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Abstract: For a dilute, interacting Bose gas of magnetically-trapped
atoms at temperatures below the critical temperature T0 for Bose-
Einstein condensation, we determine the second-order coherence func-
tion g(2)(r1, r2) within the framework of a finite-temperature quantum
field theory. We show that, because of the different spatial distribu-
tions of condensate and thermal atoms in the trap, g(2)(r1, r2) does
not depend on |r1 − r2| alone. This means that the experimental de-
terminations of g(2) reported to date give only its spatial average. Such
an average may underestimate the degree of coherence attainable in an
atom laser by judicious engineering of the output coupler.
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1. Introduction

The experimental demonstration of Bose-Einstein condensation (BEC) in magnetically-
trapped atomic gases [1, 2, 3] has focused interest on the prospects for constructing a
source of coherent matter waves, or “atom laser.” Indeed, a prototype device of this
type has recently been demonstrated, [4] and the first-order coherence properties of
BEC atom-sources have been demonstrated by the observation of interference fringes in
collisions of separately prepared BECs. [5] There is some controversy over the use of the
laser analogy to describe such systems, [6] in part because the theory of coherence has
not yet been as fully developed for matter-wave as for optical-wave sources. Neverthe-
less, the rapid progress of this field has motivated practical definitions of matter-wave
coherence based on optical analogies, and recent papers have presented determinations
of coherence functions of BEC systems based on measurements of three-body decay
rates [7] and measurements of the release energies of trapped gases.[8] We believe that a
first-principles model of matter-wave coherence is needed to provide a framework within
which the results of such experiments can be quantified. This paper presents an outline
of such a theory, and describes several qualitative implications that the theory presents
for future experiments.

Our treatment is based on a straightforward ]application of the quantum field
theory of atoms, and it leads to one key result that appears to be of general validity.
Current BEC systems are produced in atom traps, and so they are intrinsically inho-
mogeneous. Thus, measurements of coherence functions, such as those given in Burt et
al. [7] and Ketterle and Miesner, [8] are actually determinations of the average of a local
coherence function over an extended inhomogeneous system. Moreover, the condensed
and non-condensed (“thermal”) fractions of the atomic gas are distributed differently
over the trap, and they make separate and distinct contributions to the local coherence
function. In simple models of a dilute interacting gas, we show that the local coherence
function is related directly to the spatially-resolved condensate fraction f(r) of the gas.
For Bose gases with repulsive pair interactions (scattering length a > 0), the condensed
and thermal components of the gas are largely segregated: the condensate is localized
near the center of the trap, from which it expels the thermal cloud by the repulsive
interaction. [9] Thus, even for systems that measurements show to have a significant
net fraction of thermal atoms, it may be possible to selectively extract an atomic beam
with the coherence properties of a nearly pure condensate by using an appropriately
designed output coupling scheme.

We proceed by outlining the quantum field theory of the second–order coherence
function, treating the equal–time or stationary case as this is of greatest interest to
current experiments. The formalism is applied in explicit calculations of two cases:
an ideal Bose gas in a spherical trap; and an interacting 87Rb gas in the JILA TOP
trap. [1] Similar results obtained for the third–order coherence function will be presented
elsewhere.

2. Coherence of matter waves

When a Bose gas undergoes condensation there are changes in its first–order coherence
function. In fact, the appearance of the condensate induces off–diagonal, long–range
order (ODLRO), as explained by Penrose and Onsager. [10] In company with the op-
tical case we come across the point of view [11] that a coherent laser field cannot be
distinguished through its first–order coherence function from a filtered chaotic field of a
thermal source: for example, one sees the same Young’s double–slit interference patterns
from a laser as from a conventional light source. In the case of the gas we might then be
led to observe that a condensate is, as far as its first–order, equal–time, matter–wave co-

#2369 - $10.00 US Received September 4, 1997; Revised November 6, 1997

(C) 1997 OSA 10 November 1997 / Vol. 1, No. 10 / OPTICS EXPRESS  286



herence function is concerned, equivalent to a filtered (but remarkably intense) chaotic
deBroglie wave source.

The second–order coherence function arises in optics as a descriptor of the corre-
lation between two separate photon–detection events, and, as emphasized by Walls [11],
it is among the most elementary constructs that provides a clear contrast between
quantum–mechanical and classical descriptions of the radiation field. So also in the
case of atoms, the second–order coherence function shows unequivocal effects of Bose-
Einstein condensation; thus it highlights the distinctions of the quantum–field–theoretical
properties of a BEC vs. those of matter waves from a thermal source.

We now derive the zero–separation, equal–time, second–order coherence func-
tion for matter fields, presenting it in terms equivalent to those used by Glauber [12]
to treat optical fields. We work within the framework of the Popov approximation to
Hartree-Fock-Bogoliubov theory, [13, 14, 15, 16] as defined by Griffin. [16] As discussed
in Sec. 4, this theory has been found to give an excellent description of the thermody-
namics of the partially–condensed Bose gas, and, at least for condensate fractions above
about 50%, a good account of condensate collective excitation frequencies. However, we
note that the theory of the finite–temperature Bose gas still has many open questions.

The second–order coherence function is defined as [12]

g(2) (r1, r2) =

〈
ψ̂† (r1) ψ̂† (r2) ψ̂ (r2) ψ̂ (r1)

〉
〈
ψ̂† (r1) ψ̂ (r1)

〉〈
ψ̂† (r2) ψ̂ (r2)

〉 , (1)

where ψ̂(ri) is the Bose field operator which annihilates an atom at position ri. The
Bose field operators obey the usual commutation relations[

ψ̂(r1), ψ̂†(r2)
]

= δ(r1 − r2),
[
ψ̂(r1), ψ̂(r2)

]
=
[
ψ̂†(r1), ψ̂†(r2)

]
= 0. (2)

Under the Popov approximation, the confined Bose gas is portrayed as a ther-
modynamic equilibrium system under a restricted grand canonical ensemble [17] whose
thermodynamic variables are N , the total number of trapped atoms; T , the absolute
temperature; and either N0, the number of condensate atoms, or µ, the chemical po-
tential. The system Hamiltonian has the form

K ≡ H − µN =

∫
drψ̂†(r)(H0 − µ)ψ̂(r)

+
U0

2

∫
drψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) , (3)

where H0 = − h̄2

2M∇
2 + Vtrap(r) is the bare trap Hamiltonian, with trapping potential

given by Vtrap(r) = M
(
ω2
ρρ

2 + ω2
zz

2
)
/2, with ωρ and ωz =

√
8ωρ being the radial and

axial trap frequencies; and U0 = 4πh̄2a/M is a measure of the interaction strength be-
tween atoms, with a being the scattering length for zero–energy binary atomic collisions.

The Bose field operator is written as the sum of a c-number condensate wave
function, ψ(r), and a fluctuation term, ψ̃(r) which can be decomposed into a sum of
quasi–particle modes

ψ̂(r) = ψ(r) + ψ̃(r) = ψ(r) +
∑
j

[
uj(r)αj + v∗j (r)α†j

]
. (4)

where α†j and αj are operators that, respectively, create and destroy the jth mode. These
operators satisfy the following commutation relations

[αj, α
†
k] = δjk, [αj, αk] = [α†j, α

†
k] = 0. (5)
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When the quasi–particle amplitudes, uj(r) and vj(r) satisfy Eqs. (13), the Popov Hamil-
tonian has the diagonal form

K̂ =
∑
j

Ejα
†
jαj. (6)

The ensemble average of an operator Ô is given by [13]

〈
Ô
〉

=
Tr
[
Ôe−βK̂

]
Tr
[
e−βK̂

] . (7)

From this equation it is clear that
〈
ψ̃
〉

= 0 and products of three ψ̃ operators will vanish

as well as they consist of sums containing products either one or three quasi–particle
creation and annihilation operators.

We decompose the field operator and expand the numerator in Eq. (1) evaluated
at zero separation (r1 = r2 ≡ r) and take the ensemble average. Under the Popov

approximation anomalous averages such as
〈
ψ̃ψ̃
〉

are assumed negligible, after some

algebra we find that

g(2) (r, r) = 1 +
1

n(r)

{
2 |ψ(r)|2 ñ(r) + ñ2(r)

}
. (8)

In the above equation, ñ(r) =
〈
ψ̃†(r)ψ̃(r)

〉
is the thermal–atom density and n(r) =

|ψ(r)|2 + ñ(r) is the total density. The coherence function can then be written in the
simple form

g(2)(r, r) = 2− f2(r), (9)

where f(r) = |ψ(r)|2/n(r), the spatially resolved condensate fraction, is the ratio of
the condensate density to the total density at position r. This equation is relevant to
recent experiments such as the determination of decay rates [7, 18, 19] and expansion
energies. [8] It also agrees in the appropriate limit with that for a homogeneous gas, [19]
where f , the condensate fraction, is independent of r; in that case, g(2) is simply a
function of temperature T . However, as we have suggested above and shall show below,
in current experiments f(r) depends strongly upon r. Note that g(2)(r, r) = 2 for a
thermal gas without condensation and g(2)(r, r) = 1 for a pure BEC.

3. Second-order coherence of the ideal trapped Bose gas

We first outline the behavior of the second–order coherence function for an ideal Bose
gas of atoms of mass M confined in a spherical harmonic potential with angular fre-
quency ω; the next section treats the effects of interactions and trap anisotropy. The
spatially–resolved condensate fraction f(r) ≡ f(r) for the noninteracting trapped gas at
temperature T can be computed directly from known results for the harmonic oscillator
system: [20]

f(r) =

[
1

N0

∞∑
k=1

e−βk(ε0−µ)

[1− e−2βkh̄ω]
3/2

e(r/d)2{1−tanh(βkh̄ω/2)}

]−1

, (10)

where N0 is the number of condensate atoms, ε0 = 3
2 h̄ω is the ground–state energy of

a single atom in the trap, β = 1/kBT with kB being the Boltzmann constant, µ is the
chemical potential, and d =

√
h̄/Mω is the characteristic length scale of the single–atom

ground state wavefunction, which in this case is the same as the condensate wavefunction
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(in the discussion of anisotropic traps, our definition of d uses the geometric mean of
the trap frequencies). In the low–temperature limit βh̄ω � 1, we find that f(r) reduces
to a form in which we can identify a characteristic length, R(T ), at which f(R) = 1/2:

R(T ) = d eβh̄ω/2
(

ln [N0]

2

)1/2

, (11)

where Figure 1 shows a false-color plot of g(2)(r) ≡ g(2)(r, r) vs. reduced temperature,
T/T0, for N = 40, 000 87Rb atoms in a spherical trap with ν = ω/(2π) = 200 Hz. Here
T0 is the critical temperature for an ideal trapped gas in the semiclassical limit;[21, 22]
the transition temperatures of interacting, finite-N systems are somewhat lower than
T0. The sharp blue → red transition shows that R(T ) defines an appropriate length
scale over a large range of temperatures, even though it was derived only in the low
temperature limit, T � h̄ω/kB , with N0 � 1.

T/T0

r/R(T)

0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.51.00.5

Figure 1. A false-color plot of g(2)(r) vs. reduced temperature, T/T0, and radial
trap coordinate r, for N = 40000 87Rb atoms in a spherical trap with ν = 200 Hz.
The coherence length R(T ) is given by Eq. 11. Blue corresponds to g(2) = 1 viz.
coherence characteristicof a laser source; red to g(2) = 2 viz. coherencecharacteristic
of a thermal source. It is apparent that R(T ) defines the typical length scale over
which laser-like coherence is maintained.

4. Interacting trapped gas

We have computed the second–order coherence function for a confined, interacting Bose
gas using the Hartree–Fock–Bogoliubov (HFB) theory within an approximation origi-
nally introduced by Popov. [15, 16, 23] The HFB–Popov theory is a finite-temperature
extension of Bogoliubov mean–field theory, which provides self-consistent treatment of
the condensed and thermal components of the gas. The zero–temperature limit of this
theory, which leads to the familiar Gross-Pitaevskii (GP) equation, has been found to
describe accurately experimental values of condensate geometries, [24, 25] excitation
frequencies, [26, 27, 28] and internal energies [29] for very cold condensates. The finite–
temperature HFB–Popov treatment gives excellent agreement with experimental data
on condensate fractions and transition temperatures [30, 31]; as for collective excitation
frequencies, it appears to agree well with experiments for temperatures corresponding
to thermal gas fractions of up to about 50%, though its validity at higher tempera-
tures is uncertain. We have reported details of this approach and its comparison with
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experiment in a separate publication, [32] and only summarize the underlying ideas
here.

We treat systems of several thousand 87Rb atoms in the JILA TOP trap.
Following the approach of Sec. 2, we decompose the Bose field operator into a c–
number condensate wave function plus an operator describing the non–condensate part:

ψ̂(r) = N
1/2
0 φ(r) + ψ̃(r) and insert into Eq. (3). Linearization of this equation in the

operators ψ̃(r), leads [15, 16, 23, 32] to a generalized GP equation for φ(r){
H0 + U0

[
N0 |φ(r)|2 + 2ñ(r)

]}
φ(r) = µφ(r), (12)

and to equations for quasi–particle amplitudes uj(r) and vj(r),

Luj(r) +N0U0 |φ(r)|2 vj(r) = Ejuj(r)

Lvj(r) +N0U0 |φ(r)|2 uj(r) = −Ejvj(r) , (13)

where where L ≡ H0 + 2U0n(r) − µ and the Ej, the quasi–particle energies, are

determined as eigenvalues. The quasi–particle amplitudes generate ψ̃(r) via ψ̃(r) =∑
j(uj(r)αj + v∗j (r)α†j), where αj, α

†
j are quasi–particle annihilation and creation oper-

ators satisfying the usual Bose commutation relations.
The density of the thermal component of the gas ñ(r) can be written in terms

of the quasi–particle amplitudes as

ñ(r) =
∑
j

{[
|uj(r)|2 + |vj(r)|2

]
Nj + |vj(r)|2

}
, (14)

where Nj =
(
eβEj − 1

)−1
. The total number of trapped atoms, N , is given by

N =

∫
dr n(r) = N0 +

∫
dr ñ(r). (15)

Equations (12), (13), (14), and (15) form a closed system of equations that we
refer to as the “HFB–Popov” equations (our version of Eq. (13) differs from that of
Hutchinson et al. [23] via a sign change in the definition of vj(r)). Numerical solution
of these equations proceeds by choice of state variables {T, µ, N}: for fixed T and µ, N
is determined by solving the HFB–Popov equations, iteratively, to self-consistency.

Figure 2 shows the coherence function g(2)(r, r) that emerges from such cal-
culations for a sample of 2000 87Rb atoms in the JILA TOP trap with ωρ/(2π) = 74
Hz at T = 40 nK, a temperature at which the condensate fraction is approximately
50%. The solid line shows the value of g(2) for the interacting sample, calculated by the
HFB-Popov theory, and the dashed line shows the same calculation for a noninteracting
sample. As can be seen, the repulsive atomic interactions extend the coherence length
of the sample. This is due to two mechanisms: repulsive interactions between atoms of
the condensate cause it to swell; and condensate atoms repel thermal atoms, leading to
a more sharply defined variation of f(r). These mechanisms are clearly manifested in
the animated sequence of figures that follows below. Near the trap center, however, the
ideal gas has a coherence closer to unity, since the peak density of a ideal gas condensate
is substantially higher than that of an interacting one.
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Figure 2. A plot of g(2) (r) versus r/d for 2000 87Rb atoms in the JILA TOP
trap at 40 nK, with ωρ/(2π) = 74 Hz. The figure displays the variation in the plane
z = 0, with r being the cylindrical radius.

Figure 3. Animation of surface plots of the scaled total densities, n(r)d3, ver-
sus ρ/d and z/d, for 2000 87Rb atoms in the JILA TOP trap with νρ = 74 Hz,
at temperatures as labelled in each frame. The critical temperature T0 for this
system is ≈ 59 nK. The height of the surface is proportional to the density, the
peak value displayed in these frames being ≈ 5 × 1013cm−3; the (dimensionless) z
and ρ coordinates attain maximum values of 6 and 12, respectively; and the color
shading represents the zero-separation, second-order coherence function of the sys-
tem, g(2)(r, r). Blue indicates high coherence (g(2) ∼ 1), while red indicates low
coherence (g(2) ∼ 2).

Figure 3 shows an animated representation of the condensate density and spa-
tially resolved second–order coherence function as a function of temperature for a con-
densate confined in the JILA TOP trap. The height of the plotted surface in each frame
displays the total trapped–atom density in a plane that contains the trap axis, while
the false–color shading exhibits the value of g(2)(r, r). The blue–colored areas indicate
laser–like coherence (g(2) = 1), while red–colored areas depict thermal–like coherence
(g(2) = 2). Each frame of the animated sequence exhibits the density and coherence
of the trapped atoms at a lower temperature than the previous one. The effect of the
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thermal–atom density in this sequence of frames is quite subtle and can be discerned by
watching the ρ and z axes as the animation progresses through the frames. One will see
the ρ axis (white dotted line) being uncovered first (since the radial direction is more
weakly confined than the axial direction in the JILA TOP trap) as T decreases followed
by the uncovering of the z axis.

The above animation shows that the onset of a region containing coherent
atoms is quite sudden and tends to occupy a large volume as T decreases. Furthermore,
it is clear from this sequence that the condensate density (roughly the blue regions)
far exceeds the thermal–atom density. The repulsion mechanisms discussed above are
clearly in play.

5. Implications for experiment

We have shown that for a dilute Bose gas of magnetically-trapped atoms at temperatures
below the critical temperature T0, the second-order coherence function g(2)(r1, r2) does
not depend on |r1 − r2| alone, as would be the case for a homogenous system. Instead,
it exhibits significant dependence upon the trap spatial coordinates, and it reflects the
relative purity of the condensate. For cases of repulsive interaction, regions of high
relative purity are more extensive than those encountered in the ideal Bose gas.

Ketterle and Miesner [8] have noted that for a zero–range atomic pair interac-
tion, the mean–field energy U of a Bose gas satisfies U ∝

∫
dr g(2)(r, r) n2(r). Exper-

imental measurement of U can be made by observing the expansion of the gas upon
dropping the trap. [29] If it is assumed that, as is the case in a homogeneous system,
g(2)(r, r) is independent of r, i.e. g(2)(r, r) = g(2)(0), then g(2)(0) can be obtained di-
rectly from experimental measurements of U and n(r). A similar idea is employed by
Burt et al., [7] who infer a value of g(3)(0) from a three-body decay rate. However,
according to the picture we have developed in this paper, the release–energy measure-
ments actually determine a spatially–averaged value of g(2)(r, r). Thus, the analysis of
Ref. [8] gives g(2)(0) =

[∫
dr g(2)(r, r) n2(r)

]
/
[∫
dr n2(r)

]
, rather than a value of g(2)

that characterizes the sample as a whole. For very cold samples that are nearly pure
condensates, the density–weighted variance in the distribution of g(2)(r, r) will be small,
but quantitative investigations of the coherence properties of partially-condensed gases
will have to account for effects of spatial dependence.

The expanded volume of high coherence that is induced by the condensate–cloud
repulsion mechanism can have a positive impact on atom–laser design. For example, one
scheme for out–coupling atoms from a condensate involves focussing two lasers into the
condensate to cause transitions between trapped and untrapped magnetic sublevels via a
two–photon Raman transition, and can in principle allow beam extraction from specific
regions of the trap. Thus, even if one can only generate large condensates at relatively
high temperatures, it may still be possible to extract a relatively pure condensate even
in the presence of a substantial thermal component of the gas. In addition, we note that
the effective segregation of condensate and non–condensate atoms may have favorable
implications for loss rates associated with depolarizing atomic collisions. Two–body
collisional rates are proportional to g(2), so there is a higher rate of collisional loss per
unit density in the thermal cloud than in the condensate.
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