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We investigate a two-dimensional (2D) Bose system with the long range interactions in the presence
of disorder. Formation of the bound states at strong impurity sites gives rise to a depletion of the
superfluid density. We predict the intermediate superfluid state where the condensate and localized
bosons are present simultaneously. We find that interactions suppress localization and that with the
increase of the boson density the system experiences a sharp delocalization crossover into a state where
all bosons are delocalized. We map our results onto a 3D system of vortices in type II superconductors in
the presence of columnar defects; the intermediate superfluid state maps to an intermediate vortex
liquid where vortex liquid neighbors pinned vortices. We predict the depinning crossover within the
vortex liquid and depinning induced vortex lattice-Bose glass melting.
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even arbitrarily weak disorder localize the part of the ratio of the magnetic penetration and coherence lengths,
Effects of disorder on strongly correlated systems
are central to contemporary condensed matter physics.
Disordered Bose systems are of special interest [1–3].
Superfluid 4He and 3He remain the favorite and important
experimental tools for studies of macroscopic quantum
effects. Moreover, quantum mechanical mapping that re-
lates the quantum Bose system to thermodynamics of
superconducting vortices in the space of the one dimen-
sion up motivates research of Bose fluids in a random
environment by the promise for further progress in vortex
physics.

There has been a significant recent advance in under-
standing disordered Bose systems started by [4,5], who
discussed a continuum model of the dilute interacting
Bose gas in a random potential. The proposed model
described the quasiparticle dissipation and depletion of
superfluidity at zero temperature. Later we developed a
systematic diagrammatic perturbation theory for the di-
lute Bose gas with weak disorder that enabled us to extend
the description of superfluid thermodynamics on finite
temperatures [6]. Disorder corrections to the thermody-
namic potential and the disorder-induced shift of the
condensation temperature resulting from disorder scatter-
ing of quasiparticles were found. In particular, we found
that the superfluid density decreases monotonically with
the temperature.

Yet many questions remain open. First, close inspection
of models [4–6] shows that the described depletion of
superfluid density takes account of only scattering of zero
energy quasiparticles by the random potential neglecting
the effect of the quasiparticle bound states. Further, the
fact that some quasiparticles drop from the condensate
and get localized suggests the existence of the intermedi-
ate state where both superfluid and localized components
are present simultaneously. This poses the next question:
If this intermediate state does exist, what part of the
phase diagram does it cover? In other words, would
0031-9007=04=92(6)=067008(4)$22.50 
condensate, or this localization effect vanishes if disorder
is too weak or if the boson interactions are sufficiently
strong?

In this Letter, we examine the behavior of a 2D inter-
acting Bose system subject to strong disorder, having in
mind the application of our results (via the quantum
mechanical mapping) to the system of 3D superconduct-
ing vortices in type II superconductors containing colum-
nar defects. At low temperatures, T, where the pristine
vortex structure would form an Abrikosov lattice, colum-
nar defects cause formation of strongly pinned Bose glass
[7,8]. At the melting line Bm�T�, Bose glass melts into a
vortex liquid. In the related quantum mechanical 2D
Bose system, vortex liquid maps to the superfluid phase.
The depletion of the superfluid density by disorder corre-
sponds to enhancement of the average tilt modulus of the
related vortex system [9,10]. Moreover, one can expect
that this stiffening is accompanied by the change in
transport properties: The part of the vortices remains
pinned and does not participate in transport. This may
be interpreted as the intermediate vortex phase where
both vortex liquid and pinned vortices coexist.

We focus on the case where in the related vortex system
the applied magnetic field is not too close to Hc1 and
vortex spacing is less than their interaction range, the
magnetic field penetration length �; this is the most
common experimental situation. We show that, upon in-
creasing the temperature (or, equivalently, the magnetic
field), the vortex system undergoes a sharp crossover
between the phase containing vortices pinned by the
columnar defects and the phase where all vortices are
delocalized. We find the expression for the crossover line:
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where � is the density of vortices, � � �=�� 1 is the
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rr is the characteristic size of the columnar defect, � is the
anisotropy parameter, the length lT is defined as lT �
��0=4��2=T, and c is a numerical factor of the order of 1.
The localization length L entering the logarithmic factor
is defined in Eq. (9). The corresponding phase diagram is
shown in Fig. 1, where the delocalization line is drawn
along with the vortex lattice melting line. In what follows,
we formulate our model in terms of vortices, establish the
existence of the delocalization crossover, and derive
Eq. (1) for the crossover line.

Model.—A free energy of the vortex system can be
written as a functional of the vortex displacements
ri�z� as
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where the interaction between the vortices is

v�r� � �0K0�r=��; (3)

with �0 � ��0=4���
2 and K0 being the Bessel function.

The vortex tension �1 is related to the anisotropy parame-
ter � and �0 as �1 � �2�0, and the disorder potential U�r�
can be written as a sum of the potential wells representing
the columnar defects U�r� �

P
iu�r� ri�, where ri is the

coordinate of the ith defect.
Statistical mechanics of vortices can be mapped onto

the quantum mechanical problem of interacting two-
dimensional bosons described by the Hamiltonian

ĤH �
Z
d2r  ̂ y�r�	p̂p2=2m���U�r�
 ̂ �r�

�
1

2

Z
d2r1 d2r2 n̂n�r1�v�r1 � r2�n̂n�r2�; (4)

where  ̂ y;  ̂ are Bose creation and annihilation operators,
� is the chemical potential, and n̂n�r� �  ̂ y�r�  ̂ �r� is the
density operator. Results obtained in the Bose gas repre-
sentation can be translated into the vortex language by
T
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Delocalized vortex liquid
Vortex liquid coexisting
with pinned vortices

Expected melting line

Delocalization crossover line

(0)
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Disordered  lattice
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FIG. 1. Schematic phase diagram for the vortex system with
columnar defects. The melting line under assumption of pin-
ning is denoted by BM, while the melting line of the pristine
lattice is denoted by B�0�

M .
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the substitute �h! T, m! �1. The Bose gas energy cor-
responds to the free energy per unit length of the vortex
system. Keeping in mind the application to vortices, we
use the interpolation formula which well describes the
attractive potential of a single columnar defect at dis-
tances � < r < � and temperatures T � Tc [11]:

u�r� � �
�0
2

r2r
r2 � 2�2

; (5)

where � is the coherence length and rr is the scale that
characterizes the size of the columnar defect. We intro-
duce the dimensionless pinning strength

! � r2r�1�0=2T
2 (6)

and consider the temperature interval where ! 1. In
this limit, the solution of the Schrödinger equation

	�r2
r=2�1 � u�r�
 �r� � E1 �r�; (7)

results in the pinning energy

E1 � �T2=�1�
2�e�1=

���
!

p
: (8)

The bound state E1 is localized within the length L���������������������
�h2=jE1jm

p
; translating to vortex language we write the

lateral localization length of the pinned vortex as

L � �e1=�2
���
!

p
�: (9)

Further, we take the interaction between the bosons (vor-
tices) be strong enough to suppress double occupancy of
the pinning site. The interaction energy of the double
occupied state is

E2 �
1

2

Z
d2r1 d

2r2%
�
1�r1�%1�r1�v�r1 � r2�%

�
1�r2�%1�r2�;

(10)

where %1 is the wave function of the bound sate. If
L �, then E2 � �0 ln��=L�, where we have used the
asymptotic of the Bessel function K0�x� � ln�1=x�. The
condition of no double occupation, E2 � jE1j, can be
now written as

�0�1 ln��=L� � �T=L�2: (11)

In case of low concentration of defects, the contributions
from different potential wells can be treated separately;
thus we arrive at the problem of the interacting Bose gas
and single potential well (a single columnar defect im-
mersed in the vortex liquid). We easily diagonalize the
noninteracting Hamiltonian with a single potential well
and formulate the problem in terms of the eigenfunctions
%k of the noninteracting Hamiltonian

	p̂p2=2m� u�r�
%k�r� � Ek%k�r�; (12)

where Ek is the energy of the kth state. The bound state
corresponds to k � 1: Although this state has the lowest
energy, the Bose condensation into it cannot occur since
double occupation is forbidden. Thus, the condensation
takes place to the extended state with the lowest energy
(which we label with k � 0�: In the absence of the current
the basis can be chosen real%� � %. The  operators that
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enter the Hamiltonian (4) can be presented as a sum of
three terms:

 ̂ � %0b̂b0 �%1b̂b1 �
X
Ek>0

%kb̂bk; (13)

representing the condensate, the bound state, and all other
states having energy larger than the condensate energy.
The effective temperature of the Bose gas T�B� / L�1

z ,
where Lz is length of the superconducting system in the
z direction. A macroscopically large vortex system, thus,
corresponds to the zero temperature limit for bosons. We
address the most interesting case of the applied magnetic
field not being too close to Hc1 such that the average
distance between vortices is smaller than the screening
length �. In this regime, the vortex system maps onto the
problem of Bose gas with 2D Coulomb interaction that
can be treated in the Bogoliubov approximation in the
high density limit [12]. For the vortex system, the high
density limit is satisfied above the melting line of the
pristine lattice [13]. In this regime, the third term in
Eq. (13) representing the out-of-the-condensate particles
is small and can be neglected in the leading order.

Now we turn to the analysis of the population of the
bound state in the presence of the condensate. Using the
representation Eq. (13) in the Hamiltonian (4) and keep-
ing only two first terms in the representation (13), we
obtain the effective Hamiltonian as

ĤH eff � by1 �E1 � ,��� b̂b1 � - �b̂by1 � b̂b1�; (14)

where the terms b̂by1 b̂b
y
1 are omitted due to the no double

occupancy condition. The coefficients , and - in the
Hamiltonian (14) are

, � b20
Z
d2r1 d

2r2	%
2
1�r1�v�r1 � r2�%

2
0�r2�

�%1�r1�%0�r1�v�r1 � r2�

� %1�r2�%0�r2�
; (15)

- � b30
Z
d2r1 d

2r2%
3
0�r1�v�r1 � r2�%�r2�; (16)

where the average value b0 of the operator b̂b0 is related to
the condensate density �0 as b20 � �0. The model (14) can
be easily solved: Presenting the wave function in the form

 � a0j0i � a1j1i; (17)

with a0 and a1 being the amplitudes of the zero and single
occupied states, we find two eigenstates corresponding to
the energy levels

E� �
E�

��������������������
E2 � 4-2

p
2

; (18)

where E � E1 � ,��. We see that E� > 0 and E� < 0
for any sign of the energy E, thus the state with energy E�

is always occupied while E� is always empty. The occu-
pation of the center is determined by the state with the
067008-3
lowest energy (E�) and is given by

n � a21 �
2

4� �E=-�2 � �E=-�
������������������������
�E=-�2 � 4

p : (19)

One can easily see that n! 1 when E=- �1 and
n! 0 when E=-� 1. Thus, the quantity E=- con-
trols the occupation such that at E � 0 localization-
delocalization crossover takes place. Making use of
Eq. (15) and the relationship between the chemical po-
tential, condensate density, and interaction � � b20v0,
where v0 �

R
d2r v�r�, for the parameter E we find E �

E1 � /E with

/E � b20
Z
d2r1 d2r2%1�r1�v�r1 � r2�%1�r2�

� �L2�0 ln��=L�: (20)

Now, using the relationship between the bound state en-
ergy and the localization length, we derive the vortex
density at the localization-delocalization crossover from
the condition E � 0:

� �
c T2

�0�1 L
4 ln��=L�

; (21)

where c� 1 is a numerical constant. Plugging in L from
Eq. (9) we arrive at the expression (1) for the delocaliza-
tion crossover line which can be rewritten in terms of the
delocalization field for vortices as

Bdl ’ �0
cT2

�0�1�4 ln��=L�
exp

�
�
T
T0

�
; (22)

where the effective temperature dependent depinning
energy T0 � rr��0=

���
8

p
. One easily checks that the con-

dition of no double occupancy (11) is always satisfied near
the crossover provided �L2 < 1.

As we see from Eq. (19), the occupation of the center
varies continuously as long as ‘‘hybridization parameter’’
- > 0. Therefore the boundary between the localized and
delocalized phases should be viewed as a crossover rather
than the true transition line. Note, however, that in case of
finite concentration of defects delocalization may result
in a significant change in the condensate density and thus
induce the true superfluid-Bose glass transition as in [10].

While the ultimate type of the crossover remains an
open question, experimentally it can appear very sharp
and undistinguishable from the true first order transition.
Indeed, the sharpness of the crossover is controlled by the
ratio of - and /E. Formula (16) determining - should be
corrected to include the screening of the potential by the
surrounding Bose gas. In the dense limit, the screening
length is lsc � ��1=2���2l2T�

1=4, and - is estimated as

- �
�L�2�0
lT�

�������
2�

p ; (23)

such that the ratio -=/E � -=/E� �2=	lTL� ln��=L�
 is
small due to the no double occupancy condition (11).
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We thus conclude that, in the regime under considera-
tion where (i) the average vortex spacing is much less than
the screening length, (ii) the density of defects is much
less than the vortex density, and (iii) the vortex-vortex
interactions are so strong that the double occupancy of
the defect never happens, there is a sharp crossover be-
tween the localized and the nonlocalized phases.

We are now in a position to construct a phase diagram
for the disordered Bose system. We use the corresponding
‘‘superconductor vortex language’’; the schematic vortex
phase diagram for the system with columnar defects is
presented in Fig. 1. Shown are the melting line of the
pristine sample B�0�

M , and melting line BM in the sample
with the columnar defects shifted, as it should [7,8],
upwards as compared to B�0�

M . Note that because of the
exponential dependence on temperature, Bdl drops much
faster than BM as temperature approaches Tc. Thus, the
delocalization line, which at high enough fields lies in the
vortex liquid domain, hits and then crosses the melting
line BM, traverses the strip between BM and B�0�

M , and on
its way to Tc crosses the pristine melting line.

In the liquid phase, the delocalization line marks the
crossover separating the intermediate state where vortex
liquid coexists with the pinned vortices, and the phase
where all vortices are delocalized. In the strip confined
between the B�0�

M and BM lines, Bdl marks melting of the
vortex lattice. Indeed, at B�0�

M < B< BM the lattice is
stabilized by vortices pinned by columnar defects. As
soon as depinning at Bdl occurs, columnar defects be-
come inessential, and the lattice loses its stability since in
the absence of defects vortex liquid is a stable thermody-
namic state above B�0�

M . This is a novel type of the vortex
lattice melting, the depinning induced melting, which
occurs in the interval B�0�

M < B< BM. At lower fields,
the melting line almost coincides with B0

M since the effect
of pinning near the pristine melting line becomes expo-
nentially weak.

Depinning induced melting may well explain the ori-
gin of the low-field kink in the melting line that clearly
indicates a switch between the different melting mecha-
nisms. This kink has been observed in almost all experi-
ments on the Bose glass melting [8], and was addressed
specifically in the recent study of the melting of ‘‘porous’’
vortex matter [14]. Although the application of our results
to highly anisotropic layered systems such as Bi-based
compounds (BSCCO) requires caution and many reser-
vations, it is interesting to note that at temperatures
around 80 K the characteristic energy T0 for BSCCO
parameters can be estimated as T0 ’ 5 K, close enough
to that observed in [14]. The line separating the inter-
mediate liquid and fully molten homogeneous liquid
states was recently observed in YBa2Cu3O7�/ [15].

In conclusion, we have investigated the phase diagram
of a disordered Bose system with the long range interac-
067008-4
tions and established the existence of an intermediate
phase, where both superfluid and localized bosons are
present simultaneously. We have demonstrated that a
sharp delocalization crossover occurs with the increase
of boson density. We have applied our results to the vor-
tex system in type II superconductors in the presence
of columnar defects and found that this delocalization
crossover describes the depinning line separating two
liquid vortex phases, the intermediate phase containing
both pinned vortices and liquid, and ‘‘fully molten’’ ho-
mogeneous liquid. We have predicted a new kind of the
vortex lattice melting, the depinning induced melting, at
low fields.
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