Quantum liquids in Nanoporous Media and on Surfaces

Henry R. Glyde Department of Physics & Astronomy University of Delaware

National Nanotechnology Initiative Workshop on X-rays and Neutrons 16-17 June 2005

Goals

Neutron scattering studies of structure and excitations of quantum liquids at nanoscales.

Impact of confinement on superfluidity, Bose-Einstein Condensation (BEC), phonon - roton modes and other modes.

Reveal the interdependence of Bose-Einstein Condensation (BEC), phononroton excitations and superfluidity.

Compare liquid ⁴He in bulk and at nanoscales.

Structure of ⁴He on and in nanotubes.

Science drives tools. High neutron flux High resolution spectrometers Variety of spectrometers Analyze large data sets

Science drives materials. Materials for nanoscale confinement. Spectrum of pore sizes. Uniform pore size Large samples

Interplay of BEC and Superfluidity

- **Josephson Junction Arrays.**
- Alkali atoms (bosons) in magnetic traps and optical lattices.
- **High Temperature superconductors.**
- **Disordered thin films.**

Phase Diagram of Bulk Helium

Phase Diagram of Bulk Helium

AEROGEL*	95% porous
Open	87% porous A
	87% porous B
- Some grown with deuterated materials	
VYCOR (Corning)	30% porous
70 Å pore Dia.	grown with B ¹¹ isotope
GELSIL (Geltech, 4F) 25 Å pores	50% porous
44 A pores 34 Å pores	
MCM-41 47 Å pores	30% porous
NANOTUBES (Nanotechnologies Inc.)	
Inter-tube spacing in bundles 1.4 nm 2.7 gm sample	

* University of Delaware, University of Alberta

Superfluid Properties at Nanoscales

Confinement reduces T_c below $T_{\lambda} = 2 \cdot 17 K$.

Confinement modifies $\rho_s(T)$ (*T* dependence).

Confinement reduces $\rho_s(T)$ (magnitude).

Porous media is a "laboratory" to investigate the relation between superfluidity, excitations, and BEC.

Measure corresponding excitations and condensate fraction, $n_0(T)$. (new, 1998)

Localization of Bose-Einstein Condensation by Disorder

T_c in Porous Media

Superfluid Density in Porous Media

Chan *et al.* (1988)

Miyamoto and Takeno (1996)

Phase Diagram of gelsil: nominal 25 A pore diameter

 Yamamoto et al, Phys. Rev. Lett. 93, 075302 (2004)

Phonon-Roton Dispersion Curve

✓ Donnelly *et al., J. Low Temp. Phys.* (1981)
△ Glyde *et al., Euro Phys. Lett.* (1998)

Roton in Bulk Liquid ⁴He

Talbot et al., PRB, 38, 11229 (1988)

Bose-Einstein Condensation

$$n_0(T) = n_0(0) \left[1 - \left(\frac{T}{T_{\lambda}} \right)^{\gamma} \right],$$

Bose-Einstein Condensation

Glyde, Azuah, and Sterling *Phys. Rev.*, 62, 14337 (2001)

Bose-Einstein Condensation Liquid ⁴He in Vycor

T_c (Superfluidity) = 1.95-2.05 *K*

Azuah *et al.*, JLTP (2003)

Bose-Einstein Condensation Liquid ⁴He in Vycor

T_c (Superfluidity) = 1.95-2.05 *K*

Azuah et al., JLTP (2003)

Phonons, Rotons, and Layer Modes in Vycor and Aerogel

Intensity in Single Excitation vs. T

Glyde et al., PRL, 84 (2000)

Phonon-Roton Mode in Vycor: T = 1.95 K

Phonon-Roton Mode in Vycor: T = 2.05 K

Phonon-Roton Mode in Vycor: T = 2.15 K

Phonon-Roton Mode in Vycor: T = 2.25 K

Fraction, *f_s(T)*, of Total Scattering Intensity in Phonon-Roton Mode - Vycor 70 A pores

Fraction, *f_s(T)*, of total scattering intensity in Phonon-Roton Mode - gelsil 44 A pore diameter

Schematic Phase Diagram of Helium Confined to Nanoscales

e.g. 2 - 3 nm

Excitations of superfluid ⁴He at pressures up to 40 bars

FIG. 1. Phase diagram of ⁴He confined in 44 Å porous gelsil.

Excitations of superfluid ⁴He at pressures up to 40 bars

Excitations of superfluid ⁴He at pressures up to 44 bars

3.3 nm pore diameter gelsil

Schematic Phase Diagram in Ideal Nanoscale media

e.g. 2 - 3 nm

Structure of ⁴He adsorbed on carbon nanotubes

J.V. Pearce, M.A. Adams, O.E. Vilches, M. Johnson, and H.R. Glyde

Figure: Helium on closed end nanotube bundles; green spheres are ⁴He atoms, grey spheres are carbon atoms. The configurations, generated using molecular dynamics simulations, reproduce neutron measurements. Top: 1D lines of ⁴He atoms, middle: "3line phase", bottom: 1 monolayer coverage (2D system).

Carbon nanotubes are sheets of carbon atoms rolled into seamless cylinders of 1-2 nanometers diameter and thousands of nanometers long. They combine into long bundles or ropes containing many tubes, as shown opposite. Nanotubes are of great interest for their unique, nearly one dimensional (1D) character and many applications.

We report the first measurements of the structure of helium absorbed on nanotubes using neutron scattering. The aim is to test many remarkable predictions especially for 1D system. Results show that a genuine 1D system can be created and that there is a 1D to 2D crossover as filling increases. Higher fillings with openended nanotubes remain to be explored.

Quantum momentum distribution and kinetic energy in solid ⁴He

S. O. Diallo,¹ J. V. Pearce,² R. T. Azuah,^{3,4} and H. R. Glyde¹

¹Department of Physics and astronomy, University of Delaware, Newark, DE 19716-2570 ²Institut Laue-Langevin, BP 156, 38042, Grenoble, France Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 ⁴NIST Center for Neutron Research, Gaithersburg, MD 20899-8562

(Dated: May 28, 2004)

We present measurements of neutron scattering from solid ⁴He at high momentum transfer. The solid is held close to the melting line at molar volume 20.87 cm³/mol and temperature T=1.6 K. From the data, we determine the shape of the momentum distribution, $n(\mathbf{k})$, of atoms in the solid and the leading Final State contribution to the scattering. We show that $n(\mathbf{k})$ in this highly anharmonic, quantum solid differs significantly from a Gaussian. The $n(\mathbf{k})$ is more sharply peaked with larger occupation of low momentum states than in a Maxwell-Boltzmann distribution, as found in liquid ⁴He and predicted qualitatively by Path Integral Monte Carlo calculations. The atomic kinetic energy is $\langle K \rangle = (24.25 \pm 0.2)$ K. If $n(\mathbf{k})$ is assumed to be Gaussian, as is usually the practice, a $\langle K \rangle$ 10% smaller is obtained.

PACS numbers: 67.80.-s 61.12.Ex 67.40.-w

Momentum distribution solid 4He

Momentum distribution solid ⁴He

Momentum distribution: ⁴He

 $A_{1} n^{*}(\mathbf{k}) (\mathbf{\mathring{A}}^{3})$

PHYSICAL REVIEW LETTERS

Phonon-Roton Excitations in Liquid ⁴He at Negative Pressures

Francesco Albergamo,¹ Jacques Bossy,² Pierre Averbuch,³ Helmut Schober,¹ and Henry R. Glyde⁴

¹Institut Laue-Langevin, Boîte Postale 156, 38042 Grenoble, France

²Centre de Recherche sur les Très Basses Températures, CNRS, Boîte Postale 166, 38042 Grenoble Cedex 9, France ³Laboratoire des Champs Magnétiques Intenses, CNRS, Boîte Postale 166, 38042 Grenoble Cedex 9, France ⁴Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA (Received 15 January 2004)

We present neutron scattering measurements of the phonon-roton excitations of superfluid ⁴He held at negative pressures from zero to -5 bar. The liquid was stretched to negative pressures by immersing it in the porous medium MCM-41. In the wave vector range $0.35 \le Q \le 1.55$ Å⁻¹ and temperature T = 0.4 K investigated, the phonon and maxon energies decrease systematically below bulk values as the negative pressure is increased. The energies are consistent with extrapolation of positive pressure values from which the negative internal pressure can be estimated. The maximum negative pressure realized is consistent with surface tension arguments and the MCM-41 pore diameter of 47 Å.

DOI:

PACS numbers: 67.40.Db, 61.12.Ex, 62.10.+s, 68.03.Cd

Phase Diagram of Liquid ⁴He at Negative pressures

Bauer et al. 2000

FIG. 4. Temperature dependence of the spinodal pressures and the superfluid transition at negative pressures are shown. At low temperatures the spinodal pressure is insensitive to temperature while at higher temperatures the behavior is linear. The upper solid lines form usual phase diagram.

Phonon-Roton energies at p= 0 and p ~ - 9 bar

Bauer et al. 2000

Liquid ⁴He at Negative Pressure in Porous Media

Liquid is attracted to pore walls MCM-41, $d = 47 \stackrel{\circ}{A}$

Layers form on walls first

Then pores fill completely at a density less than bulk density.

Liquid is "stretched" between walls at lower than normal density (pressure is negative).

Adsorption isotherm

Pores are full with ⁴He at negative pressure at fillings C to H. C = -5.5 bar.

 $S(Q,\omega)$ at Q = 1.5 Å⁻¹ as a function of filling.

H – full filling, p = 0.

C – negative pressure, p = -5.5 bar

Dispersion curve at SVP and - 5 bar

Maxon energy at Q = 1.1 Å⁻¹ as a function of pressure.

