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1. Introduction

The observation of Bose-Einstein condensation in
atomic traps [1]-[3] has renewed theoretical interest in
studying a system of Bose particles with a nonuniform
density. The experiments involve atoms of massm con-
densed in a harmonic trap characterized by frequency
v . The relevant parameters, as discussed more fully in
Refs. [4] and [5], have the following orders of magni-
tude:

a , 1026 cm,
l = (2p"2/mkT)1/2 , 1024 cm,
L = (" /mv )1/2 , 1024 cm,
na3 , 1028, (1)

wherea is thes-wave scattering length,l the thermal
wavelength,L the size of the system, andn is the average
particle density. Thus,na3 << 1,a/L << 1,a/l << 1, and
we can treat the system as a low-temperature weakly-in-
teracting dilute gas using well-known methods [6].

In this paper, we review the following theoretical
methods, and point out some common errors and mis-
conceptions:

(a) The pseudopotential method: One replaces the
potential by ad -function, and, with the help of a Bogoli-
ubov transformation, obtains a weak-coupling expan-
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sion. This method seems adequate to describe current
experiments.

(b) The self-consistent field method: This is varia-
tional, and capable of treating strongly interacting cases
in principle. It reduces to the pseudopotential method in
appropriate limits; but one should not use ad -function
potential in a variational calculation, because such a
potential in three spatial dimensions has no effect, if
treated exactly.

(c) The Gaussian variational method: One uses a
Gaussian trial wave function, and obtains results similar
to the self-consistent field method. It has the advantage
of easily adaptable to the description of time-dependent
phenomena.

All three methods are closely related to one another.
Although we will not use Feynman graphs, it might be
relevant to note that the Bogoliubov transformation cor-
responds to summing ‘‘one-loop’’ graphs. The self-con-
sistent field method consists of readjusting parameters
in the one-loop sum in a variational sense. The Gaussian
method includes all one-loop contribution, plus parts of
higher-loop contributions. Of these methods, the
straightforward one-loop summation yields an expan-
sion inna3. On the other hand, the accuracy of the other
methods cannot be ascertained.

We do not attempt a comprehensive review, and the
references cited are by no means complete. In a subject
with such a long history, it is difficult to be aware of all
relevant sources, and we apologize for any omissions [7].

2. Pseudopotential Method

In low-temperature calculations, one can replace the
interatomic potential with ad -function potential
(4pa"2/m)d (r ), where a > 0 is the s-wave scattering
length. Such a potential should be treated in low-order
perturbation theory only, because thed -function poten-
tial in three spatial dimensions has no effect if treated
exactly [8].

Consider the Schro¨dinger equation

2,2c (r ) + gd3(r )c (r ) = Ec (r ), (2)

whereE is 2m/"2 times the energy. Taking the Fourier
transform of both sides leads to

(E 2 k2)f (k ) = gc (0), (3)

wheref (k ) is the Fourier transform ofc (r ). This must
hold for all k , including k2 = E. Thereforec (0) = 0.
This condition is automatically satisfied for all partial
waves excepts-waves. Fors-waves, this seems to re-
quire thatc (r ) be discontinuous atr = 0; but because of

the singular nature of the potential atr = 0, one should
be careful. By treating thed -function as the limit of a
square well, one can verify that in three dimensions the
s-waves are the same as those of a free particle except
at r = 0, where they drop to zero discontinuously. This
behavior, however, does not lead to any scattering, nor
level shift.

As a more careful analysis [9] shows, thed -function
potential must be regarded as the first term in a pseudo-
potential, which correctly reproduces all scattering
phase shifts, and depends on these phase shifts as input
parameters. For the simple case of a hard-sphere poten-
tial, for which there is only one parametera, the hard-
sphere diameter, the pseudopotential has the form

Vpseudo(r ) =

4pa"2

m Fd3(r )
­
­r

r 2
a2

3
d3(r ),2 ­

­r
r + ???G, (4)

The differential operator (­ /­r )r removes spurious sin-
gularities in the wave function, which would otherwise
make the ground-state energy diverge. In low-order per-
turbation theory, one can replace this operator by a sim-
ple subtraction procedure for the energy.

Using the first term in the pseudopotential, and mak-
ing a Bogoliubov transformation, one can calculate ex-
actly the first few terms of an expansion for the ground-
state energy per particle of a uniform hard-sphere Bose
gas [10, 11]:

E0 =
2pna"

m F1 +
128
15 Sna3

p
D1/2

+ 8S4p
3

2 Ï3Dna3ln(na3) + O(na3)G. (5)

This shows that the energy is not analytic ata = 0, and
therefore cannot be continued to negative values ofa.

Fetter [12] has given a systematic treatment of the
nonuniform case based on the Bogoliubov transforma-
tion. For application to the atomic-trap experiments, one
can also adapt the results of the uniform case using a
Thomas-Fermi approximation [5].

What happens when the scattering length is negative?
In this case, the two-body scattering is dominated by the
attractive part of the potential. The attraction may or
may not be strong enough to produce a two-particle
bound state; but it will lead to anN-body bound state,
for a sufficiently largeN. The many-body problem is
very different from that of the repulsive case, for it
depends on the details of the potential. Consider two
potentials with the same negative scattering length, one
everywhere attractive, and the other having a repulsive
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core. The many-body system with the purely attractive
potential will collapse spatially, whereas the one with
hard core will yield extensive energies.

When the scattering length is negative, we must there-
fore use an actual potential, for example, one with a hard
core plus an attractive tail. We can replace the hard-core
part by a pseudopotential, and do the Bogoliubov trans-
formation. In this manner, it has been shown [6] [13]
that a dilute Bose system with such a potential exhibits
a first-order phase transition separating a gas phase
from a liquid phase. The transition line terminates in a
critical point. The Bose-Einstein condensation occurs in
the liquid phase, and divides it into liquid I and liquid II.
In short, one reproduces qualitatively the phase diagram
of 4He. Since the calculation is perturbative, one can
follow the collapse of the phase diagram to that of the
ideal Bose gas when the potential is turned off.

The results described above pertains to an infinite
Bose system in the thermodynamic limit, and may be
modified for a finite system. The authors of Ref. [2]
observed Bose condensation in an atomic trap filled
with in 7Li, which has a negative scattering length. In
this case, the smallness of the system may have rendered
the first-order transition indistinct. It is also possible that
the observed phenomenon is metastable.

3. Variational Methods and the Energy
Gap

A variational approach to the ground-state energy of
a Bose gas was introduced by Girardeau and Arnowitt
[14], who use (wisely) an actual potential instead of the
d -function. Their results are for a uniform gas, but oth-
erwise very similar to what we obtain later in the self-
consistent field method. The excitation spectrum in this
approach, however, contains an energy gap, contrary to
general expectations [15], and to the perturbation-the-
ory results in the hard-sphere case [10].

A variational method is designed to yield the best
ground-state energy, and may not yield the excitation
spectrum accurately. In this instance, we know that the
gap should have been filled with phonons, which can be
described using general principles. We may therefore
view the variational principle as a way to obtain an
approximate ground-state wave function, and build the
phonon states upon this ground state.

Feynman [16] argues that the low-lying excited states
of a Bose system are purely phonon states, owing to the
statistics, and suggests the following one-phonon wave
function of momentumk :

Ck (r1,...,rN) = ON
j=1

eik?r jC0(r1,...,rN), (6)

whereC0 is the ground-state wave function. The excita-
tion energy is

Ek =
"2k2

2mSk
, (7)

whereSk is the liquid structure factor

Sk =
1
n

kC0|jk
†jk |C0l, (8)

where

jk = V21/2O
p

a†
p+kap, (9)

with ak the annihilation operator of a free particle of
momentum"k , andV the volume. From general princi-
ples [17,18], we expect

Sk →
k→0

"k
2mc

, (10)

where c is the sound velocity as computed from the
compressibility of the ground state. This leads to the
phonon spectrum

Ek = "ck. (11)

Feynman’s argument can be sharpened by recasting it as
the statement that the longitudinal sum-rules are satu-
rated by the phonon states [17] [18]. All the equations
above are verified in the dilute hard-sphere Bose gas
[10] [18].

Other types of states that can be built uponC0 are
those describing superfluid flow [10] [18]:

Csuperflow(r1,...,rN) = P
N

j
eia(r j )C0(r1,...,rN), (12)

wherea (r ) is the superfluid phase, which is related to
the superfluid velocityvs through

vs(r ) =
"
m

,a (r ). (13)

With this wave function one can describe quantized vor-
tices.

4. Self-Consistent Field Method: Ground
State

The self-consistent field method was first used by
Bogoliubov in his treatment of superconductivity, and is
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therefore also known as the ‘‘Bogoliubov method.’’ We
shall follow a concise formulation due to De Gennes
[19]. A recent review of similar methods is given by
Griffin [20].

We use a quantized-field representation with field op-
eratorC (x ), and canonical conjugateiC†(x ):

[C (x ), C†(y)] = d3(x 2 y). (14)

The Hamiltonian is

H = E d3xC (x )†h(x )C (x )

+
1
2E d3xd3yC (y)†C (x )†V(x ,y)C (x )C (y), (15)

where

h(x ) = 2
"2

2m
,2 + Vext(x ) 2 m , (16)

where Vext(x ) is the external potential, andm is the
chemical potential. We displace the field operator by its
ground-state expectation:

C (x ) = c (x ) + f (x ), (17)

wherec (x ) is the displaced field operator, and

f (x ) = kC (x )l. (18)

The functionf (x ) describes a nonuniform condensate,
andc (x ) annihilates particles not in the condensate.

Variational trial states are taken to be the eigenstates
of an effective Hamiltonian that is quadratic in the field
operators, chosen to be a mean-field version of the ac-
tual Hamiltonian. There are two variational functions
r (x ,y) and D (x ,y), which will turn out to be
r (x ,y) = kc†(x )c (y)l, and D (x ,y) = kc (x )c (y)l. That
is, r andD are, respectively, the direct and off-diagonal
density correlation functions of the uncondensed parti-
cles.

The effective Hamiltonian is chosen to be

Heff = H (0) + H (1) + H (1)† + H (2), (19)

whereH (0) is independent ofc , andH (1) andH (2) terms
are respectively linear and quadratic inc :

H (0) = E d3xf *(x )h(x )f (x )

+
1
2E d3xd3yf *(y)f *(x )V(x ,y)f (x )f (y), (20)

H (1) = E d3xc†(x )h(x )f (x )

+ E d3xd3yV(x ,y)c†(x ) [f (y)r (y,x ) + f (x )r (y,y)

+ f *(y)D (x ,y)], (21)

H (2) = E d3xc†(x )h(x )c (x )

+ E d3xd3yV(x ,y) [c†(y)c (x )R(x ,y)

+ c†(x )c (x )R(y,y)]

+
1
2E d3xd3yV(x ,y) [c†(x )c†(y)D (x ,y)

+ c (x )c (y)D *(x ,y)], (22)

where

R(x ,y) ≡ r (x ,y) + f *(x )f (y),
D (x ,y) ≡ D (x ,y) + f (x )f (y). (23)

For arbitraryr andD , we can diagonalize the effec-
tive Hamiltonian through a generalized Bogoliubov
transformation:

c (x ) = O
n

[un(x )hn 2 v*
n (x )h†

n ]. (24)

wherehn andh†
n are annihilation and creation operators

satisfying

[hn,h †
m] = dnm. (25)

To preserve the canonical commutators forc (x ), we
require

O
n

[un(x )u*
n (y) 2 v*

n (x )vn(y)] = d3(x 2 y). (26)

We now requireHeff to have the form

Heff = E0 + O
n

enh
†
nhn, (27)

or, equivalently,

[Heff,hn] = 2 enhn,
[Heff,h†

n ] = enh
†
n . (28)
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These conditions determine the functionsvn, un andf .
The condition forf comes from the requirement that in
Heff the terms linear inc (x ) vanish. The resulting equa-
tions are

h(x )f (x ) + E d3yV(x ,y) [f (y)r (y,x ) + f (x )r (y,y)

+ f *(y)D (x ,y) + |f (y)|2f (x )] = 0, (29)

enun(x ) = h(x )un(x ) + E d3yV(x ,y) [un(x )R(y,y)

+ un(y)R(y,x ) 2 vn(y)D (x ,y)], (30)

2 envn(x ) = h(x )vn(x ) + E d3yV(x ,y) [vn(x )R(y,y)

+ vn(y)R(y,x ) 2 un(y)D *(x ,y)]. (31)

To determiner andD , let |F l be the lowest eigenstate
of Heff:

Heff|F l = E0|F l. (32)

We require that the ground-state energy be at a mini-
mum with respect to variations inr andD :

d kH l = 0, (33)

where the brackets denote expectation value with re-
spect to |F l. In calculating the expectation value above,
we use Wick’s theorem:

kc†(x )c†(y)c (x )c (y)l = kc†(x )c (y)lkc†(y)c (x )l

+ kc†(x )c (x )lkc†(y)c (y)l + kc†(x )c†(y)lkc (x )c (y)l.
(34)

The calculation is facilitated by noting thatd kHeffl = 0,
sinceF is an eigenstate. Thus we can use the equivalent
condition

d kH 2 Heffl = 0. (35)

The results are as follows:

r (x ,y) = kc†(x )c (y)l = O
n

vn(x )v*
n (y),

D (x ,y) = kc (x )c (y)l = 2 O
n

un(x )v*
n (y). (36)

When these are substituted into Eqs. (29), (30), and

(31), we have a system of coupled nonlinear integro-dif-
ferential equations.

5. The Uniform Case

We putVext = 0, assumeV(x ,y) = V(x 2 y), and seek
solutions with uniform density by putting

f (r ) = f0,
uk (r ) = V21/2eik?rxk,
vk (r ) = V21/2eik?ryk, (37)

wherexk, yk andf0 can be taken to be real. The condi-
tion [Eq. (26)] becomesxk

2 2 yk
2 = 1, which can be satis-

fied by putting

xk = coshsk,
yk = sinhsk. (38)

This parametrization simplifies the calculations. For ex-
ample, the liquid-structure factor of the ground state can
be represented in the form

Sk = 1 +
n0

n
(cosh 2sk 2 sinh 2sk 2 1)

+
1

4nV O
p

[sinh 2sp sinh 2s|k+p|

+ sinh2 sp sinh2 s|p+k|], (39)

wheren0 is the condensate density given through

n = n0 + V21O
p

sinh2sp. (40)

The Bogoliubov result is recovered by neglecting thep
sums, which is equivalent to puttingn0 ø n:

Sk = F ek

ek + 2nVk
G1/2

, (41)

whereek = "2k2/2m, andVk is the Fourier transform of
the interaction potential.

6. Reduction tod -Function Potential

The equations in the last section are rather complex,
and difficult to solve even numerically. To gain some
insight, we reduce them to a simpler form by using a
d -function potential. We shall show that this potential
has no effect if self-consistency is enforced, at least in
the case of a uniform system. We put
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V(x ,y) = gd3(x 2 y), (42)

where

g = 4p"2a/m. (43)

The functionsr andD now depend only onx :

r (x ) = kc†(x )c (x )l = O
n

vn(x )v*
n (x )

D (x ) = kc (x )c (x )l = 2 O
n

un(x )v*
n (x ). (44)

Note thatr is the depletion of the condensate due to
interactions. Equations (29), (30), and (31) reduce to

[h + 2gr + g|f |2]f + gDf * = 0, (45)

(h + 2gr + 2gf *f )un 2 g(D + f2)vn = eun,
(h + 2gr + 2gf *f )vn 2 g(D * + f *2)un = 2 evn, (46)

where we have suppressed thex dependence of the func-
tions. The dilute uniform hard-sphere gas is recovered
by settingr = D = 0, for they give higher-order contri-
butions.

Forr = D = 0, Eq. (45) is the ‘‘nonlinear Schro¨dinger
equation’’ [21] [22], which has been widely used in
numerical studies of the condensate and its excitations
[23]. One should be aware, however, thatr andD may be
important, especially for the excitations.

In the uniform case, withVext = 0, we obtain, in the
notation of the last section,

tanh 2sk =
g(n 2 r + D )

ek + g(n 2 r 2 D )
, (47)

whereek = "2k2/2m, and the chemical potentialm has
been eliminated in terms of the densityn. The self-con-
sistency conditions [Eq. (44)] then lead to

r =
1

4p2 EL

0

dkk2{ fk[ek + g(n 2 r 2 D )] 2 1},

D = 2
g

4p2 EL

0

dkk2fk(n 2 r + D ), (48)

where

fk = [ek
2 + 2gek(n 2 r 2 D ) 2 4g2(n 2 r )D ]21/2. (49)

The integrals are cut off atL , because otherwiseD
would be divergent. Solving forD from the second equa-
tion, we obtain in the limitL → `

D 2 r + n = 0. (50)

The first equation then gives, in the limitL → `,

r = 0. (51)

That is, there is no depletion of the condensate. It is then
straightforward to show that the system is an ideal Bose
gas. This result is reassuring; it shows that the method
is able to verify that thed -function potential has no
effect.

7. Self-Consistent Field Method: Finite
Temperatures

To extend the variational approach to finite tempera-
tures, we can use the eigenstates ofHeff to calculate the
partition function, and then minimize the free energy

F = kH l 2 TS, (52)

where the brackets now denote thermal average with
respect toHeff, and S is the entropy. De Gennes [19]
argues that the quantity

Feff = kHeffl 2 TS (53)

is stationary, and implements the variational principle by
minimizing F 2 Feff. But the assertion is correct only if
Swere defined with respect to the eigenvalue spectrum
of Heff. In fact, as we explain below,S is defined with
respect to the energy levelska |H |a l, where |a l are the
eigenstates ofHeff. The finite-temperature results in Ref.
[19] are therefore incorrect.

A proper variational principle for the free energy [24]
is based on the inequality

O
a

ka |e2bH|a l $ O
a

e2bka|H|al. (54)

This shows that, to calculate the trial partition function,
we must use the energy spectrum

Wa = ka |H |a l. (55)

In contrast, the other scheme leads to a free Bose gas
with single-particle energyen, the eigenvalues from
Eqs. (30) and (31). Because of the simplicity, it is
widely used in the literature; but it does not follow from
a variational principle.

As an example of the difference between the two
schemes, the calculation of the partition of a hard-
sphere Bose gas in Ref. [25] corresponds to using Eq.
(55), and yields the virial coefficients in the gas phase.
On the other hand, a calculation based on the other
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scheme would give a free Bose gas above the transition
temperature.

8. Gaussian Variational Method

We go to a representation in which the field operator
C (x ) and its conjugate have the forms

C (x ) =
1

Ï2
Fw (x ) +

d
dw (x )G,

iC†(x ) =
i

Ï2
Fw (x ) 2

d
dw (x )G, (56)

wherew (x ) is ac-number function. The more familiar
representation, in whichC is diagonal, would be awk-
ward to use in a non-relativistic case, in whichC and
iC† are canoncial conjugates. (A similar situation hap-
pens in a relativistic fermion field obeying the Dirac
equation.)

The state of the system is described by a wave func-
tional F [w ]. We use a Gaussian form for a trial wave
functional:

F [w ] = C expH2
1
4E d3xd3y[w (x )

2 w0(x )]G21(x ,y)[w (y) 2 w0(y)]J, (57)

whereC is a normalization constant andw0 andG(x ,y)
are the variational parameters. Expectation values are
given by functional integrals, for example

kH l = E (Dw )F *[w ]HF [w ] (58)

whereF is normalized to unity. It is easy to show that

kC (x )l = w0(x ),
kw (x )w (y)l = G(x ,y) + w0(x )w0(y). (59)

The variational principle states that

d kH l
dG(x ,y)

= 0,
d kH l

dw0(x )
= 0. (60)

The equation obtained forG andw0 will not be given
directly. To make contact with the self-consistent field
method, we quote the results

r (x ,y) ≡ kc (x )†c (y)l

=
1
2 F1

4
G21(x ,y) + G(x ,y) 2 d3(x 2 y)G,

D (x ,y) ≡ kc (x )c (y)l

= 2
1
2 F1

4
G21(x ,y) 2 G(x ,y)G. (61)

For further analysis, it is convenient to introduce

X(x ,y) ≡ 1

2Ï2
FG21/2(x ,y) + 2G1/2(x ,y)G,

Y(x ,y) ≡ 1

2Ï2
FG21/2(x ,y) 2 2G1/2(x ,y)G. (62)

it easy to show thatr (x ,y) = e d3zY(x ,z)Y(z,y), and
D (x ,y) = 2 e d3zX(x ,z)Y(z,y). Now expandX andY in
terms of a basis {bn(x )}:

X(x ,y) = O
n

Xnbn(x )bn
*(y),

Y(x ,y) = O
n

Ynbn(x )bn
*(y), (63)

whereXn andYn are real. We then find

r (x ,y) = O
n

bn(x )bn
*(y)Yn

2,

D (x ,y) = 2 O
n

bn(x )bn
*(y)Xn

2. (64)

Comparison with Eq. (36) leads to the identification

un(x ) = bn(x )Xn,
vn(x ) = bn(x )Yn. (65)

This shows the equivalence between this method and the
self-consistent field method.

One of the advantages of the Gaussian method lies in
the possibility of generalization to the ‘‘time-dependent
Hartree-Fock’’ method [26,27], which has been used
successfully in nuclear physics. One of us (P.T.) plans to
discuss this in a separate publication.
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