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Currently there is considerable interest in the results being produced by the 
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. 

There, high density quantum chromodynamics (QCD) is very important. In 
particular the behavior of π mesons and diquarks, which are massive bosons, is 
relevant. In our just-published paper [1] we study the behavior of the Bose-Einstein 
condensation for an ideal Bose gas in this regime. 

Since its theoretical prediction by Einstein in 1925 based on the 1924 work 
by Bose on photons, and after many decades languishing as a mere academic 
exercise in textbooks, Bose-Einstein condensation (BEC) has been observed in the 
laboratory in laser-cooled, magnetically trapped ultra-cold bosonic atomic clouds. 
We study instead the conditions in high-density QCD where BEC may occur.

In early papers on the relativistic ideal Boson gas, critical transition temperature 
Tc-formulae were derived for both relativistic and ultra-relativistic cases, but the 
production of anti-bosons was not considered. At high temperature, such as would 
be expected at RHIC, there will be very considerable production of anti-bosons.

In our work we exhibit, as a function of boson number density, exact BEC transition 
temperatures for the relativistic ideal boson gas (RIBG) system with and without 
anti-bosons in 3D. The system with both kinds of bosons always has the higher 
Tc, i.e., is the system with the first BEC singularity that appears as it is cooled. 
This suggests that the Helmholtz free energy might be lower and thus correspond 
thermodynamically to the stable system as opposed to a metastable system for the 
lower-Tc system. It is then calculated and indeed found to be lower, for all densities 
for the complete problem with both bosons and anti-bosons, when compared with 
the problem without anti-bosons. This implies that the omission of anti-bosons will 
not lead to stable states.

The number of bosons N of mass m that make up an ideal boson gas in d 
dimensions (without anti-bosons) is given by

(1)

where β =1/kBT; kB is the Boltzmann constant, and µ(T) is the boson chemical 
potential. Here, the total energy of each boson is

(2)

(3)

(4)

where k is the particle wave number, m refers to the boson rest mass, and c is the 
speed of light. The two limits refer to the nonrelativistic (NR) and ultrarelativistic 
(UR) extremes. For a cubic box of side length L in the continuous limit the sum in 
(1) over the d-dimensional wave vector k becomes an integral, namely

(5)

At the BEC critical transition temperature Tc, µ(Tc)= mc2 and the boson number, 
density can be expressed as

(6)

where βc ≡ 1/kBTc. 

At sufficiently high temperatures such that kBT >> mc2 boson–anti-boson pair-
production will occur abundantly. In fact, the total energy Ek of each particle 
satisfies Ek = c2h2k2 + m2c4 so that

(7) 

with the + sign referring to bosons and the – sign to anti-bosons. The complete 
number equation is now

(8)
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Fig. 1.  BEC Tc (in units = kBTUR–B= ħcπ2/3 [nζ(3)]1/3 ) as a 
function of boson number-density n expressed in dimensionless 
form as ħ3n/m3c3. The solid line corresponds to BEC Tc in a RIBG 
with both bosons B and anti-bosons B. The dashed line is the 
exact line for bosons B only. ζ is Riemann’s zeta function. 

where nk, (nk) is the average number of bosons (anti-bosons) in the state of energy 
±| Ek |, respectively, at a given temperature T and N (N) is their respective total 
number at that temperature. Since nk, nk > 0 for all k and E0 = mc2 , the chemical 
potential must be bounded by 

(9)

Instead of N constant we must now impose the constancy of N – N to extract 
the correct BEC critical temperature, which we call Tc

BB as it involves both bosons 
(B) and anti-bosons (B). At T = Tc

BB one has µ(Tc
BB) = mc2.  Figure 1 shows our 

results. 

For more information contact George Baker at gbj@lanl.gov.
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