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Thermodynamics of the Superfluid Dilute Bose Gas with Disorder
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We generalize the Beliaev-Popov diagrammatic technique for the problem of interacting dilute Bose
gas with weak disorder. Averaging over disorder is implemented by the replica method. The low-energy
asymptotic form of the Green function confirms that the low-energy excitations of the superfluid dirty-
boson system are sound waves with velocity renormalized by the disorder and additional dissipation
due to the impurity scattering. We find the thermodynamic potential and the superfluid density at any
temperature below the superfluid transition temperature (but outside the Ginzburg region) and derive the
phase diagram in temperature vs disorder plane.
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Superfluidity in random environments enjoys a long-
standing yet intense attention. The effect of disorder on the
behavior of systems possessing long-range correlations is
central to contemporary condensed matter physics, and su-
perfluid Bose gas offers an exemplarily unique and acces-
sible tool for both experimental and theoretical researches.
One of the fascinating properties of such systems is their
ability to maintain superfluidity (i.e., long-range correla-
tions) even in the strongly disordered environment. He4,
for example, remains superfluid when absorbed in porous
media [1]. The problem of influence of disorder on su-
perfluidity (and on its close analog superconductivity) has
been under extensive theoretical attack (see seminal works
[2,3]) and remarkable progress in qualitative understanding
of disordered Bose systems was achieved. Recent papers
[4,5] discussed a continuum model of the dilute interact-
ing Bose gas in a random potential. The advantages of
this model are that (i) it is microscopically related to the
original problem and (ii) it is very well understood in the
clean limit. The proposed model describes, in particular,
the quasiparticle dissipation and depletion of superfluidity
at zero temperature and marked an important step towards
a quantitative description of disordered Bose systems.

In this Letter, building on the model of Refs. [4,5], we
develop a systematic diagrammatic perturbation theory for
the dilute Bose gas with weak disorder at finite tempera-
tures below the superfluid transition temperature Ts. We
obtain disorder corrections to the thermodynamic poten-
tial which completely determine thermodynamic properties
of the superfluid system. We derive for the first time the
disorder-induced shift of Ts resulting from disorder scatter-
ing of quasiparticles with energy e � T . We find that the
superfluid density decreases monotonically with the tem-
perature. This agrees with the experimental data, while
being in some contradiction with the theoretical result of
Ref. [4] where a nonmonotonic temperature dependence
of superfluid density was claimed. In the limit T ! 0 our
theory reproduces all the results of Refs. [4,5].

The model.—The starting point of our model is the
Lagrangian density:
L � 2w��2=2

r�2m 2 m 1 u�r� 1 ≠t�w 2 gw�w�ww ,
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where w � w�r, t� is the field representing Bose particles,
r is the real space coordinate, t is the Matsubara time,
and u�r� is the disorder potential. As usual we consider
a soft interaction potential g�r� and use the Born approxi-
mation g � 4pl�m to relate the interaction constant g �R

g�r� ddr to the scattering length l [6]. Taking Gaussian
d-correlated disorder �u�r1�u�r2�� � kd�r1 2 r2� we de-
rive the effective replicated action in a form:

S � 2
X
p

w�
a�p� �k2�2m 2 m 2 iv�wa �p� 1 Vi 1 Vd ,

with p � �k,v� and the interaction parts Vi and Vd,

Vi � 2
g

2bV

X
k,v,a

w�
a�k1,v1�w�

a�k2, v2�

3 wa�k3,v3�wa�k4, v4� ,

Vd �
k

2V

X
k,v,a,b

w�
a�k1,v1�wa�k3, v1�

3 w�
b�k2, v2�wb�k4, v2� ,

where a, b � 1, . . . , n are the replica indexes, and the
conservation of total momentum k1 1 k2 � k3 1 k4 (in
Vi and Vd) and of total “energy” v1 1 v2 � v3 1 v4 (in
Vi) is assumed. The corresponding vertices are presented
in Fig. 1a. Below Ts we separate the condensate contri-
bution by shifting the fields wa ! a

p
bV dk,0dv,0 1 w0

a

and define the Green functions of the fields w0
a by

Gab�p� � �w0
a�p�w0�

b �p��,

Fab�p� � �w0
a�p�w0

b�2p��.
(1)

Defining also the functions Ḡab�p� � �w0�
a �2p� 3

w
0
b�2p��, F̄ab � �w0�

a �2p�w0�
b �p�� we introduce the

matrix Green function and the matrix self-energy

Ga,b �

∑
Gab Fab

F̄ab Ḡab

∏
, Sab �

∑
Aab Bab

B̄ab Āab

∏
,

(2)

that are related by the Dyson equation

G21 � �p2�2m 2 m 2 ivt3�dab 1 S , (3)

where t3 is the Pauli matrix. The condensate density is
uniformly distributed in the replica space; therefore, Green
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FIG. 1. Interaction and disorder vertices (a) and first order con-
tributions to self-energies (b). The dashed lines in (b) represent
the condensate.

function G and self-energy S can be presented as

Gab � G1dab 1 G2Rab ,

Sab � S1dab 1 S2Rab ,
(4)

where Rab is the matrix with all elements equal to 1. From
the n ! 0 limit of Eq. (3) we obtain that the replica diago-
nal part of the Green function is determined by the replica
diagonal part of the self-energy

G21
1 � �p2�2m 2 m 2 ivt3� 1 S1 ,

G2 � 2G1S2G1 ,
(5)

and the poles of the Green function G are determined by
the poles of the Green function G1. Because of the Gold-
stone theorem, below the condensation temperature the
function G1 has a pole at p � 0, and from (5) we find

A1�0� 2 B1�0� � m . (6)

Our diagrammatic technique parallels that by Beliaev,
the difference being that we include the disorder vertex
Vd along with the interaction vertex Vi. The corresponding
diagrams are shown in Fig. 1b.

A1 � 2ga2, B1 � ga2, A2 � B2 � 2kba2.
(7)

From Eq. (6) we obtain ga2 � m and using Eq. (5) for the
Green functions we have

G1�p� �
k2�2m 1 m 1 iv

´2�k� 1 v2 ,

F1�p� �
2m

´2�k� 1 v2 ,

(8)

G2�p� � F2�p� �
kba2

�k2�2m 1 2m�2 dv,0 , (9)

where ´�k� �
p

�k2�2m�2 1 mk2�m. We see that the
spectrum of quasiparticles is not affected by disorder in
the leading order. The Bose gas density is given by

n � a2 1 n1 1 n2 (10)
235503-2
n1 �
T
V

X
p

G1�p�, n2 �
T
V

X
k,v�0

G2�k� . (11)

Zero temperature.— At zero temperature in three dimen-
sions using Eqs. (8) and (9) we obtain

n1 �
8

3
p

p
�ln�3�2, n2 �

k

4p

a2m3�2

p
m

. (12)

The contribution n1 represents the quasiparticle density
due to quantum fluctuations; in the leading order it co-
incides with the well known answer for the pure case. The
contribution n2 represents the density of the nonuniform
part of the condensate. For the theory to be applicable
both n1 and n2 should be much less than the total density

l0 � ln1�3 ø 1, k0 � km2��8p3�2
p

ln � ø 1 .
(13)

The first relation is the usual low-density condition; the
second one ensures that the uniform part of the conden-
sate is not strongly affected by disorder. To relate the
condensate density with the chemical potential we need
to improve the leading order result ga2 � m considering
next order corrections to (6). The second order correc-
tions A

�2�
1 , B

�2�
1 contain the contributions A

�2,i�
1 , B

�2,i�
1 from

the quasiparticle interactions and the disorder contributions
A

�2,d�
1 , B

�2,d�
1 linear in k. Corrections A

�2,i�
1 , B

�2,i�
1 presented

in Fig. 2a exactly coincide with ones studied in [7] for the
pure Bose gas. The disorder corrections A

�2,d�
1 , B

�2,d�
1 pre-

sented in Fig. 2b contain all the diagrams that are (i) linear
in disorder coupling k and (ii) have a similar structure with
ones shown in Fig. 2a. Here we present the answers for
their linear combinations S

�2,d�
6 � A

�2,d�
1 6 B

�2,d�
1 :

ReS�2,d�
2 �q, v� � gn2

2
k

V

X
k

k4G0
2�k 1 q, v�

�k2 1 4mm�2 ,

ReS
�2,d�
1 �q, v� � 3gn2

(14)

2
k

V

X
k

�k2 2 8mm�2G0
1�k 1 q, v�

�k2 1 4mm�2 ,

where G0
6�p� � Re�G1�p� 6 F1�p��. The self-energy B

a)

b)

c)
k k kk

FIG. 2. Second order contributions to the self-energies A1, B1
due to interaction (a), and due to disorder (b). The solid lines
represent the Green functions G1, F1; the crossed solid lines rep-
resent the Green functions G2, F2. The diagrams in part (c)
represent two contributions to the normal density n�1�

n and n�2�
n .
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is real while A is complex with

ImA�2,d��q, v� �
X
k

kvk2�V
´2�k 1 q� 1 v2

8mm 2 k2

�k2 1 4mm�2
.

(15)

Using Eq. (14) along with the well known result [7] for
S�2,i�

2 from Eq. (6) we obtain

m � ga2

√
1 1

40
3

s
nl3

p

!
1 gn2

2
k

V

X
k

2m k2

�k2 1 4mm�2 .

Combining this equation with Eq. (10) we obtain the rela-
tion between the density and chemical potential

m � gn

√
1 1

32
3

s
nl3

p

!
2

k

V

X
k

2m k2

�k2 1 4mm�2 .

(16)

Using the thermodynamic relation m � dE�dN along
with the leading order relation gn � m we obtain the
energy

E
V

�
gn2

2

√
1 1

128
15

s
l3n
p

!
2

k

V

X
k

2n m
k2 1 4mm

,

(17)

which agrees with [5]. The integrals over k in Eqs. (16)
and (17) are ultraviolet divergent; it is the consequence
of the white noise assumption for the disorder correlation
function. This divergence is not relevant for the low-energy
physics since it could be absorbed in the renormalization of
energy and chemical potential: E ! E 1 nk

P
k 2m�k2,

m ! m 1 k
P

k 2m�Vk2.
The superfluid density ns can be found from the normal

density nn which is determined by the transverse current-
current correlator ns � n 2 nn. In the leading order nn is
given by the diagrams shown in Fig. 2c:

nn � n�1�
n 1 n�2�

n , (18)

where n�1�
n is the normal density of the clean system n�1�

n �
T

3mV

P
p k2�G2

1 �p� 2 F2
1 �p�� which after summation over

Matsubara frequencies may be written as

n�1�
n �

1
12mTV

X
k

k2

sinh2�e�k��2T�
, (19)

and n�2�
n is the disorder correction,

n�2�
n �

T
3mV

X
p

2k2�G1�p� 2 F1�p��G2�p� �
4
3

n2 .

(20)

Thus at zero temperature n�1�
n � 0 and superfluid density

becomes ns � n 2 4n2�3 in agreement with Refs. [4,5].
The second order corrections to the self-energies (14)

and (15) can be calculated explicitly for small q, v leading
235503-3
to the following low-energy retarded Green function:

GR
1 �k, v� �

m

ns

c2a2

c2k2 2 v2 2 2ickG�k�
, v . 0 ,

(21)

where the sound velocity c is related to the sound veloc-
ity of the clean system c0 by c2 � c2

0�1 1 5n2�3n�, and
G�q� � kq4�24m2c3p is the dissipation of quasiparticles
due to disorder scattering. The dissipation due to quasipar-
ticle (phonon) scattering is known to be of a higher power
of q: G�ph��q� � q5. The results for sound velocity c and
quasiparticle dissipation G�q� are in agreement with [5].

Bose condensation temperature.—Now we turn to fi-
nite temperatures. At temperatures above the condensa-
tion temperature Tc the self-energy is given by the first
diagrams of Figs. 2a and 2b.

A1 � 2gn 2
k

V

X
k

G�k, v� , (22)

and A2, B1,B2 � 0. Taking the sum over k in (22) we
obtain the Green function

G21�p� �
k2

2m
2 m̃ 2 iv 1 k

�2m�3�2

4p

q
jm̃j 2 iv ,

(23)

where the m̃ � m 2 2gn 1 k
P

k 2m�Vk2. Inserting the
Green function (23) into Eq. (11) in the leading order in
k at the condensation temperature (m̃ � 0) we get

n � z3�2�mTc�2p�3�2 1 kTcm3�4p2. (24)

Solving this equation for Tc we find the shift of the con-
densation temperature due to disorder:

Tc � T �0�
c �1 2 kT �0�

c m3�6p2n� , (25)

where T �0�
c � 2p�n�z3�2�2�3�m is the Bose condensation

temperature of the ideal gas with z3�2 	 2.612. At fi-
nite g only a microscopic amount of particles may con-
dense into a local potential well [8]; this effect leads to the
smearing of the condensation transition making Tc to be
the crossover temperature between the normal phase and a
phase where bosons are locally condensed. The true phase
transition takes place when the chemical potential reaches
the mobility edge [2]; it may also be obtained from the
condition ns � 0 (see below).

Thermodynamics at T � Ts.—The self-energies at T �
Ts are still given by the diagrams presented in Figs. 1
and 2, but the first diagram of Fig. 1a should be included
already in the first order approximation since the density
of quasiparticle excitations n1 at T � Ts is of the order of
total density. This diagram results only in the shift of the
chemical potential m ! m 2 2gn1 � m̄, and the Green
functions are still given by Eqs. (8) and (9) but with m !
m̄. The density in the leading approximation is still given
by Eqs. (10) and (11), but now n1 is not a small correction
and should therefore be calculated with a higher accuracy.
The main contribution to n1 comes from the energies e �
T ¿ m̄. At these energies the Green function is given by
235503-3
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Eq. (23) and, thus, the disorder correction to n1 is the same
as in Eq. (24), i.e., kTm3�4p2. Taking into account this
correction and using Eq. (11) we obtain

n1 � nT 03�2 2
m̄1�2m3�2T

2p
1

km3T

4p2 ,

n2 �
ka2m3�2

4p
p

m̄
,

(26)

where T 0 � T�T �0�
c . To relate the chemical potential with

the condensate density we consider next order correc-
tions to the leading order result ga2 � m̄ following from
Eq. (6). Using S�2,i�

2 from [9] and Eq. (14) we obtain

m̄

g
� n2 1 a2 2

X
k

�k�g�2mk2

�k2 1 4m̄m�2

2
3m̄1�2m3�2T

2p
1

km3T
2p2

,

and combining this equation with Eq. (26) we get an equa-
tion relating density and chemical potential,

n � m�g 2 nT 03�2 1 m̄1�2m3�2T�p 1 Dn�d�, (27)

where Dn�d� is the disorder contribution

Dn�d� �
k

gV

X
k

2mk2

�k2 1 4m̄m�2 2
km3T

4p2 . (28)

Using the relation N � 2dV�dm we eventually obtain
the disorder correction to the thermodynamic potential:

dV�d�

V
� 2

k

Vg

X
k

2m̄m
k2 1 4m̄m

1
km3Tm

4p2
. (29)

Superfluid density at T � Ts.—The disorder contribu-
tion to the normal density n�2�

n at T � Ts is related to n2
through Eq. (20) with n2 defined by Eq. (26) that takes into
account the chemical potential shift m ! m̄. Deriving the
contribution n�1�

n one needs to consider that according to
Eq. (23) the spectrum of quasiparticles is affected by the
disorder at energies e � Ts, which results in

n�1�
n � n�cl�

n 1 km3T�4p2, (30)

where n�cl�
n is the normal density of the clean system de-

fined by Eq. (19) with the spectrum e2�k� � �k2�2m�2 1

m̄k2�m. Introducing dimensionless condensate density
a0 �

p
1 2 T 03�2 we write the superfluid density as

ns�n � n�cl�
s �n 2 4k0a0�3 2 4k0

p
pl0 T 0�z

2�3
3�2 , (31)

where n�cl�
s is the superfluid density of the clean system

n�cl�
s � n 2 n�cl�

n . The dependence of ns on temperature
for different amounts of disorder is presented in Fig. 3.
Taking ns � 0 in Eq. (31) for the superfluid transition tem-
perature at k0 ¿

p
l0 we have

Ts � T �0�
c �1 2 32k02�27� . (32)

At k0 &
p

l0 Ts coincides with condensation crossover
line (25) but this region is already at the boundary of the
Ginzburg region dT 0 � l0 where nonperturbative effect of
interactions become important [10].

In conclusion, we have developed a regular diagram-
matic approach that enables a quantitative description of
235503-4
0 0.4 0.8
0

0.5

1

0 0.5 1
0

0.5

1

T

κ

Superfluid

nS /n

T

Normal, locally

Normal

condensed

FIG. 3. The temperature-disorder phase diagram resulting
from Eqs. (25) and (31) for l0 � 0.032. The dashed part of the
boundary of the superfluid phase corresponding to the region
k � 1 should be understood as an extrapolation. The inset
shows the superfluid density ns�n dependence on temperature
T 0 � T�T �0�

c for different amounts of disorder: k0 � 0, 0.1, 0.2
(top to bottom). The dotted line represents the condensation
crossover temperature determined by Eq. (25).

thermodynamics of superfluid dilute Bose gas in random
environment at finite temperatures. We have found dis-
order corrections to condensation temperature, thermody-
namic potential, and the superfluid density. Our results
agree favorably with the experimental findings.
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