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Abstract

 We report on progress in the development and application of a coupled Boundary

Element/Finite Volume Method temperature-forward/flux-back algorithm developed to solve

conjugate heat transfer arising in 3-D film-cooled turbine blades. Here, heat conduction within

the blade is coupled to heat transfer in the external fluid flow field that is convecting heat into/or

out of the blade. In the BEM formulation no interior mesh is generated and the surface heat flux

is computed in the solution. We adopt a loosely coupled strategy where each set of field

equations, Navier-Stokes for the external field and heat conduction for the internal field, is

solved to provide boundary conditions for the other. The equations are solved in turn until

iterative convergence criteria requiring continuity of temperature and heat flux are met at the

fluid-solid interface. The NASA-Glenn turbomachinery Navier-Stokes code Glenn-HT is coupled

to a 3-D BEM steady state heat conduction solver. Glenn-HT is a multi-block cell-centered finite

volume explicit code using a  multi-stage Runge-Kutta based multigrid method time marching.

The steady-state solution is sought by marching in time until dependent variables reach their

steady-state values. The steady heat conduction equation is solved using the BEM with

isoparametric bilinear discontinuous elements. We choose to employ discontinuous elements as

they provide high levels of accuracy in computed heat flux values without resorting to special

treatment of corner points required by continuous elements particularly when first kind boundary

conditions are imposed to the conduction solver as is the case in the algorithm adopted in this

paper. Moreover, the use of discontinuous elements throughout the BEM model eliminates much

of the overhead associated with continuous elements, in particular, there is no need to generate,

store, or access a connectivity matrix when using discontinuous elements. Details of the

interpolation used to exchange nodal temperature and flux information from the disparate CFD

and BEM grids are discussed. Results from a CHT numerical simulation of a 3-D film-cooled

blade section are presented and are compared with those obtained from the standard approach of
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a two temperature model. A significant difference in the level and distribution of the metal

temperatures is found between the two models.

 Finally, current developments of an iterative strategy accommodating large numbers of

unknowns by an artificial subsectioning of the blade are presented. The blade is subsectioned in

the spanwise direction and a specially tailored iterative scheme is developed to solve the

conduction problem with each subsection BEM problem solved using a direct LU solver. An

adiabatic intial guess may be made for the sub-structure interface BEM nodes. Although the

iterative method converges in some cases the iteration may be slow to converge. A better initial

guess is provided via a physically-based initialization of the substructure interfacial temperatures.

This is shown to provide an effective starting point for the iterative algorithm and significantly

reduce the number of iterations required to achieve convergence. Results from several

simulations in 2-D and 3-D show the process converges efficiently and offers substantial

computational and storage savings.
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1 Introduction

 Engineering analysis of complex mechanical devices such as turbomachines requires

ever-increasing fidelity in numerical models upon which designers rely in their efforts to attain

demanding specifications placed on efficiency and durability of modern machinery.

Consequently, the trend in computational mechanics is to adopt coupled-field analysis to obtain

computational models which attempt to better mimic the physics under consideration, see Kassab

and Aliabadi [1]. The coupled field problem which we address in this paper is conjugate heat

transfer (CHT): the coupling of convective heat transfer external to the solid body of a thermal

component coupled to conduction heat transfer within the solid body of that component, see

Figure 1. Conjugate heat transfer thus applies to any thermal system in which multi-mode

convective/conduction heat transfer is of particular importance to thermal design, and thus CHT

arises naturally in most instances where external and internal temperature fields are coupled.
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Figure 1. CHT problem: external convective heat transfer coupled to heat conduction within the
solid.

 Conjugacy is often ignored in most analytical solutions and numerical simulations. For

instance, it is common practice in analysis of turbomachinery, Heidmann et al. [2], to carry out

separate flow and heat conduction analyses. Heat transfer coefficient as well as film effectiveness

values are predicted using two independent external flow solutions each computed by imposing a

different constant wall temperature at the surfaces of the turbine blade exposed to hot gases and

film cooling air. The film effectiveness determines the reference temperature for the computed

film coefficients. In turn, these values are used to impose convective boundary conditions to a
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conduction solver to obtain predicted metal temperatures. As will be shown in the example

section of this paper, the shortcomings of this approach which neglects the effects of the wall

temperature distribution on the development of the thermal boundary layer are readily overcome

by a CHT analysis in which the coupled nature of the field problem is explicitly taken into

account in the analysis.

  There are two basic approaches to solving coupled field problems. In the first approach, a

direct coupling is implemented in which different fields are solved simultaneously in one large

set of equations. Direct coupling is mostly applicable for problems where time accuracy is

critical, for instance, in aero-elasticity applications where the time scale of the fluid motion is on

the same order as the structural modal frequency. However, this approach suffers from a major

disadvantage due to the mismatch in the structure of the coefficient matrices arising from

BEM,  FEM and/or FVM solvers. That is, given the fully populated nature of the BEM

coefficient matrix, the direct coupling approach would severely degrade numerical efficiency of

the solution by directly incorporating the fully populated BEM equations into the sparsely banded

FEM or FVM equations. A second approach which may be followed is a loose coupling strategy

where each set of field equations is solved separately to produce boundary conditions for the

other. The equations are solved in turn until an iterated convergence criterion, namely continuity

of temperature and heat flux, is met at the fluid-solid interface. The loose coupling strategy is

particularly attractive when coupling auxiliary field equations to computational fluid dynamics

codes as the structure of neither solver interferes in the solution process.

 Several approaches can be taken to solve coupled field problems and most are based on

either finite elements (FEM) or  finite volume methods (FVM), or a combination of these two

field solvers. Examples of such loosely coupled approaches applied to a variety of CHT problems

ranging from engine block models to turbomachinery can be found in Comini et al. [3], Shyy and

Burke [4] Patankar [5], Kao and Liou [6], Hahn et al. [7],  Bohn et al. [8,9], and in Tayla et al., 

[10] where multi-disciplinary optimization is considered for CHT modeled turbine airfoil

designs.  Hassan et al. [11] develop a conjugate algorithm which loosely couples a FVM-based
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Hypersonic CFD code to an FEM heat conduction solver in an effort to predict ablation profiles

in hypersonic re-entry vehicles. Here, the structured grid of the flow solver is interfaced with the

un-structured grid of heat conduction solvers in a quasi-transient CHT solution tracing the re-

entry vehicle trajectory. Issues in loosely coupled analysis of the elastic response of solid

structures perturbed by external flowfields arising in aero-elastic problems can be found in

Brown [12] and Dowell and Hall [13]. In either case, the coupled field solution requires complete

meshing of both fluid and solid regions while enforcing solid/fluid interface continuity of fluxes

and temperatures, in the case of CHT analysis, or displacement and traction, in the case of aero-

elasticity analysis.

 A different approach taken by Li and Kassab [14,15] and Ye et al. [16] who develop a

BEM-based CHT algorithm thereby avoiding meshing of the solid region for the conduction

solution. The method couples the boundary element method (BEM) to a FVM Navier-Stokes

solver and was applied to solving two-dimensional steady state compressible subsonic CHT

problems over cooled and uncooled turbine blades. The conduction problem requires solution of

the Laplace equation for the temperature (or the Kirchhoff transform in the case of temperature

dependent conductivity), and, as such, only requires a boundary discretization thereby

eliminating the onerous task of grid generation within intricate regions of the solid. The boundary

discretization utilized to generate the computational grid for the external flow-field can be

considerably coarsened to provide the boundary discretization required for the boundary element

method. Most modern grid generators used in computational fluid dynamics, for instance,

GridPro  [17], the topology-based algebraic grid generator used in the examples presented inTM

this paper, allow for the multigrid option. Several levels of coarse discretization can thus be

readily obtained. Furthermore, the BEM/FVM method offers the additional advantage of

providing heat flux values and this stems from the fact that nodal unknowns which appear in the

BEM are the surface temperatures and heat fluxes. Consequently, solid/fluid interfacial heat

fluxes which are required to enforce continuity in CHT problems are naturally provided by the

BEM conduction analysis. This is in sharp contrast to domain meshing methods such as FVM
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and FEM where heat fluxes are computed by numerical differentiation in a post-processing stage.

He et al. [18,19] adopted the BEM/FVM approach in further studies of CHT in incompressible

flow in ducts subjected to constant wall temperature and constant heat flux boundary conditions.

Kontinos [20] also adopted the BEM/FVM coupling algorithm to solve the CHT over metallic

thermal protection panels at the leading edge of the X-33 in a Mach 15 hypersonic flow regime.

Rahaim and Kassab [21] and Rahaim et al. [22] adopt a BEM/FVM strategy to solve time-

accurate CHT problems for supersonic compressible flow over a 2-D wedged, and they present

experimental validation of this CHT solver. In their studies, the dual reciprocity BEM [23] was

used for transient heat conduction, while a cell-centered FVM was chosen to resolve the

compressible turbulent Navier-Stokes equations.

 In this paper, we report on progress in the development and application of a BEM-based

temperature forward/flux back (TFFB) coupling algorithm developed to solve conjugate heat

transfer (CHT) arising in 3-D film-cooled turbine blades. The NASA-Glenn turbomachinery

Navier-Stokes code Glenn-HT is coupled to a 3-D BEM steady state heat conduction

solver[24,25]. The steady-state solution is sought by marching in time until dependent variables

reach their steady-state values, and, as such, intermediate temporal solutions are not physically

meaningful. In this mode of solving the steady-state problem, time-marching can be viewed as a

relaxation scheme, and local time-stepping and implicit residual smoothing are used to accelerate

convergence. The steady heat conduction equation reduces to the Laplace equation,  and it is

solved using the BEM with isoparametric bilinear discontinuous elements. We choose to employ

discontinuous elements as they provide high levels of accuracy in computed heat flux values

especially at sharp corners regions where first kind boundary conditions are imposed without

resorting to special treatment of corner points required by continuous elements in particular when

first kind boundary conditions are imposed [26,27]. In this application, sharp corners occur in

many locations and first kind boundary conditions are imposed on all metal surfaces. Moreover,

the use of discontinuous elements throughout the BEM model eliminates much of the overhead
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associated with continuous elements, in particular, there is no need to generate, store, or access a

connectivity matrix when using discontinuous elements.

 In order to resolve the flow physics, the CFD grid must be clustered in many regions. The

BEM grid does not require such fine clustering and consequently the two grids are of quite

different coarseness. The details of the interpolation used to exchange nodal temperature and flux

information from the disparate CFD and BEM grids are presented. Results from a CHT

numerical simulation of a 3-D film-cooled blade section are presented and results are compared

with those obtained from the standard approach of a two temperature model. Significant

difference in the level and distribution of the metal temperature is found between the two-

temperature and CHT models. Finally, in order to address the large number of unknowns

appearing in the 3-D BEM model, current developments of a strategy of artificial subsectioning

of the blade are presented. Here, the approach is to subsection the blade in the spanwise

direction. A specially tailored iterative scheme is developed to solve the conduction problem

with each subsection BEM problem solved using a direct LU solver. A physically based initial

guess is used to provide a good starting point for the iterative algorithm. Results from 2-D and

3-D simulations show the process converges efficiently and offers substantial computational and

storage savings.

 

2 Governing Equations

 We first present the governing equations for the coupled field problem under

consideration. The CHT problems arising in turbomachinery involves external flow fields that

are generally compressible and turbulent, and these are governed by the compressible Navier-

Stokes equations supplemented by a turbulence model. Heat transfer within the blade is governed

by the heat conduction equation. Linear as well as non-linear options are considered. However,

fluid flows within internal structures to the blade, such as film cooling holes and channels, are

usually low-speed and incompressible. Consequently, density-based compressible codes tend to

experience numerical difficulties in modeling such flows, unless low Mach number pre-

7NASA/CR—2003-212195



conditioning is implemented, see Turkel [28,29]. The Glenn-HT code is specialized to

turbomachinery applications for which air is the working fluid and which is modeled as an ideal

gas.

2.1 Governing Equations for The Flow Field

 The governing equations for the flow field are the compressible Navier-Stokes equations,

which describe the conservation of mass, momentum and energy. These can be written in integral

form as

� � �� �
� ��

��

��
� � � � � 	 
� � ��~

~ ~ ~ (1)� � �

where  denotes the volume,  denotes the surface bounded by the volume , and  is the� � � 


outward-drawn normal. The conserved variables are contained in the vector ~� � � � �� ��� � �

� � � �� � ��� �� �� � � �� �� �� � �� � � � , where,    ,  are the density, the velocity components in - -,

and -directions, and the specific total energy. The kinetic energy of turbulent fluctuations is�

denoted by  and the specific dissipation rate  appear in the two equation -  Wilcox� �� �

turbulence model [30, 31] with modifications by Menter [32] and Chima [33] as implemented in

Glenn-HT. The vectors  and  are convective and diffusive fluxes respectively,  is a vector~ ~ ~� � �

containing all terms arising from the use of a non-inertial reference frame as well as production

and dissipation of turbulent quantities. The working fluid is air, and it is modeled as an ideal gas.

A rotating frame of reference can be adopted for modeling of rotating flows. The effective

viscosity is given by

� � �� �� �  (2)

where  = . The thermal conductivity of the fluid is then computed by a Prandtl number� � �� ��

analogy where

� � �
� � � � � �

�
� �

� �

� � �

�
� � (3)
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and  is the Prandtl number and  is the specific heat ratio. The subscripts  and  refers to� � � ��

laminar and turbulent values respectively.

2.2 The Governing Equations of the Heat Conduction Field

 In the steady-state CHT solutions obtained in this paper, the NS equations are solved to

steady state by a time marching scheme converging towards steady-state. A steady heat

conduction analysis is carried out using the BEM at each time level chosen for the external flow-

field and internal conduction field to interact in the iterative process. As such, the governing

equation under consideration is

� 	 ���� ���  � !� � (4)

where,  denotes the temperature of the solid, and  is the thermal conductivity of the solid� �� �

material. If the thermal conductivity is taken as constant, then the above reduces to the Laplace

equation for the temperature. When the thermal conductivity variation with temperature is an

important concern, the nonlinearity in the steady-state heat conduction equation can readily be

removed by introducing the classical Kirchhoff transform,  see [34-37], which is defined" ����

as

" ��� � �����
�

�
=  (5)

� �

�

��
�

where  is the reference temperature and  is the reference thermal conductivity. The� �� �

transform and its inverse are readily evaluated, either analytically or numerically, and the heat

conduction equation transforms to a Laplace equation for the transform parameter . The" ���

heat conduction equation thus reduces to the Laplace equation in any case, and this equation is

readily solved by the BEM.

 In the conjugate problem, continuity of temperature and heat flux at the blade surface, ,�

must be satisfied:
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� � �

� � � �
��

�
 �


��
� �

�
�

s
s

  (6)

Here,  is the temperature computed from the N-S solution,  is the  temperature within the �� ��

solid which is computed from the BEM solution, and /  denotes the normal derivative. Both� �


first kind and second kind boundary conditions transform linearly in the case of temperature

dependent conductivity. In such a case, the fluid temperature is used to evaluate the Kirchhoff

transform and this is used a boundary condition of the first kind for the BEM conduction solution

in the solid. Subsequently the computed heat flux, in terms of , is scaled to provide the heat"

flux which is in turn used as an input boundary condition for the flow-field.

3 Field Solver Solution Algorithms

 A brief description of the Glenn-HT code is given in this section. Details of the code and

its verification in turbomachinery application can be found in [2, 38-41]. The heat conduction

equation is solved using BEM.

3.1 Navier-Stokes Solver

Glenn-HT uses a cell-centered FVM to discretize the NS equations. Equation (1), is integrated

over a hexahedral computational cell with the nodal unknowns located at the cell center .�#� $� ��

The convective flux vector is discretized by a central difference supplemented by artificial

dissipation as described in Jameson et al. [42]. The artificial dissipation is a blend of first and

third order differences with the third order term active everywhere except at shocks and locations

of strong pressure gradients. The viscous terms are evaluated using central differences. The

overall accuracy of the code is second order, Heidmann et al. [2]. The resulting finite volume

equations can be written at every computational node as

% � & � � � '
��

�
(
�� ( ( (����	
����	

����	 ����	 ����	
(7)
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where  is the cell-volume averaged vector of conserved variables, and are the� & �
�
( ( (����	 ����	 ����	

net flux and dissipation for the finite volume obtained by surface integration of Eqn. (1), and

'( ����	
 is the net finite source term. The above is solved using a time marching scheme based on a

fourth order explicit Runge-Kutta time stepping algorithm. The steady-state solution is sought by

marching in time until the dependent variables reach their steady-state values, and, as such,

intermediate temporal solutions are not physically meaningful. In this mode of solving the

steady-state problem, time-marching can be viewed as a relaxation scheme, and local time-

stepping and implicit residual smoothing are used to accelerate convergence. A multigrid option

is available in the code. The code also adopts a multi-block strategy to model complex

geometries associated with film-cooled blade problems. Here, locally structured grids blocks are

generated into a globally unstructured assembly.

 Glenn-HT adopts a -  turbulence model which integrates to the wall and does not� �

require maintaining a specified distance from the wall as no wall functions are used. The

computational grid is sufficiently fine near the wall to yield a value of less than 1.0 at the first�


grid point away from the wall. A constant value of 0.9 is taken for the turbulent Prandlt number

in all heat transfer computations, while a constant value of 0.72 is used for the laminar Prandtl

number. Moreover, the temperature variation of the laminar viscosity is taken as a 0.7 power law,

see Schlichting [43], and  is taken as constant.)�

3.2 Heat Conduction Boundary Element Solution

 The heat conduction equation reduces to the same governing Laplace equation in the

temperature or the Kirchhoff transform. In the boundary element method this governing partial

differential equation is converted into a boundary integral equation (BIE), see [44-46], as

*� � � ����& �� ����� &���� �� ������ � � �� � � � � �� �+ = (8)
� �
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where is the surface bounding the domain of interest,  is the source point,  is the field���� ��

point,   is the heat flux,   is the so-called fundamental solution, and&��� � � �����
 � ��� ��
& �� ���
� ��  is its normal derivative with  denoting the normal derivative with respect to the

outward-drawn normal. The fundamental solution (or Green free space solution) is the response

of the adjoint governing differential operator at any field point due to a perturbation of a Dirac�

delta function acting at the source point . In our case, since the steady  state heat conduction�

equation is self-adjoint, we have

�� � �� � � ��� �� � �� � � (9)

Solution to this equation can be found by several means, see for instance Liggett and Liu [47],

Morse and Feschbach [48], and Kellog [49], as

� �� � � �
 ���� �
�

+ �

�
�

, � ���� �

� �� �
	

	 �

       in 2-D (10)

       in 3-D

where  is the Euclidean distance from the source point . The free term  can be shown���� � *� �� � �

analytically to be

*� � � � � �����
�� ��

�

�

�� � �
����



(11)

Moreover, introducing the definition of the fundamental solution in the above, it can be readily

be determined that  is the internal angle (in degrees in 2-D and in steradians in 3-D)*� ��

subtended at source point divided by in 2-D and by  in 3-D when the source point is on+ ,	 	 �

the boundary and takes on a value of one when the source point  is at the interior.�

Consequently, the free term takes on values . In the standard boundary element� - *� � - !�

method, the BIE is discretized using two levels of discretization:

 1.  the surface is discretized into a series of ... elements. This is traditionally� $ � �� + .

  accomplished using polynomial interpolation, bilinear and biquadratic being the most

  common. In general,
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� � �	�
���

�
 (12)

  and on each surface element  the geometry is discretized using local shape
��

  functions  in terms a homogeneous coordinates  which each take on. � � � � � �	 � � � �

  values between as� � �� � 

� � � � � . � � ��

� � � � � . � � ��

� � � � � . � � ��

�

���

	��

	 	
�

�

���

	��

	 	
�

�

���

	��

	 	
�

� � � �

� � � �

� � � �

	
	
	

(13)  

  Here, denote the location of the  boundary nodes used to�� � � � � � � � �� +///.01	 	 	
� � �

  define the boundary element  geometry.$

 2.  the distribution of the temperature and heat flux is modeled on the surface. This is

    usually accomplished using polynomial interpolation as well. Common discretizations

  include: constant (where the mean value of and  are taken on an element surface),� &

  bilinear, or biquadratic. In general,

� � � � � 2 � � ��

& � � � � 2 � � �&

�

���

	��

	 	
�

�

���

	��

	 	
�

� � � �

� � � �

	
	

(14)

  It is noted that the order of discretization of the temperature and heat flux need not be

  the same as that used for the geometry, leading to subparametric (lower order than that

  used for the geometry), isoparametric (same order than that used for the geometry),

  and superparametric (higher order than that used for the geometry) discretizations.

  Moreover, the temperature and heat flux are discretized using � � �� +� ///.� 1
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  discrete nodal values whose location within the element  can be chosen to$

   (a) coincide with the location of the geometric nodes: continuous elements.

   (b) be located offset from the geometric nodes: discontinuous elements.

 We choose to employ bilinear discontinuous isoparametric elements as they provide high

levels of accuracy in computed heat flux values especially at sharp corners regions where first

kind boundary conditions are imposed without resorting to special treatment of corner points

required by continuous elements [26,27].  field variables In this type of boundary element, the �

and  are modeled with discontinuous bilinear shape functions across each element while the&

geometry is represented locally as continuous bilinear surfaces. Figure 2 below shows a typical

bilinear isoparametric boundary element along with its transformed representation in the local

coordinate -  system.� �
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Figure 2. Bilinear isoparameteric discontinuous boundary element.

 The global coordinate system  is transformed into a local coordinate system  by��� �� �� � � �� �

the backward transformation
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� � � � � . � � ��

� � � � � . � � ��
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�

�

	��

	 	
�

�

�

	��

	 	
�

�

�

	��

	 	
�

� � � �

� � � �

� � � �

	
	
	

(15)

where  are the global positions of the -th geometric node of element . The four�� � � � � � � $	 	 	
� � �

bilinear shape functions are defined as

. � � � � �� � ��� � �
�

,

. � � � � �� � ��� � �
�

,

. � � � � �� � ��� � �
�

,

. � � � � �� � ��� � �
�

,

�

�

�

�

� � � �

� � � �

� � � �

� � � �

(16)

The field variables,  and , are modeled to vary bilinearly across the boundary element through� &

the use of four discontinuous shape functions with nodes located at an off-set position of 12.5%

from the edges of the element. The field variables and shape functions are described as follows:

� � � � � 2 � � ��

& � � � � 2 � � �&

�

�

	��

	 	
�

�

�

	��

	 	
�

� � � �

� � � �

	
	

(17)

with the bilinear shape functions  defined as,2	

2 � � � � �3 � , ��3 � , �
�

34

2 � � � � �3 � , ��3 � , �
�

34

2 � � � � �3 � , ��3 � , �
�

34

2 � � � � �3 � , ��3 � , �
�

34

�

�

�

�

� � � �

� � � �

� � � �

� � � �

(18)
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Introducing the above discretization in the BIE in Eqn. (8) and collocating the discretized BIE at�

each of the boundary nodes there results�� 

*� � � � 5 � � 0 &� �� �

��� ���

� ��� � ���

	�� 	 ��

	 	 	 	
�� � �� �� � 		 		 (19)

where the influence coefficients and  are defined as5 0	 	
�� ��

5 � & �� 2 � � � �����

0 � � �� 2 � � � �����

	  	
��

�
�

	  	
��

�
�

� � �
� � �
�

�

�

�

� � �

� � �

(20)

These influence coefficients are evaluated numerically via Gauss-Legendre quadratures with

special adaption when evaluating the integrals on  (for the element upon which the source
��

point  lies) and heuristic adaptive quadratures for elements that are close to the node of interest��

(see Appendix). The surface integrals in the above equation depend purely on the local geometry

of the element and the location of the source point . Upon collocation of the above at every��

boundary node where the temperature and heat flux are defined, the following algebraic form is

obtained:

�5 6� 7 � �0 6& 7� � (21)

Here the influence matrices  and  are evaluated numerically using quadratures. Once the�5 �0 

boundary conditions are specified, the above is re-arranged in standard and the�8 6�7 � 697

ensuing equations are solved by direct or iterative methods. In a fully conjugate solution using

the algorithm described in this paper, these BEM equations are solved subject to the following

boundary condition at external and internal bounding walls which are in contact with the fluid

and denoted by :� conjugate


� � �s � conjugate � (22)
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In the reduced periodic 3-D computational model to be discussed in the example section,

adiabatic conditions are also imposed at the flowfield periodic surfaces in the spanwise direction,

i.e. there

& � !s (23)

Once these equations are solved, the heat flux is known at all surface nodes. This is the sought-

after quantity in the CHT algorithm to be shortly outlined. In the case where the conduction

problem is solved without further treatment, the basic BEM code had options of using an LU

decomposition for small numbers of equations and a GMRES iterative solver with an incomplete

LU (ILU) pre-conditioning for large numbers of equations. When the number of equations gets

very large, storage becomes an important issue, as the coefficient matrix is fully-populated. We

will discuss an effective treatment of such problems in a later section.

3.3 CHT Algorithm

 The Navier-Stokes equations for the external fluid flow and the heat conduction equation

for heat conduction within the solid are interactively solved to steady state through a time-

marching algorithm. The surface temperature obtained from the solution of the Navier-Stokes

equations is used as the boundary condition of the boundary element method for the calculation

of heat flux through the solid surface. This heat flux is in turn used as a boundary condition for

the Navier-Stokes equations in the next time step. This procedure is repeated until a steady-state

solution is obtained. In practice, the BEM is solved every few cycles of the FVM to update the

boundary conditions, as intermediate solutions are not physical in this scheme. In the calculations

carried out in this study, the BEM solution was run every ten cycles of the finite volume solver.

This is referred to as the temperature forward/flux back (TFFB) coupling algorithm as outlined

below:
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• FVM Navier-Stokes solver:

 1. Begins with initial adiabatic boundary condition at solid surface.

 2. Solves compressible NS for fluid region.

 3. Provides temperature distribution to BEM conduction solver

  after a number of iterations.

 4. Receives flux boundary condition from the BEM as input for

  next set of iterations.

• BEM conduction solver:

 1.  Receives temperature distribution from FVM solver.

 2. Solves steady-state conduction problem.

 3. Provides flux distribution to FVM solver.

The transfer of heat flux from the BEM to the FVM solver is accomplished after under- 

relaxation.

& � & � �� � �&  (24)� �� ���
��� ���
 

with  taken as  in all reported calculations. The choice of the relaxation parameter is through !/+

trial and error. In certain cases, it has been our experience that a choice of larger relaxation

parameter can lead to non-convergent solutions [50]. The process is continued until the NS solver

converges and wall temperatures and heat fluxes converge, that is until Eqn. (6) is satisfied

within a set tolerance

: � � � : ;( (
: & � & : ;

( (

	 
 �

	 

�

�

�

(25)

where the tolerances  and  are taken as � �� � !/!!�/

 It should be noted that alternatively, the flux could be specified as a boundary condition

for the BEM code leading to a flux forward temperature back (FFTB) approach. However, when

a fully conjugate solution is undertaken, this would amount to specifying second kind boundary
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conditions completely around the surface of a domain governed by an elliptic equation, resulting

in a non-unique solution. The TFFB algorithm avoids such a situation.

3.4 Interpolation Between BEM and FVM Grids 

 An issue arises in information transfer between CFD and BEM as there exists a

significant difference in the levels of discretization between the two meshes in a typical CHT

simulation. Accurate resolution of the boundary layer requires a FVM surface grid which is much

too fine to be used directly in the BEM. A much coarser surface grid is typically generated for the

BEM solution of the conduction problem. The disparity between the two grids requires a general

interpolation of the surface  temperature and heat flux between the two solvers as it is not

possible in general to isolate a single BEM nodes and identify a set of nearest FVM nodes.

Indeed in certain regions where the CFD mesh is very fine, a BEM node can readily be

surrounded by tens or more FVM nodes.

 A distance-weighted interpolation, reminiscent of radial basis function (RBF)

interpolation [23], is adopted for transfer of temperature and flux values between the BEM and

CFD grids. Consider Fig. 3(a), here the location of a BEM node is identified on the right-hand-

side by a star-like symbol. Let us consider the problem of transferring the temperature from the

FVM grid to the BEM grid. Let us denote the position of the BEM node of interest by , and the�<

location of an FVM node by . The radial distance from every FVM node to the BEM node of�<�

interest is then .  Let us suppose that the number of all FVM surface nodes lying� � =� � � =< <� �

within a ball of radius centered>��� 

about   is . Moreover, let us denote two cases. Case I where all  and case II where� . � ?< ���� � �

there is an FVM node located at  such that , where  is a tolerance. Then, the value of� � @<
�,� � � �

the temperature at the BEM node  is evaluated as�<�
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� �� ��
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���
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����
��� �

��
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          for case I           (26)

                   for case II,�

In all calculations, the maximum radius of the sphere is set to % of the maximum> +/A��� 

distance within the solid region and  is set to  x . These limits may be adjusted to� � � > �!���
���

suit the problems at hand.

T

q

*

(a) transfer of nodal temperatures and fluxes between CFD and BEM grids.
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(b) 2-D illustration of five CFD nodes nearest to a BEM node located at � /B


Figure 3. Transfer of nodal values from FVM and BEM (and back) independent surface meshes
is performed with a distance weighted radial interpolation.
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4  Strategy for BEM Models of Large-Scale Three-Dimensional Heat Conduction Problems

 As mentioned, the BEM is ideally suited for the solution of linear and non-linear heat

conduction problems and is a particularly advantageous numerical method due to its boundary-

only feature, however, the coefficient matrix of the resulting system of algebraic equations is

fully populated. For large-scale problems that occur in engineering 3-D modeling of complex

structures  this poses very serious numerical challenges due to large storage requirements and

iterative solution of large sets of non-sparse equations. This problem has been approached in the

BEM community by one of two approaches: the artificial subsectioning of the 3-D model into a

multi-region model in conjunction with block-solvers reminiscent of the FEM frontal solvers

[51,52] and  the adoption of multipole methods in conjunction with the GMRES non-symmetric

iterative solver [53-55].  The first approach of domain decomposition or subsectioning produces

a sparse block coefficient matrix that is efficiently stored and has been successfully implemented

in commercial codes such as BETTI and GPBEST in the context of continuous boundary

elements. However, the method requires generation of complex data-structures identifying

connecting regions and interfaces prior to analysis. The second approach is very efficient,

however, it requires complete re-write of the BEM code to adopt multipole formulation.

Recently, a novel technique using wavelet decomposition has been recently proposed to reduce

matrix storage requirements without need for a major alteration of traditional BEM codes [56].

 We propose to adopt the first approach, however, we do not use a block solver but rather

a region-by-region iterative solver. Although it was reported earlier in the literature that this

process sometimes has difficulty converging for nonlinear problems [34,35], it has been shown

[36] that when properly implemented, the iterative process converges very efficiently and can

offer very substantial savings in memory. Moreover, the technique does not require any complex

data-structure preparation. Indeed, the approach is somewhat transparent to the user, a significant

advantage in coupling BEM to other field solvers.  It should be noted that this sub-sectioning

method is under current development and has not yet been integrated into the CHT solver at the
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point of writing this paper, and thus the technique along with an example 3-D conduction

solution are  presented herein with this explicit caveat.

 The solution algorithm for the multi-region BEM iteration process consists on the steps

described as follows. First, the problem domain  is identified along with the corresponding�

boundary conditions over the boundary . A typical problem definition along with the�

corresponding boundary conditions and a sample single-region BEM discretization is depicted

below.

Ω

q = h4 (Τ− T∞4) 

q = h2 (Τ− T∞2) 

q
= h

3 (Τ−
T

∞
3 ) q

= 
h 1

 (Τ
−

T
∞

1) 

∇ 2Τ(x,y) = 0

Ω

Γ1 Γ3

Γ2

Γ4

Figure 4. BEM problem domain, boundary conditions, and single region discretization.

 If a standard BEM solution process were to be adopted a system of influence coefficient

matrices and boundary values of size , where  is the number of boundary nodes used to. .

discretize the problem, will be formed. The number of floating point operations required to arrive

at the algebraic system is proportional to  as well as direct memory allocation also. �

proportional to .  With the aid of the boundary condition distribution, the system is re-. �

arranged as

�5 6�7 � �0 6&7 C �8 6�7 � 697 (27)

where  represents the unknowns  or  around the boundary nodal distribution. The6�7 6�7 6&7

solution to the algebraic system for the boundary unknowns can be performed using a direct

solution method such as LU decomposition requiring floating point operations proportional to

.   or an indirect method such as Bi-conjugate Gradient or General Minimization of Residuals

which, in general, require floating point operations proportional to  to achieve convergence.. �
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 If a multi-region BEM iteration solution process were to be adopted instead, the domain

is divided into  subdomains and each one is independently discretized. It is worth mentioningD

that the BEM discretizations of neighboring subdomains does not have to be coincident, this is,

at the connecting interface, boundary elements and nodes from the two colliding subdomains are

not required to be structured following a sequence or particular position, the only requirement at

the connecting interface is that it forms a closed boundary with the same path on both sides.

Later, it will be shown that the information between neighboring subdomains separated by an

interface will be passed through an interpolation process as opposed than just a node to node

connection.

Ω

q = h4 (Τ− T∞4) 

q = h2 (Τ− T∞2) 

q
= h

3 (Τ−
T

∞
3 ) q

= 
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1) 

∇ 2Τ(x,y) = 0
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Figure 5. BEM problem domain, boundary conditions, and single region discretization.

 Figure 5 above shows the same problem depicted in Fig. 4 with a multi-region BEM

discretization of four ( ) subdomains. The boundary value problem will now be solvedD � ,

independently over each subdomain where initially, a guessed boundary condition is imposed

over the interfaces in order to ensure the well-posedness of each subproblem. For instance, the

boundary value problem of subdomain  is transformed into the algebraic analogue of��

corresponding influence coefficient matrices and nodal boundary values as

� � ��� �� � ! C �5  6� 7 � �0  6& 7�
� � � � �� � � � �

(28)

The composition of this algebraic system requires floating point operations proportional to the

square of the number boundary nodes in the subdomain as well as for direct memory�
 ��
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allocation . This new proportionality number  is roughly equivalent to�
 � 
�


 E
+.

D � �
(29)

as long as the discretization along the interfaces has the same level of resolution as the

discretization along the boundaries. Direct memory allocation requirement for later algebraic

manipulation is now reduced to a proportion of  as the influence coefficient matrices can easily
�

be stored in ROM memory for later use after the boundary value problems on remaining

subdomains have been effectively solved. For the example shown here where the number of

subdomains is  the new proportionality value  is approximately equal to . ThisD � , 
 
 E +.�A

simple multi-region example reduces the memory requirements to about


 �. � �,�+A� � �4� � % of the standard BEM approach.

 The algebraic system for subdomain  is rearranged, with the aid of given and guessed��

boundary conditions, as

�5  6� 7 � �0  6& 7 C �8  6� 7 � 69 7� � � � � � �� � � � � � �
(30)

The solution of the new algebraic system of subdomain  requires now a number of floating��

point operations proportional to % of the standard BEM approach if a
 �. � �F��+A� � 4/,� �

direct algebraic solution method is employed, or a number of floating point operations

proportional to % of the standard BEM approach if an indirect algebraic
 �. � �,�+A� � �4� �

solution method is employed. For both, floating point operation count and direct memory

requirement the reduction is dramatic. However, as the first set of solutions for the subdomains

were obtained using guessed boundary conditions along the interfaces, the global solution needs

to follow an iteration process and convergence criteria.

 Globally, the floating point count for the formation of the algebraic setup for all D

subdomains must be multiplied by , therefore, the total operation count for the coefficientD

matrices computation is given by,
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D E

 ,D

. �D � ��

�

� �
(31)

or, for this particular case with , % of the standard BEMD � , D
 �. � �4�+A � 4,� �

approach. Moreover, the more significant reduction is revealed in the RAM memory

requirements as only the memory needs for one of the subdomains must be allocated at a time.

The rest of the coefficient matrices for the remaining subdomains are temporarily stored in ROM

memory until access and manipulation is required. Therefore, for this case of , the trueD � ,

memory reduction is % of the standard BEM approach.
 �. � ,�+A � �4� �

 With respect to the algebraic solution of the system of Eqn. (30), if a direct approach as

the LU decomposition method is employed for all subdomains, the LU factors of the coefficient

matrices for all subdomains can be computed only once at the first iteration step and stored in

ROM memory for later use during the iteration process for which only a forward and a backward

substitution will be required to solve the system at hand. This feature allows a significant

reduction in the operational count through the iteration process until convergence is achieved, as

only a number of floating point operations proportional to  as opposed to  is required at each
 
�

iteration step. To this computation time is added the access to ROM memory at each iteration

step which is usually larger than the access to RAM. Moreover, when applied to the CHT

problem, again storage of the LU factors offers significant computational savings over using an

iterative method. However, use of direct solvers requires each sub-section to be kept at a

discretization close to 1,000 bi-linear boundary elements.

 The iteration process follows the initial step of guessing the interface conditions. This is a

crucial step as the more physical information the initial guess incorporates the less iterations will

be required to reduce the error. The simplest choice is to assume adiabatic conditions at the

artificial interfaces. Results from several numerical studies show this approach leads to intial

temperature fields that are far from the final temperature field and which are slow to update

iteratively. A rather more efficient initial guess can be made using a physically based 1-D heat
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conduction argument for every node on the external surface to every node at the interface. The

following algebraic initial guess for any interfacial node can be readily derived, see [57] for

details, as

� �

G � � G > & �

� � G �

�

��� ��� ���

� �

�� � �� �� �

�
� � 	

� 
�

� ��
��� ���

� �
� �

� 
�

� � �
� �

� ��
�� �� ��

��

� �
�� ��

��

(32)

where , , and  are the number of first, second, and third kind boundary conditions. . .	 � �

specified at the external (non-interfacial) surfaces and
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=� =

> �
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B



�
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�
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�

�

���

�
�

��

	
(33)

with   , the thermal conductivity of the medium is , the film coefficient at. � . � . � . �	 � �

the  -th convective surface is , the outward-drawn normal to any surface is , the position$ H 
� �

vector from the interfacial node  to the external surface node  is  and its magnitude is# $ �B��

� � � $ 8B
�� �� �| |, while the area of element  denote by  is readily computed as

8 � ��� �� �� ��
� �


� 
�

=  (34)� � �
��

� I � � �� �� � � � �

 Once the initial temperatures are imposed as boundary conditions at the interfaces, a

resulting set of normal heat fluxes along the interfaces will computed. These are then non-

symmetically averaged in an effort to match the heat flux from neighboring subdomains.

Considering a two-domain substructure the averaging at the interface is explicitly given as�

& � & �
& � &

+
� �

� �

� �

� �

� �

� � (35)

26NASA/CR—2003-212195



and,

& � & �
& � &

+
� �

� �

� �

� �

� �

� � (36)

to ensure the flux continuity condition  after averaging. Compactly supported radial& � � &� �
� �� �

basis interpolation can be employed for the flux average to account for unstructured grids along

the interface from neighboring subdomains.

 Using these fluxes the BEM equations are again solved  leading to mismatched

temperatures  along the interfaces for neighboring subdomains. These temperatures are

interpolated, if necessary,  from one side of the interface to the other side using a compactly

supported radial basis functions  to account for the possibility of interface mismatch between the

adjoining substructure grids. Once  this is accomplished, the temperature is averaged out at each

interface. Illustrating this for a 2 domain substructure, again we have for regions 1 interface,

� �
� � �

+
�

� �

�

� �

�

� � (37)

and region 2 interface

� �
� � �

+
�

� �

�

� �

�

� � (38)

In case a real or physical interface exists and a thermal contact resistance is present between the

connecting subdomains, the temperatures are averaged out as,

� � � > &
� � �

+
� �

� �

� �

� �

� �

� �
��

(39)

and,

� � � > &
� � �

+
� �

� �

� �

� �

� �

� �
��

(40)

where  is the value of the thermal contact resistance imposing a jump on the interface>
��

temperature values. These now matched temperatures along the interfaces are used as the next set

of boundary conditions.
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Figure 6. Iteration along the interface (a) imposed heat flux, (b) mismatched resulting

temperatures, and (c) interpolated and averaged out temperatures as new boundary conditions.

Finally, in order to provide an improved initial guess to the BEM solver, a two-level

discreetization approach is employed. The initial guess provided by physically-based procedure

in Eq. (32) is used to solve the conduction solution for a constant element conduction model.

This coarse computation is carried out using the same discretization as the bi-linear model,

however, all nodes are collapsed to a single central node, and this requres 1/64th of the work

required to solve the bi-linear model. Upon convergence of the constant element model, a full bi-

linear solution is subsequnetly computed with the constant element model providing the initial

guess.

 This iteration process is continued until a convergence criterion is satisfied. A measure of

convergence may be defined as the  norm of mismatched temperatures along all interfaces as:J�

J � � � �
�

D 	 .
� �

���

� �

���

� �
�

�

��� 		� ��

(41)

This norm measures the standard deviation of BEM computed interface temperatures  and� �

averaged-out updated interface temperatures . The iteration routine can be stopped once this� �
�

standard deviation reaches a small fraction  of , where  is the maximum temperature� 
 
� �

span of the global field. This concludes the numerical developments in this paper, attention is

now given to numerical examples.
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5  Numerical Results and Discussion

 We now present results of a full conjugate solution of a film-cooled blade under operating

conditions which match a planned experiment at NASA Glenn Research center and assumes

periodicity in the spanwise direction for one pitch of film-cooling hole patterns. We compare

results of this simulation to those obtained from the standard two temperature method. This

simulation uses the standard BEM approach to heat conduction. We also present results from

several simulations fo the sub-sectioning BEM approach to heat conduction modeling in 2-D and

in 3-D. In 3-D, a square cross-section bar, a thrust vector control vane, and a cooled turbine vane

geometry are used to illustrate the sub-sectioning method described in this report.

5.1    CHT simulation of a 3-D Film-cooled Turbine Blade

 Film cooling is commonly used in turbine designs to produce a buffer layer of relatively

cool air between the turbine blade and the hot freestream gas in the first and second rows of

blades and vanes. The CHT computation is carried out on a computational model of a realistic

film-cooled turbine vane accounting for the three-dimensional vane geometry including plena

and film holes and is based on a Honeywell film-cooled engine design, see Heidmann et al. [2].

The geometry of this test vane is based on the engine vane midspan coordinates, and is scaled up

by a factor of  to allow matching of engine exit Mach number ( ) and exit Reynolds+/K,3 !/FL4

number ( x  based on true chord) with atmospheric inlet conditions.  The test vane has a+/K �!�

true chord of .  Since the test vane is of constant cross section, only one spanwise pitch!/+!4 M

of the film hole pattern was discretized, with periodicity of the flow-field enforced at each end.

This simplification assumes no effect of endwalls, but greatly reduces the number of grid points

required to model the vane. However, the thermal boundary conditions enforced at these ends in

the conduction analysis were adiabatic. The vane has two plena which feed 12 rows of film

cooling holes as well as trailing-edge ejection slots, see Fig. 7.  Trailing edge ejection is blocked

in the computation as the planned experiment has no slot cooling. Detailed geometrical data for

each row of film holes as well as hole distribution are provided in [2].   A multi-block grid

approach is adopted to model this complex geometry and generated the FVM grid using the
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topology-based algebraic grid-generation program GridPro  [17] with the final grid consistingTM

of 140 blocks and a total of  x  finite volume computational cells.  The FVM grid consists�/+ �!�

of 20 cells across both the inlet and outlet boundaries, 60 cells on the periodic boundary, over

200 cells around the vane, and 44 cells from the vane to the periodic boundary.

Figure 7. Film-cooled blade profile used in the CHT simulation.

A blade-to-blade view of the FVM grid is shown in Fig. 8 and Fig. 9 shows the FVM grid in the

leading edge region of the vane.
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Figure 8. Blade to blade computational grid cross section.

Figure 9. FVM grid in the leading edge region of the blade.
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 The flow conditions for all simulations use a free-stream inlet flow to the vane at an angle

of ° to the axial direction, with all temperatures and pressures normalized by the inlet stagnation!

values of  and  atmospheres, respectively. The inlet turbulence intensity is set at 8.0%3�!K> �!

and the turbulence scale is 15.0% of vane true chord.  Other inflow quantities are set by means of

the upstream-running Riemann invariant.  The vane downstream exit flow is defined by imposing

a constant normalized static pressure of , which was empirically determined to yield a!/AL4

desired exit Mach number of .  Periodicity was enforced in both the blade-to-blade and!/FL4

spanwise directions based on vane and film hole pitches, respectively. Moreover, in order to

maintain a true periodic solution, inflow to the plena was provided by defining a region of each

plenum wall as an inlet and introducing uniform flow normal to the wall. In Fig. 8, these regions

are shown to lie on either side of the internal wall that separates the two plena. In practice, there

will be spanwise flow in the plenum, but bleed of the plenum flow into the film holes results in a

spanwise-varying mass flow rate and static pressure, which would violate spanwise periodicity

imposed in this particular reduced computational model.  The non-dimensionalized inflow

stagnation temperature to the plena was , corresponding to a coolant temperature of .!/A �AA,/A>

the velocity was fixed to the constant value required to provide the design mass flow rate to each

plenum, and static pressure was extrapolated from the interior.  The inflow patch for each

plenum was defined to be sufficiently large to yield very low inlet velocities (Mach

number ), allowing each plenum to approximate an ideal plenum.   All solid walls were; !/!A

imposed with a no-slip boundary condition. The blade metal material is taken as Inconel with a

conductivity of  /  taken at  which is estimated to be the average� � �/3, G�� H� #
 > +�L,/K>�����

blade temperature.

 The FVM metal surface grid consists of  cells at the th level of multi-grid. The3F� !!! ,

grid was coarsened to generate a BEM grid of  bilinear cells with  nodal�� 3!!! A� +!!!

unknowns.  Two cases are computed in the numerical simulation in order to obtain the metal

temperature:
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1. The traditional two-temperature approach, whereby two different isothermal wall boundary

condition extended to all wall surfaces, including the film hole surfaces and plenum surfaces.

Two solutions were generated with constant wall temperatures  of  and� � � +�L,/K>� �	


� � +,FA/4>�	�  imposed on all blade surfaces.  The flowfield was computed from the plena

through the cooling holes and over the blade. The predicted wall heat fluxes at each node &�
��

computed from each of these isothermal solutions were used to solve simultaneously for

adiabatic wall temperature, , and heat transfer coefficient, , referenced to the computed� H��

adiabatic wall temperature, under the assumption that  and  are independent of the wall� H��

temperature. That is at each node we have

& � H�� � � �

& � H�� � � �
�
��

�	
 ��

�
��

� � ��,
(42)

In turn, these film coefficient and associated adiabatic wall distributions were used in the

BEM to compute metal temperatures.

2. A full CHT solution was carried out using the same grids and boundary conditions above

except at the blade surface where conjugate conditions were imposed. The conjugate

solutions converged in 1000 iterations with a BEM conduction calculation performed each 10

FVM iterations. The BEM code was written as a subroutine to the Glenn-HT code and

subroutines were coded to exchange information between the two codes in terms of the FVM

and BEM grids as well as boundary condition information. The Glenn-HT code was modified

to allow for non-isothermal boundary condition specification.

 

 All computations were performed at NASA Glenn Research Center on an SGI Origin

2000 cluster with 32 processors.  Flow computations were carried out and considered converged

when residuals were driven below . Results of the blade surface temperatures predicted by�!�

the simulations are shown in Fig. 10 for the CHT solution and in Fig. 11 for the two constant
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temperature approach. The two temperature distributions are markedly different with a

temperature span of  across the surface of the blade while the CHT
� � �L+! � +,+!>

solution predicted a temperature span of  across the blade. In addition to
� � �4+! � +4+!>

CHT computations predicting lower minimum (  colder) and higher maximum temperatures�!!>

( hotter), the distribution of cold and hot regions are quite different as is evident from the+!!>

surface plots. For instance, with conduction taken into consideration in the CHT simulation, the

thin trailing regions are seen to reach higher temperatures than predicted by the isothermal

approach, while the forward plenum region is seen to be effectively cooler. This has severe

implications in materials design and subsequent thermal stress analysis of the blade carried out

using these metal temperatures.

X

Y

Z

T: 1620 1720 1820 1920 2020 2120 2220 2320 2420 2520 2620

Figure 10. Blade surface temperature predicted by the CHT solution.
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X

Y

Z

T: 1620 1720 1820 1920 2020 2120 2220 2320 2420 2520 2620

Figure 11. Blade surface temperature predicted by the BEM using  and  provided from theH ���

two temperature approach.

5.2. Steady Conduction BEM Modeling Using Sub-Sectioning and Iteration

 Results are now presented for several simulations using the sub-sectioning iterative

method for a pure heat conduction problem. In the first examples the initial guess is carried out

using adiabatic conditions at the interface while in the final examples the physically-based

reasoning is used to initiate the iteration. The parameter  is set to . All computations were� �!3

performed on a Pentium 4, 1.8 GHz PC with 512 MB 800MHz RDRAM.

5.2.1  Steady Conduction Model of a 10-Region 2D Slab

 A 2D rectangular slab of dimension 10x1 is initially discretized in a single-region using

440 equally spaced quadratic isoparametric discontinuous boundary elements with a total of 1320

nodes around the boundary. Figure 12 shows the boundary conditions and the BEM discretization
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for this problem. The isotherm distribution is plotted in Figure 13. The thermal conductivity was

imposed as  W/mK� � � /

q = 0

T = 20 T = 20

h = 1, T  = 60

(0,0) (10,0)

(10,1)(0,1)

Figure 12. Boundary conditions and BEM discretization of single-region 2D rectangular slab.

T: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 13. Isotherm distribution for single-region 2D rectangular slab.

Next, the rectangular slab is divided into 10 sub-domains and discretized with 80 quadratic

isoparametric discontinuous boundary elements with 240 nodes. Figure 14 shows the boundary

conditions and the BEM discretization for this problem. The isotherm distribution is plotted in

Figure 15 for the converged solution after 12 iterations with adiabatic conditions used as initial

guess at the subsection interface nodes.

q = 0

T = 20 T = 20

h = 1, T  = 60

(0,0) (10,0)

(10,1)(0,1)

Figure 14. Boundary conditions and BEM discretization of 10-region 2D rectangular slab.
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T: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 15. Isotherm distribution for 10-region 2D rectangular slab.

The plot of the  norm progression is shown in Figure 16 for the first 20 iterations, however,J�

the level of convergence of  was achieved after 12 iterations. Table 1 shows the memory� 
	 �

requirement proportions for each case and the computation time for the algebraic setup and

solution after the 12 iterations for which J � !/!,/�

Iteration

L 2
N

or
m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

Figure 16.  norm progression for 10-region 2D rectangular slab.J�

Table 1. Memory and time comparison for 2D rectangular slab problem.

1-Region 10-Region
Iterations 0 12

 Norm 0 0.04
Memory 100% 3.3%
Time for Setup 50s 16s
Time for Solution 64s 50s

J�
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5.2.2 Steady Conduction model of a 5-Region 3D Rectangular Bar

A 3D 5x1 rectangular bar is initially discretized in a single-region using 550 equally spaced

bilinear isoparametric discontinuous boundary elements with a total of 2200 nodes around the

boundary. Figure 17.a. shows the BEM discretization for this problem along with the isotherm

distribution in Figure 17.b. The boundary conditions are distributed as first kind on both end

faces with a temperature ° , adiabatic on the bottom face, and convective on the� � ! *

remaining three surfaces with ° and . The thermal conductivity was� � �!! * H � � � �M D�
�

imposed as � � � � �MD/

X Y

Z

X Y

Z

T: 0 10 20 30 40 50 60 70 80 90 100

              (a)        (b)
Figure 17. Rectangular bar example: (a) single region BEM discretization and (b) Isotherm
distribution of single-region 3D rectangular slab.

 Next, the 3D slab is divided into 5 sub-domains and discretized with 150 bilinear

isoparametric discontinuous boundary elements with 600 nodes. Figure 18.a. shows the BEM

discretization for this problem and the isotherm distribution is plotted in Figure 18.b. for the

converged solution after 4 iterations. Adiabatic conditions are used as an initial guess at the sub-

section interface nodes.
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T: 0 10 20 30 40 50 60 70 80 90 100

   (a)      (b)

Figure 18. Five sub-section Model for a rectangular bar: (a) BEM discretization and (b) isotherm
distribution of 5-subsection 3D rectangular slab.

The plot of the  norm progression is shown in Figure 19 for the first 10 iterations, however,J�

the level of convergence of  was achieved after only 4 iterations. Table 2 reveals the� 
	 �

memory requirement proportions for each case and the computation time for the algebraic setup

and solution after the 4 iterations for which J � !/!�+/�

Iteration

L 2
N

or
m

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 19.  norm progression for the 5-region 3D slab.J�
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Table 2. Memory and time comparison for 3D slab problem.

1-Region 5-Region
Iterations 0 4

 Norm 0 0.012
Memory 100% 7.4%
Time for Setup 488s 16s
Time for Solution 374s 86s

J�

5.2.3 Steady Conduction Model of a 3-Region 3D Thrust Vector-Control Vane

 A 3D Thrust Vector-Control Vane is initially discretized in a single-region using 610

equally spaced bilinear isoparametric discontinuous boundary elements with a total of 2440

nodes around the boundary. Figure 12.a. shows the BEM discretization for this problem along

with the isotherm distribution in Figure 12.b. The boundary conditions were distributed as

insulated on the bottom surface, convective on the back surface with  and ,� � +!! H � �!!�

and convective with °  and  for a maximum of� � ,!!! * H��� � �!!!���� � � �M D� ���
� �

H � �!!! � �M D � � �,/K � �MD on the leading edge. A thermal conductivity of  was used.�

Y

X

Z

Y

X

Z

T
4000

3900

3800

3700

3600

3500

3400

3300

  (a)      (b)

Figure 20. (a) BEM discretization and (b) Isotherm distribution of single-region 3D Vane.
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Next, the 3D Thrust Vector-Control Vane is divided into 3 sub-domains and discretized with a

maximum of 300 bilinear isoparametric discontinuous boundary elements with 1200 nodes.

Figure 13.a. shows the BEM discretization for this problem and the isotherm distribution is

plotted in Figure 13.b. for the non-converged solution after 1 iteration. Figure 14.a shows the

non-converged solution isotherms after 40 iterations and finally Figure 14.b. shows the

converged solution isotherms after 80 iterations.
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X

Z
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Z

T
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3800

3700

3600

3500

3400

3300

  (a)       (b)
Figure 21. (a) BEM discretization and (b) Isotherm distribution of 3-region 3D vane after 1
iteration.
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  (a)      (b)

Figure 22. Isotherm distribution of 3-region 3D vane after (a) 43 iterations and (b) 81 iteration.

41NASA/CR—2003-212195



The plot of the  norm progression is shown in Figure 23 comparing the iterations for the casesJ�

of adiabatic initial guess at the subsection interfacial nodes and physically-based initial guess.

When an adiabatic intial guess is made at the sub-structure intefaces, it took 81 iterations to reach

the level of convergence of , while the physically-based intial guess provided an intial� 
	 �

error norm of 0.045 (vs 0.32 with the adiabatic guess) which lead to less than 45 iterations to

achieve convergence. This clearly demonstrates the effectiveness of the proposed physically-

based intial guess in reducing the computational load of the iterative process in this case. Table 3

reveals the memory requirement proportions for each case and the computation time for the

algebraic setup and solution  Although final time to solution is comparable, the larger problems/

could not be tackled by the 1 region approach due to memory requirements and round-off error.

Ite ra t ion s

N
o

rm

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5
0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

Adiabatic initial condition

Physically-based initial guess
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0

Ite ra t ion s

N
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0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5
0
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0 .1 5

0 .2
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0 .3 5

Adiabatic initial condition

Physically-based initial guess

Figure 23.  norm progression for the 3-region 3D vane comparing the iteration for the cases ofJ�

adiabatic initial guess at the subsection interfacial nodes and physically-based initial guess .

Table 3. Memory and time comparison for 3D slab problem. For the 3-region: (a) adiabatic guess
and  LU factors computed at each iteration, (b) adiabatic guess and LU factors computed once

and stored, (c) Eq.  intial guess and LU factors computed once and stored.(32)

1-Region 3-Region (a) 3-Region(b) 3-Region(c) 
Iterations 0 81 81 43
Memory 100% 24% 24% 24%
Time for Setup 605s 391s 1,080s 1,080s
Time for Solution 916s 15,324s 793s 421s
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5.2.4 Modeling a 3-D Cooled Blade

 Here, a blade with a  chord and it is cm in the spanwise direction. The blade is�! )M �,

cooled by two plena, see Fig. 24. The blade is discretized using GridPro  [17] into TM 4

subsections with a surface grid of a total of nearly  bilinear elements or nearly 4� !!! +,� !!!

degrees of freedom, see Fig. 25. Each block is kept at a discretization level near to  bilinear�!!!

boundary elements. Adiabatic conditions are imposed on the top and bottom surfaces of the

blade. Convective boundary conditions are imposed on all other surfaces. The film coefficient on

the outer surface of the blade is taken as  with the reference temperatureH � �!!! � �M D�

taken as , while the cooling plena are both imposed with film coefficients �!!!D H � A!!

� �M D 3!!D ,!!D�  with the reference temperature taken as linearly varying from to in the

increasing -direction of the cooling plenum closest to the leading edge, while linearly varying�

from to K in the decreasing -direction of the cooling plenum closest to the trailingA!!D ,!! �

edge.
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Figure 24. BEM grid for 3D cooled blade.
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Figure 25. Substructuring of a 3-D plenum-cooled turbine blade.

 The physically-based initial guess at the sub-section interfaces using Eqn. (32) provided

an excellent starting point for the iteration which converged in 16 steps to provide an  iterativeJ�

norm, defined in Eqn. (41), of . It took ,  to set up the matrices, obtainJ � !/!!!��4KF 3, K!A'�

and store their LU factors, and  to solve the problem iteratively. In this case, the LU factorsF�3'

were stored for each sub-section BEM model, and each iteration consisted of a forward and

backward substitution. The resulting temperature plots illustrated in Fig. 25 and Fig. 26 reveal a

very smooth distribution across all blocks. The resulting surface heat fluxes are presented in Fig.

27 revealing a very smooth distribution from a minimum of  to a maximum� �F!� !!! � �M D�

of . It should be noted that the subsectioning approach is ideally suited for+3!� !!! � �M D�
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parallel implementation. The authors are pursuing this avenue prior to integration of the

algorithm with the CHT solver. This concludes the example section.

X

Y

Z

T: 650 700 750 800 850 900 950 1000

Figure 26. Converged surface temperature distribution �D�
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Figure 27. Converged surface heat flux distribution � � �M D�


��

�

6 Conclusions

 A combined BEM/FVM approach using the TFFB conjugate method has been

implemented in a 3-D context to model CHT in cooled turbine blades. As a boundary-only grid is

used by the BEM, the computational time for the heat conduction analysis is insignificant

compared to the time used for the NS analysis. The proposed method produces realistic results

without using arbitrary assumptions for the thermal condition at the conductor surface. Results

from a CHT numerical simulation of a 3-D film-cooled blade section are presented and are

compared with those obtained from the standard approach of a two temperature model. A

significant difference in the level and distribution of the metal temperatures is found between the
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two models. These differences have severe implications in materials design and subsequent

thermal stress analysis of the blade carried out using these metal temperatures. In practice,

turbomachinery components such as modern cooled turbine blades which often contain several

hundred film cooling holes and intricate internal serpentine cooling passages with complex

convective enhancement configurations such as turbulating trip strips. This poses a real

computational challenge to BEM modeling. The subsectioning iterative approach outlined in this

report thus offers a promising technique to address this problem.

Future Work

 We are in the process of building a PC-based cluster running under Windows. We are

extending the sub-structure code under MPI and MPI-2 parallel protocols. Testing and fine

tuning of the code will be undertaken in the course of the next year. We will implement a

GMRES iterative solver to speed up computations at  the sub-section level of the current code.

This work is expected to continue into January. We will also begin to develop a 3D parallel

multipole BEM fast solver to be run with a GMRES pre-conditioned non-symmetric solver. This

phase of the project will be undertaken over the next two years.
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Appendix: Numerical Evaluation of the Influence Coefficients

 The process is most readily illustrated by considering constant elements. In the constant

element, which is a subparametric element, the field variables,  and , are modeled as constant� &

across each element while the geometry is represented locally as bilinear planes. Figure A.1.

below shows a typical constant boundary element along with its transformed representation in the

local  coordinate system.� ��
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n

x

y

z

η
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34

Geometry Node

T and q Node

1

1

-1

-1

Figure A.1. Bilinear subparametric boundary element.

 Notice that the geometric nodal locations of the element are ordered counterclockwise

such that the normal vector always points outwards from the domain of the problem. The global

coordinate system  is transformed into a local coordinate system  using the bilinear��� �� �� � � �� �

shape functions as given in Eqn. (15). However, the temperature and heat flux are modeled as

constant with the node located at the geometric center of the boundary element, thus

� � � � � � & � � � � &� � ��� � � �and   (A.1)
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Clearly, the temperature and heat flux are discontinuous at the element interfaces. Thus, a

constant element is termed discontinuous. Introducing the above discretization in the BIE and

noting that , and collocating the discretized BIE at each of the boundary nodes there.� 1 � � �� 

results

*� � � � 5 � � 0 &� �� � �� � �� �

��
 ��


� �� � 	 	 (A.2)

where  the influence coefficients and  are defined as5 0�� ��

5 � & � � �����

0 � � � � �����

�� � �
�

�

�� � �
�

�

� � �
� � �
�

�

�

�

�

�

(A.3)

These are evaluated numerically using Gauss-Legendre quadratures with an adaptive scheme to

be discussed shortly. Although very simple in implementation, use of the above constant element

formulation does not lead to satisfactory results in many cases, and these are discussed purely for

illustration. Introducing the definition of bilinear representation of the geometry into the constant

element influence coefficient definition, the constant element influence coefficient integrals are

explicitly,

5 � & �� � �� I � � �� �

0 � � �� � �� I � � �� �

��

 



 

�

� �

�� � �

 



 

�

� � � �
� � � �

� � � � � � �

� � � � � � �

(A.4)

The Jacobian of the transformation over the -th element,  is$ I � � �� � �

I � � � � N N � N�
�� � � �� �� �� (A.5)

where ,  , and are the components of the metric tensor defined as,N N N�� �� �� 

56NASA/CR—2003-212195



N � � �
�� �� ��

� � �

N � � �
�� �� ��

� � �

N � � �
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��

� � � � � �
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� � �
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(A.6)

The metrics , , , , , and  are readily found by differentiation of �� �� �� ��
� � � � � �

�� ��
�� � � � � �

� � � ��� �

� � � �� � � � �� �� � � � and  in Eqn. (15). Introducing the metrics into the Jacobian and simplifying

leads to,

I � � � �

�� �� �� �� �� �� �� �� �� �� �� ��

� � � � � � � � � � � �
� � � � �

�

� � �

� �

� � � � � � � � � � � �
�� � � � � �

(A.7)

In the expression for there arises the need to evaluate the outward-drawn normal , as& ��� � 
�
��

by definition

& ��� � � � � � � ��& ��� � 	 

� � ��� �

� 

� �

� �

�
�

� �
�

(A.8)

The components of the unit vector on each elements can be easily computed using,


 � � �I � � �
�� �� �� ��

� � � �


 � � �I � � �
�� �� �� ��
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� �

� �
� �
� �

� � � �
� �

� � � �
� �

� � � �
� �

(A.9)

The numerical integration process necessary to obtain the influence coefficients is performed by

double Gaussian quadratures (Gauss-Legendre specifically) simultaneously along the two local

axis  and , leading to the following form,� �
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 (A.10)

 

� � � � �

� � � � �

where  is the number of Gaussian points or order of integration employed,  and  areNG � ��	 �	

the locations of the Gaussian quadrature points (zeroes of the appropriate Legendre polynomials),

and  and  are the quadrature weights [58,59].� �� 	

 The number of Gaussian points employed can be adapted to every integral depending on

the variability of the integrand. The influence coefficients  are inversely proportional to the0

Euclidean distance between the field or integration point  and the collocation point , and the� ��

influence factors  are inversely proportional to the square of the Euclidean distance between5

the field or integration point and the collocation point . Therefore, as the collocation point  is� �� �

positioned closer to the integration element, the variability of the integrand increases requiring an

increase in the number of Gaussian points, , for the integral approximation to provide aNG

similar level of accuracy. Hence, a simple distance rule can be heuristically employed to change

the number of Gaussian points depending on how far the collocation point is to the integration

element. For non-singular elements, the following ratio of lengths is computed prior to

integration

� �
�

�
�

���	��

���	��

(A.11)

where  is measured from the collocation point  to 49 (7x7 equidistant) locations along the��� ��

integration element . The following is a table of heuristic quadrature and adaption rules$

determined by experience that are adopted in  the 3-D BEM code:
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Table A.1 Gauss and adaption rules used in the BEM code.

�
� ; � @ �/+ � K �3 3�
�/+ ; � @ �/A � +A �A A�
�/A ; � @ +/! � ,K �L L�
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3/! ;

�

�

�

�

�

 Range # of Integration Cells Gaussian Points
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 x 
 x

 x 
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 x 
 x 
 x 

 x  x  x 
 x  x  x 
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�!! ; � @ +!! +A �A A� +A K!! �3! 3!�
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� ? A!! 4, �F F� 4, K!

�

�

�

�

 x  x  x 
 x  x  x 
 x  x  x 
 x  x ! �3! 3!� x 

 

However, simply increasing the number of Gaussian integration points is in some cases not

enough to obtain an accurate approximation to the integral. This is precisely the case when the

collocation point  is extremely close to the integration element. In such cases a��

subsegmentation of the element is required and can be performed in a similar fashion as to the

increase of Gaussian points, that is, the closer the collocation point is to the element, the more

subdivisions are made to the element with a fixed number of Gaussian points for each

subelement.

 The particular case in which the collocation point  is located over the integration��

element must be treated with caution. For this case the integrand becomes singular lacking an

accurate integral approximation through a regular Gaussian rule. Even though the integral for the

influence factor  is strongly singular because its integrand is inversely proportional to the5��

distance squared , this integral need not be computed directly unless regularized, and���� ��

instead it can be evaluated using the equipotential relation by summing the off-diagonal terms

[44-46], that is
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5 � � 5�� ��

�
�� ���

�	 (A.12)

The integral for the influence coefficient  is however weakly singular because its integrand is0��

inversely proportional to the distance ,  and can be accurately computed through a�����

transformation of the local coordinate system which effectively clusters the Gauss points. Figure

A.2 shows the primary subsegmentation of the singular element. Twelve quadrilateral

subdivisions have been made to the singular subparametric boundary element in Fig. A.2. The

shaded area  corresponds to the singular portion of the element that is to be transformed into�� ��!

a local polar coordinate system.
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Figure A.2. Subsegmentation of singular bilinear subparametric boundary element.
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Figure A.3. Polar coordinate transformation of the area "0" of the singular boundary element.

The shaded area of the singular element is fit into a new local system  and subdivided into� � �� �

four triangular subelements. Each of the subelements is transformed into a new local polar

coordinate system  where,� � �� �

� � �

� � �

� )O'

� '#


(A.13)

therefore, the factor  which corresponds to the integral over the shaded area  is comprised0 !� �� ��
��

of four integrals ( , , , and ) as,0 0 0 0�� �� �� ��
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(A.14)
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Notice that the transformation of the differential area introduced the variable  to the integrand�

which relaxes the singularity of the fundamental solution . In addition, an extra� � � � ���
	 �� �� � �

transformation is necessary to fit the limits of integration into the  range such that,� � �� ��
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   (A.15)

   

   

   

where the subindeces of the coordinates  and  correspond to the transformation for the� �

particular integral term , , , and . Therefore, the influence coefficient subintegrals0 0 0 0�� �� �� ��
�� �� �� ��

are transformed into,
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(A.16)

which can be solved numerically by the use of Gaussian integration and through the

corresponding transformations detailed in the previous relations. Each triangle is integrated using

a 100 (10 x 10) Gaussian point rule distributed in the transformed  system. Each of the� � �

remaining 12 cells that do not contain singularities are integrated using a 900 (30 x 30) Guassian

point rule.

 When dealing with isoparametric bilinear elements, the procedure of evaluation of the

element influence coefficients  and  is the same, except that the shape functions , ,5 0 2 � �
 
 

�	 �	 � �
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� � �///,, appear multiplying each of the integrands of the influence coefficients. That is for

instance,

0 � � � � � �� 2 � �I � � �� �

0 � � � � �� � � �� �2 � � �I � � �


 � 
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�� ��

� �

	 � 	


 � 

�	

��� ��

�� ��

�  	 � � � � � 	 � �

� � � �
	 	

� � � � � � � � �

� � � � � � �

, (A.17)

 

where the subscript  refers to the collocation point  which is positioned at all four# � �///,. ��

offset nodal locations of each element. The subscript  refers to the integration element$ � �///.

and the subscript  corresponds to each of the shape functions ,  in the integrand.� � �///, 2 � �
 � �

 The subsegmentation described for the  influence coefficient in the subparametric0��

element is extended to the case of discontinuous isoparametric elements by performing a non-

symmetric subsegmentation of the element  depending on the location of the collocation point # ��

on the boundary element, see Fig. (A.4).
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Figure A.4. Subsegmentation of singular bilinear isoparametric boundary element.
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