z decays to e, μ

Cross-check with W recoil distributions

Combine information into transverse mass: $m_T = \sqrt{E_T E_T (1 - \cos \Delta \phi)}$

Statistically most powerful quantity for m_w fit

W Mass Fits

Mass fit results blinded with [-100,100] MeV offset throughout analysis Upon completion, offset removed to determine final result

Transverse mass fits:

42

W Mass Fits

Fit E_{τ} , E_{τ} distributions and combine with m_{τ} to extract most precise result

Electron $E_{_T}$ fit:

Muon $p_{_T}$ fit:

 $m_W = 80388 \pm 59 \text{ MeV} \text{ (stat + sys)}$ for lepton $p_T e + \mu \text{ combination } (P(\chi^2) = 18\%)$ C. Hays, University of Oxford

W Mass Fits

 $m_W = 80434 \pm 65 \text{ MeV} \text{ (stat + sys)}$ for neutrino $p_T e + \mu \text{ combination } (P(\chi^2) = 43\%)$

W Mass Uncertainties

CDF II preliminary

L = 200 pb⁻¹

			an ezekari kara karisar
m _⊤ Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _⊤ (W)	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

W Mass Result

New CDF result is world's most precise single measurement

Central value increases: 80392 to 80398 MeV

World average uncertainty reduced ~15% (29 to 25 MeV)

Previous Higgs Mass Prediction

Predicted Higgs mass from W loop corrections: $m_{_{H}} = 85^{+39}_{_{-28}} \text{ GeV} (< 166 \text{ GeV at } 95\% \text{ CL})$ Direct search from LEP II: $m_{_{H}} > 114.4 \text{ GeV at } 95\% \text{ CL}$ C. Hays, University of Oxford

New Higgs Mass Prediction

Predicted Higgs mass from W loop corrections: $m_{_H} = 76^{+33}_{_{-24}} \text{ GeV} (< 144 \text{ GeV at } 95\% \text{ CL})$ Direct search from LEP II: $m_{_H} > 114.4 \text{ GeV at } 95\% \text{ CL}$ C. Hays, University of Oxford

Effect on New Physics Models

W

W

Additional space-time symmetry (Supersymmetry) would affect the *W* mass

Previous world average:

Effect on New Physics Models

Supersymmetry now preferred at >1 σ level...

W \tilde{b} W

New world average:

Previous W Mass Projections

Previously projected Tevatron precision as a function of luminosity:

Projection with 2 fb⁻¹ of data: $\delta m_W = 40$ MeV per experiment

New W Mass Projections

New projected Tevatron precision as a function of luminosity:

New projection with 2 fb^{-1} of data: $\delta m_W < 25$ MeV with CDF C. Hays, University of Oxford

Summary

W mass excellent probe for new particles coupling to the electroweak sector

CDF has made the single most precise W mass measurement $m_W = 80413 \pm 34 \text{ MeV} \text{ (stat)} \pm 34 \text{ MeV} \text{ (sys)}$ $= 80413 \pm 48 \text{ MeV} \text{ (stat + sys)}$

New SM Higgs mass prediction: $m_{H} = 76^{+33}_{-24} GeV$ Mass has moved further into LEP-excluded region

Expect CDF $\delta m_W < 25$ MeV with 2 fb⁻¹ already collected Will continue to squeeze SM in conjunction with Tevatron Higgs results

Backup

The Standard Model

The particle drawings are simple artistic representations

Electron m_T Signed χ

High χ^2 dominated by a few bins with large fluctuations

C. Hays, University of Oxford

Weak Boson Physics

Z boson parameters measured precisely by LEP:

* 17 million measured *Z* candidates: $\delta m_7 = 2.1$ MeV, $\delta \Gamma_7 = 2.3$ MeV

Tevatron goal:

- * World's most precise W boson measurements
- * Expect **15** million measured W candidates

Filling in the Pieces

Precision electroweak data will continue to guide us to the next physics

Today: $\delta m_{W} = 25$ MeV, $m_{H} < 153$ GeV at 95% CL

2009: $\delta m_{W} = 20 \text{ MeV}, m_{H} = 160 \text{ GeV}, \text{SUSY predicted at } 3\sigma \text{ level}$

2011:
$$\delta m_W = 15 \text{ MeV}, m_0 = 400 \text{ GeV}, m_{1/2} = 650 \text{ GeV}$$

Will the data point to more physics?