pmc logo imageJournal ListSearchpmc logo image
Logo of microrevMicrobiol Mol Biol Rev ArchiveMicrobiol Rev Archive
Microbiol Rev. 1988 December; 52(4): 568–601.
PMCID: PMC373164
Yeast chromosome replication and segregation.
C S Newlon
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (7.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Abraham, J; Nasmyth, KA; Strathern, JN; Klar, AJ; Hicks, JB. Regulation of mating-type information in yeast. Negative control requiring sequences both 5' and 3' to the regulated region. J Mol Biol. 1984 Jul 5;176(3):307–331. [PubMed]
  • Agard, DA; Sedat, JW. Three-dimensional architecture of a polytene nucleus. Nature. 1983 Apr 21;302(5910):676–681. [PubMed]
  • Amati, BB; Gasser, SM. Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell. 1988 Sep 23;54(7):967–978. [PubMed]
  • Amin, AA; Pearlman, RE. Autonomously replicating sequences from the non transcribed spacers of Tetrahymena thermophila ribosomal DNA. Nucleic Acids Res. 1985 Apr 11;13(7):2647–2659. [PubMed]
  • Amin, AA; Pearlman, RE. In vitro deletion analysis of ARS elements spanning the replication origin in the 5' non-transcribed spacer of Tetrahymena thermophila ribosomal DNA. Nucleic Acids Res. 1986 Mar 25;14(6):2749–2762. [PubMed]
  • Anderson, JN. Detection, sequence patterns and function of unusual DNA structures. Nucleic Acids Res. 1986 Nov 11;14(21):8513–8533. [PubMed]
  • Arendes, J; Kim, KC; Sugino, A. Yeast 2-microns plasmid DNA replication in vitro: purification of the CDC8 gene product by complementation assay. Proc Natl Acad Sci U S A. 1983 Feb;80(3):673–677. [PubMed]
  • Badaracco, G; Capucci, L; Plevani, P; Chang, LM. Polypeptide structure of DNA polymerase I from Saccharomyces cerevisiae. J Biol Chem. 1983 Sep 10;258(17):10720–10726. [PubMed]
  • Badaracco, G; Valsasnini, P; Foiani, M; Benfante, R; Lucchini, G; Plevani, P. Mechanism of initiation of in vitro DNA synthesis by the immunopurified complex between yeast DNA polymerase I and DNA primase. Eur J Biochem. 1986 Dec 1;161(2):435–440. [PubMed]
  • Baker, TA; Sekimizu, K; Funnell, BE; Kornberg, A. Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell. 1986 Apr 11;45(1):53–64. [PubMed]
  • Banks, GR. Mitochondrial DNA synthesis in permeable cells. Nat New Biol. 1973 Oct 17;245(146):196–199. [PubMed]
  • Barford, JP; Hall, RJ. Estimation of the length of cell cycle phases from asynchronous cultures of Saccharomyces cerevisiae. Exp Cell Res. 1976 Oct 15;102(2):276–284. [PubMed]
  • Barker, DG; Johnson, AL; Johnston, LH. An improved assay for DNA ligase reveals temperature-sensitive activity in cdc9 mutants of Saccharomyces cerevisiae. Mol Gen Genet. 1985;200(3):458–462. [PubMed]
  • Barker, DG; Johnston, LH. Saccharomyces cerevisiae cdc9, a structural gene for yeast DNA ligase which complements Schizosaccharomyces pombe cdc17. Eur J Biochem. 1983 Aug 1;134(2):315–319. [PubMed]
  • Baroudy, BM; Venkatesan, S; Moss, B. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell. 1982 Feb;28(2):315–324. [PubMed]
  • Bateman, AJ. Letter: Simplification of palindromic telomere theory. Nature. 1975 Jan 31;253(5490):379–380. [PubMed]
  • Bauer, GA; Heller, HM; Burgers, PM. DNA polymerase III from Saccharomyces cerevisiae. I. Purification and characterization. J Biol Chem. 1988 Jan 15;263(2):917–924. [PubMed]
  • Beach, D; Piper, M; Shall, S. Isolation of chromosomal origins of replication in yeast. Nature. 1980 Mar 13;284(5752):185–187. [PubMed]
  • Beadle, GW. A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila. Proc Natl Acad Sci U S A. 1932 Feb;18(2):160–165. [PubMed]
  • Benyajati, C; Worcel, A. Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell. 1976 Nov;9(3):393–407. [PubMed]
  • Berman, J; Tachibana, CY; Tye, BK. Identification of a telomere-binding activity from yeast. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3713–3717. [PubMed]
  • Bird, RE; Louarn, J; Martuscelli, J; Caro, L. Origin and sequence of chromosome replication in Escherichia coli. J Mol Biol. 1972 Oct 14;70(3):549–566. [PubMed]
  • Birkenmeyer, LG; Hill, JC; Dumas, LB. Saccharomyces cerevisiae CDC8 gene and its product. Mol Cell Biol. 1984 Apr;4(4):583–590. [PubMed]
  • Bisson, L; Thorner, J. Thymidine 5'-monophosphate-requiring mutants of Saccharomyces cerevisiae are deficient in thymidylate synthetase. J Bacteriol. 1977 Oct;132(1):44–50. [PubMed]
  • Blackburn, EH. Telomeres: do the ends justify the means? Cell. 1984 May;37(1):7–8. [PubMed]
  • Blackburn, EH; Budarf, ML; Challoner, PB; Cherry, JM; Howard, EA; Katzen, AL; Pan, WC; Ryan, T. DNA termini in ciliate macronuclei. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:1195–1207. [PubMed]
  • Blackburn, EH. The molecular structure of centromeres and telomeres. Annu Rev Biochem. 1984;53:163–194. [PubMed]
  • Blanc, H. Two modules from the hypersuppressive rho- mitochondrial DNA are required for plasmid replication in yeast. Gene. 1984 Oct;30(1-3):47–61. [PubMed]
  • Bloom, KS; Carbon, J. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell. 1982 Jun;29(2):305–317. [PubMed]
  • Bloom, KS; Fitzgerald-Hayes, M; Carbon, J. Structural analysis and sequence organization of yeast centromeres. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1175–1185. [PubMed]
  • Blow, JJ; Laskey, RA. A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature. 1988 Apr 7;332(6164):546–548. [PubMed]
  • Blumenthal, AB; Kriegstein, HJ; Hogness, DS. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:205–223. [PubMed]
  • Borts, RH; Haber, JE. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. [PubMed]
  • Botchan, PM; Dayton, AI. A specific replication origin in the chromosomal rDNA of Lytechinus variegatus. Nature. 1982 Sep 30;299(5882):453–456. [PubMed]
  • Bouton, AH; Smith, MM. Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. Mol Cell Biol. 1986 Jul;6(7):2354–2363. [PubMed]
  • Bouton, AH; Stirling, VB; Smith, MM. Analysis of DNA sequences homologous with the ARS core consensus in Saccharomyces cerevisiae. Yeast. 1987 Jun;3(2):107–115. [PubMed]
  • Bram, RJ; Kornberg, RD. Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell Biol. 1987 Jan;7(1):403–409. [PubMed]
  • Brand, AH; Micklem, G; Nasmyth, K. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell. 1987 Dec 4;51(5):709–719. [PubMed]
  • Brewer, BJ; Fangman, WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. [PubMed]
  • Brewer, BJ; Chlebowicz-Sledziewska, E; Fangman, WL. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Nov;4(11):2529–2531. [PubMed]
  • Brewer, BJ; Fangman, WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. [PubMed]
  • Brill, SJ; DiNardo, S; Voelkel-Meiman, K; Sternglanz, R. Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature. 326(6111):414–416. [PubMed]
  • Broach, JR; Hicks, JB. Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell. 1980 Sep;21(2):501–508. [PubMed]
  • Broach, JR; Li, YY; Feldman, J; Jayaram, M; Abraham, J; Nasmyth, KA; Hicks, JB. Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1165–1173. [PubMed]
  • Broker, TR; Doermann, AH. Molecular and genetic recombination of bacteriophage T4. Annu Rev Genet. 1975;9:213–244. [PubMed]
  • Bruschi, CV; Chuba, PJ. Nonselective enrichment for yeast adenine mutants by flow cytometry. Cytometry. 1988 Jan;9(1):60–67. [PubMed]
  • Buchman, AR; Kimmerly, WJ; Rine, J; Kornberg, RD. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jan;8(1):210–225. [PubMed]
  • Budd, M; Campbell, JL. Temperature-sensitive mutations in the yeast DNA polymerase I gene. Proc Natl Acad Sci U S A. 1987 May;84(9):2838–2842. [PubMed]
  • Burgers, PM; Bauer, GA. DNA polymerase III from Saccharomyces cerevisiae. II. Inhibitor studies and comparison with DNA polymerases I and II. J Biol Chem. 1988 Jan 15;263(2):925–930. [PubMed]
  • Burke, W; Fangman, WL. Temporal order in yeast chromosome replication. Cell. 1975 Jul;5(3):263–269. [PubMed]
  • Button, LL; Astell, CR. The Saccharomyces cerevisiae chromosome III left telomere has a type X, but not a type Y', ARS region. Mol Cell Biol. 1986 Apr;6(4):1352–1356. [PubMed]
  • Campbell, JL. Eukaryotic DNA replication. Annu Rev Biochem. 1986;55:733–771. [PubMed]
  • Carbon, J; Clarke, L. Structural and functional analysis of a yeast centromere (CEN3). J Cell Sci Suppl. 1984;1:43–58. [PubMed]
  • Carle, GF; Frank, M; Olson, MV. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. [PubMed]
  • Carle, GF; Olson, MV. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. [PubMed]
  • Carle, GF; Olson, MV. An electrophoretic karyotype for yeast. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3756–3760. [PubMed]
  • Carson, MJ; Hartwell, L. CDC17: an essential gene that prevents telomere elongation in yeast. Cell. 1985 Aug;42(1):249–257. [PubMed]
  • Celniker, SE; Campbell, JL. Yeast DNA replication in vitro: initiation and elongation events mimic in vivo processes. Cell. 1982 Nov;31(1):201–213. [PubMed]
  • Celniker, SE; Sweder, K; Srienc, F; Bailey, JE; Campbell, JL. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Nov;4(11):2455–2466. [PubMed]
  • Certa, U; Colavito-Shepanski, M; Grunstein, M. Yeast may not contain histone H1: the only known 'histone H1-like' protein in Saccharomyces cerevisiae is a mitochondrial protein. Nucleic Acids Res. 1984 Nov 12;12(21):7975–7985. [PubMed]
  • Challberg, MD; Ostrove, JM; Kelly, TJ., Jr Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotide and the 80-kilodalton terminal protein. J Virol. 1982 Jan;41(1):265–270. [PubMed]
  • Chan, CS; Tye, BK. Autonomously replicating sequences in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6329–6333. [PubMed]
  • Chan, CS; Tye, BK. A family of Saccharomyces cerevisiae repetitive autonomously replicating sequences that have very similar genomic environments. J Mol Biol. 1983 Aug 15;168(3):505–523. [PubMed]
  • Chan, CS; Tye, BK. Organization of DNA sequences and replication origins at yeast telomeres. Cell. 1983 Jun;33(2):563–573. [PubMed]
  • Chang, LM. DNA polymerases from bakers' yeast. J Biol Chem. 1977 Mar 25;252(6):1873–1880. [PubMed]
  • Chang, LM; Lurie, K; Plevani, P. A stimulatory factor for yeast DNA polymerase. Cold Spring Harb Symp Quant Biol. 1979;43 Pt 1:587–595. [PubMed]
  • Chase, JW; Williams, KR. Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem. 1986;55:103–136. [PubMed]
  • Chlebowicz-Sledziewska, E; Sledziewski, AZ. Construction of multicopy yeast plasmids with regulated centromere function. Gene. 1985;39(1):25–31. [PubMed]
  • Chu, G; Vollrath, D; Davis, RW. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. [PubMed]
  • Clarke, L; Amstutz, H; Fishel, B; Carbon, J. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8253–8257. [PubMed]
  • Clarke, L; Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980 Oct 9;287(5782):504–509. [PubMed]
  • Clarke, L; Carbon, J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature. 305(5929):23–28. [PubMed]
  • Clarke, L; Carbon, J. The structure and function of yeast centromeres. Annu Rev Genet. 1985;19:29–55. [PubMed]
  • Cockerill, PN; Garrard, WT. Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett. 1986 Aug 11;204(1):5–7. [PubMed]
  • Conrad, MN; Newlon, CS. Saccharomyces cerevisiae cdc2 mutants fail to replicate approximately one-third of their nuclear genome. Mol Cell Biol. 1983 Jun;3(6):1000–1012. [PubMed]
  • Conrad, MN; Zakian, VA. Plasmid associations with residual nuclear structures in Saccharomyces cerevisiae. Curr Genet. 1988 Apr;13(4):291–297. [PubMed]
  • Cumberledge, S; Carbon, J. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics. 1987 Oct;117(2):203–212. [PubMed]
  • Dasgupta, S; Masukata, H; Tomizawa, J. Multiple mechanisms for initiation of ColE1 DNA replication: DNA synthesis in the presence and absence of ribonuclease H. Cell. 1987 Dec 24;51(6):1113–1122. [PubMed]
  • Dani, GM; Zakian, VA. Mitotic and meiotic stability of linear plasmids in yeast. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3406–3410. [PubMed]
  • Dawes, IW; Carter, BL. Nitrosoguanidine mutagenesis during nuclear and mitochondrial gene replication. Nature. 1974 Aug 30;250(5469):709–712. [PubMed]
  • Dawson, DS; Murray, AW; Szostak, JW. An alternative pathway for meiotic chromosome segregation in yeast. Science. 1986 Nov 7;234(4777):713–717. [PubMed]
  • Dean, FB; Bullock, P; Murakami, Y; Wobbe, CR; Weissbach, L; Hurwitz, J. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci U S A. 1987 Jan;84(1):16–20. [PubMed]
  • de Massy, B; Béjar, S; Louarn, J; Louarn, JM; Bouché, JP. Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1759–1763. [PubMed]
  • Diffley, JF; Stillman, B. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2120–2124. [PubMed]
  • DiNardo, S; Voelkel, K; Sternglanz, R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A. 1984 May;81(9):2616–2620. [PubMed]
  • Dobzhansky, T. Translocations Involving the Third and the Fourth Chromosomes of DROSOPHILA MELANOGASTER. Genetics. 1930 Jul;15(4):347–399. [PubMed]
  • Dodson, M; Dean, FB; Bullock, P; Echols, H; Hurwitz, J. Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science. 1987 Nov 13;238(4829):964–967. [PubMed]
  • Dumas, LB; Lussky, JP; McFarland, EJ; Shampay, J. New temperature-sensitive mutants of Saccharomyces cerevisiae affecting DNA replication. Mol Gen Genet. 1982;187(1):42–46. [PubMed]
  • Dunn, B; Szauter, P; Pardue, ML; Szostak, JW. Transfer of yeast telomeres to linear plasmids by recombination. Cell. 1984 Nov;39(1):191–201. [PubMed]
  • Dutcher, SK. Internuclear transfer of genetic information in kar1-1/KAR1 heterokaryons in Saccharomyces cerevisiae. Mol Cell Biol. 1981 Mar;1(3):245–253. [PubMed]
  • Eckdahl, TT; Anderson, JN. Computer modelling of DNA structures involved in chromosome maintenance. Nucleic Acids Res. 1987 Oct 26;15(20):8531–8545. [PubMed]
  • Eissenberg, JC; Cartwright, IL; Thomas, GH; Elgin, SC. Selected topics in chromatin structure. Annu Rev Genet. 1985;19:485–536. [PubMed]
  • Eisenberg, S; Civalier, C; Tye, BK. Specific interaction between a Saccharomyces cerevisiae protein and a DNA element associated with certain autonomously replicating sequences. Proc Natl Acad Sci U S A. 1988 Feb;85(3):743–746. [PubMed]
  • Elledge, SJ; Davis, RW. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol Cell Biol. 1987 Aug;7(8):2783–2793. [PubMed]
  • Fairman, MP; Stillman, B. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J. 1988 Apr;7(4):1211–1218. [PubMed]
  • Fangman, WL; Hice, RH; Chlebowicz-Sledziewska, E. ARS replication during the yeast S phase. Cell. 1983 Mar;32(3):831–838. [PubMed]
  • Feldman, JB; Hicks, JB; Broach, JR. Identification of sites required for repression of a silent mating type locus in yeast. J Mol Biol. 1984 Oct 5;178(4):815–834. [PubMed]
  • Feldmann, H; Olah, J; Friedenreich, H. Sequence of a yeast DNA fragment containing a chromosomal replicator and a tRNA Glu 3 gene. Nucleic Acids Res. 1981 Jun 25;9(12):2949–2959. [PubMed]
  • Fishel, B; Amstutz, H; Baum, M; Carbon, J; Clarke, L. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol. 1988 Feb;8(2):754–763. [PubMed]
  • Fitzgerald-Hayes, M. Yeast centromeres. Yeast. 1987 Sep;3(3):187–200. [PubMed]
  • Fitzgerald-Hayes, M; Buhler, JM; Cooper, TG; Carbon, J. Isolation and subcloning analysis of functional centromere DNA (CEN11) from Saccharomyces cerevisiae chromosome XI. Mol Cell Biol. 1982 Jan;2(1):82–87. [PubMed]
  • Fitzgerald-Hayes, M; Clarke, L; Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell. 1982 May;29(1):235–244. [PubMed]
  • Fong, HK; Hurley, JB; Hopkins, RS; Miake-Lye, R; Johnson, MS; Doolittle, RF; Simon, MI. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2162–2166. [PubMed]
  • Friedberg, EC. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Mar;52(1):70–102. [PubMed]
  • Futcher, AB. Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J Theor Biol. 1986 Mar 21;119(2):197–204. [PubMed]
  • Futcher, AB. The 2 micron circle plasmid of Saccharomyces cerevisiae. Yeast. 1988 Mar;4(1):27–40. [PubMed]
  • Futcher, B; Carbon, J. Toxic effects of excess cloned centromeres. Mol Cell Biol. 1986 Jun;6(6):2213–2222. [PubMed]
  • Futcher, AB; Cox, BS. Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. J Bacteriol. 1984 Jan;157(1):283–290. [PubMed]
  • Game, JC. Yeast cell-cycle mutant cdc21 is a temperature-sensitive thymidylate auxotroph. Mol Gen Genet. 1976 Aug 2;146(3):313–315. [PubMed]
  • Game, JC; Johnston, LH; von Borstel, RC. Enhanced mitotic recombination in a ligase-defective mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4589–4592. [PubMed]
  • Gaudet, A; Fitzgerald-Hayes, M. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Jan;7(1):68–75. [PubMed]
  • Sinha, S; Ramaswamy, R. On the dynamics of controlled metabolic network and cellular behaviour. Biosystems. 1987;20(4):341–354. [PubMed]
  • Goddard, JM; Cummings, DJ. Mitochondrial DNA replication in Paramecium aurelia. Cross-linking of the initiation end. J Mol Biol. 1977 Jan 15;109(2):327–344. [PubMed]
  • Goebl, MG; Yochem, J; Jentsch, S; McGrath, JP; Varshavsky, A; Byers, B. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science. 1988 Sep 9;241(4871):1331–1335. [PubMed]
  • Gorman, JA; Dove, WF; Warren, N. Isolation of Physarum DNA segments that support autonomous replication in yeast. Mol Gen Genet. 1981;183(2):306–313. [PubMed]
  • Goto, T; Wang, JC. Yeast DNA topoisomerase II is encoded by a single-copy, essential gene. Cell. 1984 Apr;36(4):1073–1080. [PubMed]
  • Goto, T; Wang, JC. Cloning of yeast TOP1, the gene encoding DNA topoisomerase I, and construction of mutants defective in both DNA topoisomerase I and DNA topoisomerase II. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7178–7182. [PubMed]
  • Goursot, R; Goze, A; Niaudet, B; Ehrlich, SD. Plasmids from Staphylococcus aureus replicate in yeast Saccharomyces cerevisiae. Nature. 1982 Jul 29;298(5873):488–490. [PubMed]
  • Greider, CW; Blackburn, EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985 Dec;43(2 Pt 1):405–413. [PubMed]
  • Greider, CW; Blackburn, EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987 Dec 24;51(6):887–898. [PubMed]
  • Haber, JE; Thorburn, PC; Rogers, D. Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics. 1984 Feb;106(2):185–205. [PubMed]
  • Haber, JE; Thorburn, PC. Healing of broken linear dicentric chromosomes in yeast. Genetics. 1984 Feb;106(2):207–226. [PubMed]
  • Hand, R. Eucaryotic DNA: organization of the genome for replication. Cell. 1978 Oct;15(2):317–325. [PubMed]
  • Harland, RM; Laskey, RA. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell. 1980 Oct;21(3):761–771. [PubMed]
  • Hartwell, LH. Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J Mol Biol. 1971 Jul 14;59(1):183–194. [PubMed]
  • Hartwell, LH. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol. 1973 Sep;115(3):966–974. [PubMed]
  • Hartwell, LH. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol. 1976 Jul 15;104(4):803–817. [PubMed]
  • Hartwell, Leland H; Mortimer, Robert K; Culotti, Joseph; Culotti, Marilyn. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973 Jun;74(2):267–286. [PubMed]
  • Hartwell, LH; Smith, D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. 1985 Jul;110(3):381–395. [PubMed]
  • Hegemann, JH; Pridmore, RD; Schneider, R; Philippsen, P. Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Mol Gen Genet. 1986 Nov;205(2):305–311. [PubMed]
  • Hegemann, JH; Shero, JH; Cottarel, G; Philippsen, P; Hieter, P. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jun;8(6):2523–2535. [PubMed]
  • Henderson, E; Hardin, CC; Walk, SK; Tinoco, I, Jr; Blackburn, EH. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell. 1987 Dec 24;51(6):899–908. [PubMed]
  • Hereford, LM; Hartwell, LH. Defective DNA synthesis in permeabilized yeast mutants. Nat New Biol. 1971 Dec 8;234(49):171–172. [PubMed]
  • Hereford, LM; Hartwell, LH. Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J Mol Biol. 1974 Apr 15;84(3):445–461. [PubMed]
  • Hicks, JB; Hinnen, A; Fink, GR. Properties of yeast transformation. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1305–1313. [PubMed]
  • Hieter, P; Mann, C; Snyder, M; Davis, RW. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell. 1985 Feb;40(2):381–392. [PubMed]
  • Hieter, P; Pridmore, D; Hegemann, JH; Thomas, M; Davis, RW; Philippsen, P. Functional selection and analysis of yeast centromeric DNA. Cell. 1985 Oct;42(3):913–921. [PubMed]
  • Higgins, David R; Prakash, Satya; Reynolds, Paul; Polakowska, Renata; Weber, Shane; Prakash, Louise. Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3 deletion mutants. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5680–5684. [PubMed]
  • Hill, A; Bloom, K. Genetic manipulation of centromere function. Mol Cell Biol. 1987 Jul;7(7):2397–2405. [PubMed]
  • Hill, TM; Henson, JM; Kuempel, PL. The terminus region of the Escherichia coli chromosome contains two separate loci that exhibit polar inhibition of replication. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1754–1758. [PubMed]
  • Hohlfeld, R; Vielmetter, W. Bidirectional growth of the E. coli chromosome. Nat New Biol. 1973 Apr 4;242(118):130–132. [PubMed]
  • Holm, C; Goto, T; Wang, JC; Botstein, D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell. 1985 Jun;41(2):553–563. [PubMed]
  • Horowitz, H; Haber, JE. Identification of autonomously replicating circular subtelomeric Y' elements in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Sep;5(9):2369–2380. [PubMed]
  • Horowitz, H; Thorburn, P; Haber, JE. Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Nov;4(11):2509–2517. [PubMed]
  • Hsiao, CL; Carbon, J. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3829–3833. [PubMed]
  • Hsiao, CL; Carbon, J. Characterization of a yeast replication origin (ars2) and construction of stable minichromosomes containing cloned yeast centromere DNA (CEN3). Gene. 1981 Nov;15(2-3):157–166. [PubMed]
  • Hsiao, CL; Carbon, J. Direct selection procedure for the isolation of functional centromeric DNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3760–3764. [PubMed]
  • Huberman, JA; Spotila, LD; Nawotka, KA; el-Assouli, SM; Davis, LR. The in vivo replication origin of the yeast 2 microns plasmid. Cell. 1987 Nov 6;51(3):473–481. [PubMed]
  • Huberman, JA; Zhu, JG; Davis, LR; Newlon, CS. Close association of a DNA replication origin and an ARS element on chromosome III of the yeast, Saccharomyces cerevisiae. Nucleic Acids Res. 1988 Jul 25;16(14A):6373–6384. [PubMed]
  • Hurd, HK; Roberts, CW; Roberts, JW. Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Mol Cell Biol. 1987 Oct;7(10):3673–3677. [PubMed]
  • Hyman, BC; Cramer, JH; Rownd, RH. Properties of a Saccharomyces cerevisiae mtDNA segment conferring high-frequency yeast transformation. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1578–1582. [PubMed]
  • Hyman, BC; Cramer, JH; Rownd, RH. The mitochondrial genome of Saccharomyces cerevisiae contains numerous, densely spaced autonomously replicating sequences. Gene. 1983 Dec;26(2-3):223–230. [PubMed]
  • Igo-Kemenes, T; Hörz, W; Zachau, HG. Chromatin. Annu Rev Biochem. 1982;51:89–121. [PubMed]
  • Iwashima, A; Rabinowitz, M. Partial purification of mitochondrial and supernatant DNA polymerase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1969 Apr 22;178(2):283–293. [PubMed]
  • Jayaram, M; Li, YY; Broach, JR. The yeast plasmid 2mu circle encodes components required for its high copy propagation. Cell. 1983 Aug;34(1):95–104. [PubMed]
  • Jazwinski, SM. Participation of ATP in the binding of a yeast replicative complex to DNA. Biochem J. 1987 Aug 15;246(1):213–219. [PubMed]
  • Jazwinski, SM. CDC7-dependent protein kinase activity in yeast replicative-complex preparations. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2101–2105. [PubMed]
  • Jazwinski, SM; Edelman, GM. Replication in vitro of the 2-micrometer DNA plasmid of yeast. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1223–1227. [PubMed]
  • Jazwinski, SM; Edelman, GM. Protein complexes from active replicative fractions associate in vitro with the replication origins of yeast 2-micrometers DNA plasmid. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3428–3432. [PubMed]
  • Jazwinski, SM; Edelman, GM. Evidence for participation of a multiprotein complex in yeast DNA replication in vitro. J Biol Chem. 1984 Jun 10;259(11):6852–6857. [PubMed]
  • Jazwinski, SM; Edelman, GM. A DNA primase from yeast. Purification and partial characterization. J Biol Chem. 1985 Apr 25;260(8):4995–5002. [PubMed]
  • Jazwinski, SM; Niedzwiecka, A; Edelman, GM. In vitro association of a replication complex with a yeast chromosomal replicator. J Biol Chem. 1983 Mar 10;258(5):2754–2757. [PubMed]
  • Johnson, LM; Snyder, M; Chang, LM; Davis, RW; Campbell, JL. Isolation of the gene encoding yeast DNA polymerase I. Cell. 1985 Nov;43(1):369–377. [PubMed]
  • Johnston, LH; Barker, DG. Characterisation of an autonomously replicating sequence from the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1987 Apr;207(1):161–164. [PubMed]
  • Johnston, LH; Game, JC. Mutants of yeast with depressed DNA synthesis. Mol Gen Genet. 1978 May 3;161(2):205–214. [PubMed]
  • Johnston, LH; Nasmyth, KA. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature. 1978 Aug 31;274(5674):891–893. [PubMed]
  • Johnston, LH; Thomas, AP. The isolation of new DNA synthesis mutants in the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1982;186(3):439–444. [PubMed]
  • Johnston, LH; Thomas, AP. A further two mutants defective in initiation of the S phase in the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1982;186(3):445–448. [PubMed]
  • Johnston, LH; White, JH; Johnson, AL; Lucchini, G; Plevani, P. The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res. 1987 Jul 10;15(13):5017–5030. [PubMed]
  • Johnston, LH; Williamson, DH. An alkaline sucrose gradient analysis of the mechanism of nuclear DNA synthesis in the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1978 Aug 17;164(2):217–225. [PubMed]
  • Jong, AY; Aebersold, R; Campbell, JL. Multiple species of single-stranded nucleic acid-binding proteins in Saccharomyces cerevisiae. J Biol Chem. 1985 Dec 25;260(30):16367–16374. [PubMed]
  • Jong, AY; Campbell, JL. Isolation of the gene encoding yeast single-stranded nucleic acid binding protein 1. Proc Natl Acad Sci U S A. 1986 Feb;83(4):877–881. [PubMed]
  • Jong, AY; Clark, MW; Gilbert, M; Oehm, A; Campbell, JL. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins. Mol Cell Biol. 1987 Aug;7(8):2947–2955. [PubMed]
  • Jong, AY; Kuo, CL; Campbell, JL. The CDC8 gene of yeast encodes thymidylate kinase. J Biol Chem. 1984 Sep 10;259(17):11052–11059. [PubMed]
  • Jong, AY; Scott, JF. DNA synthesis in yeast cell-free extracts dependent on recombinant DNA plasmids purified from Escherichia coli. Nucleic Acids Res. 1985 Apr 25;13(8):2943–2958. [PubMed]
  • Kassir, Y; Kupiec, M; Shalom, A; Simchen, G. Cloning and mapping of CDC40, a Saccharomyces cerevisiae gene with a role in DNA repair. Curr Genet. 1985;9(4):253–257. [PubMed]
  • Kassir, Y; Simchen, G. Meiotic recombination and DNA synthesis in a new cell cycle mutant of Saccharomyces cerevisiae. Genetics. 1978 Sep;90(1):49–68. [PubMed]
  • Kawamura, M; Takagi, M; Yano, K. Cloning of a LEU gene and an ARS site of Candida maltosa. Gene. 1983 Oct;24(2-3):157–162. [PubMed]
  • Kearsey, S. Analysis of sequences conferring autonomous replication in baker's yeast. EMBO J. 1983;2(9):1571–1575. [PubMed]
  • Kearsey, S. Structural requirements for the function of a yeast chromosomal replicator. Cell. 1984 May;37(1):299–307. [PubMed]
  • Kearsey, SE; Edwards, J. Mutations that increase the mitotic stability of minichromosomes in yeast: characterization of RAR1. Mol Gen Genet. 1987 Dec;210(3):509–517. [PubMed]
  • Kikuchi, Y. Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell. 1983 Dec;35(2 Pt 1):487–493. [PubMed]
  • Kikuchi, Y; Hirai, K; Gunge, N; Hishinuma, F. Hairpin plasmid--a novel linear DNA of perfect hairpin structure. EMBO J. 1985 Jul;4(7):1881–1886. [PubMed]
  • Kikuchi, Y; Hirai, K; Hishinuma, F. The yeast linear DNA killer plasmids, pGKL1 and pGKL2, possess terminally attached proteins. Nucleic Acids Res. 1984 Jul 25;12(14):5685–5692. [PubMed]
  • Kikuchi, Y; Toh-e, A. A nuclear gene of Saccharomyces cerevisiae needed for stable maintenance of plasmids. Mol Cell Biol. 1986 Nov;6(11):4053–4059. [PubMed]
  • Kim, R; Ray, DS. Conservation of a 29-base-pair sequence within maxicircle ARS fragments from six species of trypanosomes. Gene. 1985;40(2-3):291–299. [PubMed]
  • Kimmerly, W; Buchman, A; Kornberg, R; Rine, J. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J. 1988 Jul;7(7):2241–2253. [PubMed]
  • Kimmerly, WJ; Rine, J. Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes. Mol Cell Biol. 1987 Dec;7(12):4225–4237. [PubMed]
  • Kingsman, AJ; Clarke, L; Mortimer, RK; Carbon, J. Replication in Saccharomyces cerevisiae of plasmid pBR313 carrying DNA from the yeast trpl region. Gene. 1979 Oct;7(2):141–152. [PubMed]
  • Kiss, GB; Amin, AA; Pearlman, RE. Two separate regions of the extrachromosomal ribosomal deoxyribonucleic acid of Tetrahymena thermophila enable autonomous replication of plasmids in Saccharomyces cerevisiae. Mol Cell Biol. 1981 Jun;1(6):535–543. [PubMed]
  • Kojo, H; Greenberg, BD; Sugino, A. Yeast 2-micrometer plasmid DNA replication in vitro: origin and direction. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7261–7265. [PubMed]
  • Konrad, EB. Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol. 1977 Apr;130(1):167–172. [PubMed]
  • Koshland, D; Hartwell, LH. The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science. 1987 Dec 18;238(4834):1713–1716. [PubMed]
  • Koshland, D; Kent, JC; Hartwell, LH. Genetic analysis of the mitotic transmission of minichromosomes. Cell. 1985 Feb;40(2):393–403. [PubMed]
  • Koshland, D; Rutledge, L; Fitzgerald-Hayes, M; Hartwell, LH. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell. 1987 Mar 13;48(5):801–812. [PubMed]
  • Kubai, DF. The evolution of the mitotic spindle. Int Rev Cytol. 1975;43:167–227. [PubMed]
  • Kuo, CL; Campbell, JL. Purification of the cdc8 protein of Saccharomyces cerevisiae by complementation in an aphidicolin-sensitive in vitro DNA replication system. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4243–4247. [PubMed]
  • Kuo, CL; Campbell, JL. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol Cell Biol. 1983 Oct;3(10):1730–1737. [PubMed]
  • Kuo, C; Nuang, H; Campbell, JL. Isolation of yeast DNA replication mutants in permeabilized cells. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6465–6469. [PubMed]
  • LaBonne, SG; Dumas, LB. Isolation of a yeast single-strand deoxyribonucleic acid binding protein that specifically stimulates yeast DNA polymerase I. Biochemistry. 1983 Jun 21;22(13):3214–3219. [PubMed]
  • Lambie, EJ; Roeder, GS. Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae. Genetics. 1986 Nov;114(3):769–789. [PubMed]
  • Lambie, EJ; Roeder, GS. A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences. Cell. 1988 Mar 25;52(6):863–873. [PubMed]
  • Larkin, JC; Woolford, JL., Jr Molecular cloning and analysis of the CRY1 gene: a yeast ribosomal protein gene. Nucleic Acids Res. 1983 Jan 25;11(2):403–420. [PubMed]
  • Lauer, GD; Roberts, TM; Klotz, LC. Determination of the nuclear DNA content of Saccharomyces cerevisiae and implications for the organization of DNA in yeast chromosomes. J Mol Biol. 1977 Aug 25;114(4):507–526. [PubMed]
  • Li, JJ; Kelly, TJ. Simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6973–6977. [PubMed]
  • Li, JJ; Kelly, TJ. Simian virus 40 DNA replication in vitro: specificity of initiation and evidence for bidirectional replication. Mol Cell Biol. 1985 Jun;5(6):1238–1246. [PubMed]
  • Linskens, MH; Huberman, JA. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Nov;8(11):4927–4935. [PubMed]
  • Liras, P; McCusker, J; Mascioli, S; Haber, JE. Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics. 1978 Apr;88(4 Pt 1):651–671. [PubMed]
  • Lohr, D; Torchia, T. Structure of the chromosomal copy of yeast ARS1. Biochemistry. 1988 May 31;27(11):3961–3965. [PubMed]
  • Long, CM; Brajkovich, CM; Scott, JF. Alternative model for chromatin organization of the Saccharomyces cerevisiae chromosomal DNA plasmid TRP1 RI circle (YARp1). Mol Cell Biol. 1985 Nov;5(11):3124–3130. [PubMed]
  • Lowdon, M; Vitols, E. Ribonucleotide reductase activity during the cell cycle of Saccharomyces cerevisiae. Arch Biochem Biophys. 1973 Sep;158(1):177–184. [PubMed]
  • Lucchini, G; Brandazza, A; Badaracco, G; Bianchi, M; Plevani, P. Identification of the yeast DNA polymerase I gene with antibody probes. Curr Genet. 1985;10(4):245–252. [PubMed]
  • Lucchini, G; Francesconi, S; Foiani, M; Badaracco, G; Plevani, P. Yeast DNA polymerase--DNA primase complex; cloning of PRI 1, a single essential gene related to DNA primase activity. EMBO J. 1987 Mar;6(3):737–742. [PubMed]
  • Lucchini, G; Mazza, C; Scacheri, E; Plevani, P. Genetic mapping of the Saccharomyces cerevisiae DNA polymerase I gene and characterization of a pol1 temperature-sensitive mutant altered in DNA primase-polymerase complex stability. Mol Gen Genet. 1988 Jun;212(3):459–465. [PubMed]
  • Lustig, AJ; Petes, TD. Identification of yeast mutants with altered telomere structure. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1398–1402. [PubMed]
  • Maine, GT; Sinha, P; Tye, BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984 Mar;106(3):365–385. [PubMed]
  • Maine, GT; Surosky, RT; Tye, BK. Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jan;4(1):86–91. [PubMed]
  • Mann, C; Davis, RW. Instability of dicentric plasmids in yeast. Proc Natl Acad Sci U S A. 1983 Jan;80(1):228–232. [PubMed]
  • Mann, C; Davis, RW. Meiotic disjunction of circular minichromosomes in yeast does not require DNA homology. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6017–6019. [PubMed]
  • Mann, C; Davis, RW. Structure and sequence of the centromeric DNA of chromosome 4 in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Jan;6(1):241–245. [PubMed]
  • Matsumoto, K; Uno, I; Kato, K; Ishikawa, T. Isolation and characterization of a phosphoprotein phosphatase-deficient mutant in yeast. Yeast. 1985 Sep;1(1):25–38. [PubMed]
  • Maundrell, K; Wright, AP; Piper, M; Shall, S. Evaluation of heterologous ARS activity in S. cerevisiae using cloned DNA from S. pombe. Nucleic Acids Res. 1985 May 24;13(10):3711–3722. [PubMed]
  • McCarroll, RM; Fangman, WL. Time of replication of yeast centromeres and telomeres. Cell. 1988 Aug 12;54(4):505–513. [PubMed]
  • McClintock, B. The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A. 1939 Aug;25(8):405–416. [PubMed]
  • McClintock, B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 1941 Mar;26(2):234–282. [PubMed]
  • McGrew, J; Diehl, B; Fitzgerald-Hayes, M. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Feb;6(2):530–538. [PubMed]
  • McIntosh, EM; Gadsden, MH; Haynes, RH. Transcription of genes encoding enzymes involved in DNA synthesis during the cell cycle of Saccharomyces cerevisiae. Mol Gen Genet. 1986 Sep;204(3):363–366. [PubMed]
  • McIntosh, EM; Haynes, RH. Sequence and expression of the dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae. Mol Cell Biol. 1986 May;6(5):1711–1721. [PubMed]
  • Meddle, CC; Kumar, P; Ham, J; Hughes, DA; Johnston, IR. Cloning of the CDC7 gene of Saccharomyces cerevisiae in association with centromeric DNA. Gene. 1985;34(2-3):179–186. [PubMed]
  • Meeks-Wagner, D; Hartwell, LH. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell. 1986 Jan 17;44(1):43–52. [PubMed]
  • Meeks-Wagner, D; Wood, JS; Garvik, B; Hartwell, LH. Isolation of two genes that affect mitotic chromosome transmission in S. cerevisiae. Cell. 1986 Jan 17;44(1):53–63. [PubMed]
  • Moir, D; Botstein, D. Determination of the order of gene function in the yeast nuclear division pathway using cs and ts mutants. Genetics. 1982 Apr;100(4):565–577. [PubMed]
  • Moir, D; Stewart, SE; Osmond, BC; Botstein, D. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics. 1982 Apr;100(4):547–563. [PubMed]
  • Montiel, JF; Norbury, CJ; Tuite, MF; Dobson, MJ; Mills, JS; Kingsman, AJ; Kingsman, SM. Characterization of human chromosomal DNA sequences which replicate autonomously in Saccharomyces cerevisiae. Nucleic Acids Res. 1984 Jan 25;12(2):1049–1068. [PubMed]
  • Mortimer, RK; Schild, D. Genetic map of Saccharomyces cerevisiae, edition 9. Microbiol Rev. 1985 Sep;49(3):181–213. [PubMed]
  • Murakami, Y; Wobbe, CR; Weissbach, L; Dean, FB; Hurwitz, J. Role of DNA polymerase alpha and DNA primase in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A. 1986 May;83(9):2869–2873. [PubMed]
  • Murray, AW; Schultes, NP; Szostak, JW. Chromosome length controls mitotic chromosome segregation in yeast. Cell. 1986 May 23;45(4):529–536. [PubMed]
  • Murray, AW; Szostak, JW. Construction of artificial chromosomes in yeast. Nature. 1983 Sep 15;305(5931):189–193. [PubMed]
  • Murray, AW; Szostak, JW. Pedigree analysis of plasmid segregation in yeast. Cell. 1983 Oct;34(3):961–970. [PubMed]
  • Murray, AW; Szostak, JW. Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol. 1985;1:289–315. [PubMed]
  • Murray, AW; Szostak, JW. Construction and behavior of circularly permuted and telocentric chromosomes in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Sep;6(9):3166–3172. [PubMed]
  • Nakaseko, Y; Adachi, Y; Funahashi, S; Niwa, O; Yanagida, M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 1986 May;5(5):1011–1021. [PubMed]
  • Naumovski, L; Friedberg, EC. The RAD3 gene of Saccharomyces cerevisiae: isolation and characterization of a temperature-sensitive mutant in the essential function and of extragenic suppressors of this mutant. Mol Gen Genet. 1987 Oct;209(3):458–466. [PubMed]
  • Nawotka, KA; Huberman, JA. Two-dimensional gel electrophoretic method for mapping DNA replicons. Mol Cell Biol. 1988 Apr;8(4):1408–1413. [PubMed]
  • Neitz, M; Carbon, J. Identification and characterization of the centromere from chromosome XIV in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Nov;5(11):2887–2893. [PubMed]
  • Neitz, M; Carbon, J. Characterization of a centromere-linked recombination hot spot in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):3871–3879. [PubMed]
  • Newlon, CS; Petes, TD; Hereford, LM; Fangman, WL. Replication of yeast chromosomal DNA. Nature. 1974 Jan 4;247(5435):32–35. [PubMed]
  • Newport, JW; Forbes, DJ. The nucleus: structure, function, and dynamics. Annu Rev Biochem. 1987;56:535–565. [PubMed]
  • Ng, R; Carbon, J. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol Cell Biol. 1987 Dec;7(12):4522–4534. [PubMed]
  • Oertel, W; Mayer, M. Structure and mitotic stability of minichromosomes originating in yeast cells transformed with tandem dimers of CEN11 plasmids. Mol Gen Genet. 1984;195(1-2):300–307. [PubMed]
  • Orr-Weaver, TL; Szostak, JW; Rothstein, RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. [PubMed]
  • Palzkill, TG; Newlon, CS. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell. 1988 May 6;53(3):441–450. [PubMed]
  • Palzkill, TG; Oliver, SG; Newlon, CS. DNA sequence analysis of ARS elements from chromosome III of Saccharomyces cerevisiae: identification of a new conserved sequence. Nucleic Acids Res. 1986 Aug 11;14(15):6247–6264. [PubMed]
  • Panzeri, L; Landonio, L; Stotz, A; Philippsen, P. Role of conserved sequence elements in yeast centromere DNA. EMBO J. 1985 Jul;4(7):1867–1874. [PubMed]
  • Panzeri, L; Philippsen, P. Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains. EMBO J. 1982;1(12):1605–1611. [PubMed]
  • Patterson, M; Sclafani, RA; Fangman, WL; Rosamond, J. Molecular characterization of cell cycle gene CDC7 from Saccharomyces cerevisiae. Mol Cell Biol. 1986 May;6(5):1590–1598. [PubMed]
  • Peñalva, MA; Salas, M. Initiation of phage phi 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5'-dAMP. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5522–5526. [PubMed]
  • Peterson, JB; Ris, H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci. 1976 Nov;22(2):219–242. [PubMed]
  • Peterson, TA; Prakash, L; Prakash, S; Osley, MA; Reed, SI. Regulation of CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol Cell Biol. 1985 Jan;5(1):226–235. [PubMed]
  • Peterson, TA; Yochem, J; Byers, B; Nunn, MF; Duesberg, PH; Doolittle, RF; Reed, SI. A relationship between the yeast cell cycle genes CDC4 and CDC36 and the ets sequence of oncogenic virus E26. Nature. 309(5968):556–558. [PubMed]
  • Petes, TD; Fangman, WL. Sedimentation properties of yeast chromosomal DNA. Proc Natl Acad Sci U S A. 1972 May;69(5):1188–1191. [PubMed]
  • Petes, TD; Newlon, CS. Structure of DNA in DNA replication mutants of yeast. Nature. 1974 Oct 18;251(5476):637–639. [PubMed]
  • Petes, TD; Newlon, CS; Byers, B; Fangman, WL. Yeast chromosomal DNA: size, structure, and replication. Cold Spring Harb Symp Quant Biol. 1974;38:9–16. [PubMed]
  • Petes, TD; Williamson, DH. Fiber autoradiography of replicating yeast DNA. Exp Cell Res. 1975 Oct 1;95(1):103–110. [PubMed]
  • Pizzagalli, A; Valsasnini, P; Plevani, P; Lucchini, G. DNA polymerase I gene of Saccharomyces cerevisiae: nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3772–3776. [PubMed]
  • Plevani, P; Badaracco, G; Augl, C; Chang, LM. DNA polymerase I and DNA primase complex in yeast. J Biol Chem. 1984 Jun 25;259(12):7532–7539. [PubMed]
  • Plevani, P; Foiani, M; Valsasnini, P; Badaracco, G; Cheriathundam, E; Chang, LM. Polypeptide structure of DNA primase from a yeast DNA polymerase-primase complex. J Biol Chem. 1985 Jun 10;260(11):7102–7107. [PubMed]
  • Plevani, P; Francesconi, S; Lucchini, G. The nucleotide sequence of the PRI1 gene related to DNA primase in Saccharomyces cerevisiae. Nucleic Acids Res. 1987 Oct 12;15(19):7975–7989. [PubMed]
  • Pluta, AF; Dani, GM; Spear, BB; Zakian, VA. Elaboration of telomeres in yeast: recognition and modification of termini from Oxytricha macronuclear DNA. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1475–1479. [PubMed]
  • Potashkin, JA; Huberman, JA. Characterization of DNA sequences associated with residual nuclei of Saccharomyces cerevisiae. Exp Cell Res. 1986 Jul;165(1):29–40. [PubMed]
  • Potashkin, JA; Zeigel, RF; Huberman, JA. Isolation and initial characterization of residual nuclear structures from yeast. Exp Cell Res. 1984 Aug;153(2):374–388. [PubMed]
  • Prelich, G; Kostura, M; Marshak, DR; Mathews, MB; Stillman, B. The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature. 1987 Apr 2;326(6112):471–475. [PubMed]
  • Pritchard, AE; Cummings, DJ. Replication of linear mitochondrial DNA from Paramecium: sequence and structure of the initiation-end crosslink. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7341–7345. [PubMed]
  • Proffitt, JH; Davie, JR; Swinton, D; Hattman, S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol. 1984 May;4(5):985–988. [PubMed]
  • Reed, SI. The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics. 1980 Jul;95(3):561–577. [PubMed]
  • Reed, SI; Hadwiger, JA; Lörincz, AT. Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4055–4059. [PubMed]
  • Rekosh, DM; Russell, WC; Bellet, AJ; Robinson, AJ. Identification of a protein linked to the ends of adenovirus DNA. Cell. 1977 Jun;11(2):283–295. [PubMed]
  • Reynolds, AE; Murray, AW; Szostak, JW. Roles of the 2 microns gene products in stable maintenance of the 2 microns plasmid of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Oct;7(10):3566–3573. [PubMed]
  • Richards, EJ; Ausubel, FM. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988 Apr 8;53(1):127–136. [PubMed]
  • Ris, H; Witt, PL. Structure of the mammalian kinetochore. Chromosoma. 1981;82(2):153–170. [PubMed]
  • Rivin, CJ; Fangman, WL. Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae. J Cell Biol. 1980 Apr;85(1):96–107. [PubMed]
  • Rivin, CJ; Fangman, WL. Replication fork rate and origin activation during the S phase of Saccharomyces cerevisiae. J Cell Biol. 1980 Apr;85(1):108–115. [PubMed]
  • Roth, GE; Blanton, HM; Hager, LJ; Zakian, VA. Isolation and characterization of sequences from mouse chromosomal DNA with ARS function in yeasts. Mol Cell Biol. 1983 Nov;3(11):1898–1908. [PubMed]
  • Russell, DW; Jensen, R; Zoller, MJ; Burke, J; Errede, B; Smith, M; Herskowitz, I. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol Cell Biol. 1986 Dec;6(12):4281–4294. [PubMed]
  • Ryder, K; Silver, S; DeLucia, AL; Fanning, E; Tegtmeyer, P. An altered DNA conformation in origin region I is a determinant for the binding of SV40 large T antigen. Cell. 1986 Mar 14;44(5):719–725. [PubMed]
  • Saavedra, RA; Huberman, JA. Both DNA topoisomerases I and II relax 2 micron plasmid DNA in living yeast cells. Cell. 1986 Apr 11;45(1):65–70. [PubMed]
  • Saffer, LD; Miller, OL., Jr Electron microscopic study of Saccharomyces cerevisiae rDNA chromatin replication. Mol Cell Biol. 1986 Apr;6(4):1148–1157. [PubMed]
  • Salas, M; Mellado, RP; Viñuela, E. Characterization of a protein covalently linked to the 5' termini of the DNA of Bacillus subtilis phage phi29. J Mol Biol. 1978 Feb 25;119(2):269–291. [PubMed]
  • Saunders, M; Fitzgerald-Hayes, M; Bloom, K. Chromatin structure of altered yeast centromeres. Proc Natl Acad Sci U S A. 1988 Jan;85(1):175–179. [PubMed]
  • Schild, D; Byers, B. Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae. Chromosoma. 1978 Dec 21;70(1):109–130. [PubMed]
  • Schnos, M; Zahn, K; Inman, RB; Blattner, FR. Initiation protein induced helix destabilization at the lambda origin: a prepriming step in DNA replication. Cell. 1988 Feb 12;52(3):385–395. [PubMed]
  • Schwartz, DC; Cantor, CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. [PubMed]
  • Sclafani, RA; Fangman, WL. Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5821–5825. [PubMed]
  • Sclafani, RA; Patterson, M; Rosamond, J; Fangman, WL. Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Mol Cell Biol. 1988 Jan;8(1):293–300. [PubMed]
  • Sekimizu, K; Bramhill, D; Kornberg, A. ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell. 1987 Jul 17;50(2):259–265. [PubMed]
  • Shampay, J; Blackburn, EH. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1988 Jan;85(2):534–538. [PubMed]
  • Shampay, J; Szostak, JW; Blackburn, EH. DNA sequences of telomeres maintained in yeast. Nature. 1984 Jul 12;310(5973):154–157. [PubMed]
  • Shore, D; Stillman, DJ; Brand, AH; Nasmyth, KA. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO J. 1987 Feb;6(2):461–467. [PubMed]
  • Kee, SG; Haber, JE. Cell cycle-dependent induction of mutations along a yeast chromosome. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1179–1183. [PubMed]
  • Singh, H; Brooke, RG; Pausch, MH; Williams, GT; Trainor, C; Dumas, LB. Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis. J Biol Chem. 1986 Jun 25;261(18):8564–8569. [PubMed]
  • Singh, H; Dumas, LB. A DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae. J Biol Chem. 1984 Jun 25;259(12):7936–7940. [PubMed]
  • Sinha, P; Chang, V; Tye, BK. A mutant that affects the function of autonomously replicating sequences in yeast. J Mol Biol. 1986 Dec 20;192(4):805–814. [PubMed]
  • Slater, ML. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J Bacteriol. 1973 Jan;113(1):263–270. [PubMed]
  • Slater, ML; Sharrow, SO; Gart, JJ. Cell cycle of Saccharomycescerevisiae in populations growing at different rates. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3850–3854. [PubMed]
  • Snyder, M; Buchman, AR; Davis, RW. Bent DNA at a yeast autonomously replicating sequence. Nature. 1986 Nov 6;324(6092):87–89. [PubMed]
  • Snyder, M; Sapolsky, RJ; Davis, RW. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol. 1988 May;8(5):2184–2194. [PubMed]
  • Srienc, F; Bailey, JE; Campbell, JL. Effect of ARS1 mutations on chromosome stability in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Jul;5(7):1676–1684. [PubMed]
  • Stahl, H; Dröge, P; Knippers, R. DNA helicase activity of SV40 large tumor antigen. EMBO J. 1986 Aug;5(8):1939–1944. [PubMed]
  • Steensma, HY; Crowley, JC; Kaback, DB. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and analysis of the CEN1-ADE1-CDC15 region. Mol Cell Biol. 1987 Jan;7(1):410–419. [PubMed]
  • Stinchcomb, DT; Mann, C; Davis, RW. Centromeric DNA from Saccharomyces cerevisiae. J Mol Biol. 1982 Jun 25;158(2):157–190. [PubMed]
  • Stinchcomb, DT; Struhl, K; Davis, RW. Isolation and characterisation of a yeast chromosomal replicator. Nature. 1979 Nov 1;282(5734):39–43. [PubMed]
  • Stinchcomb, DT; Thomas, M; Kelly, J; Selker, E; Davis, RW. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4559–4563. [PubMed]
  • Storms, RK; Ord, RW; Greenwood, MT; Mirdamadi, B; Chu, FK; Belfort, M. Cell cycle-dependent expression of thymidylate synthase in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Dec;4(12):2858–2864. [PubMed]
  • Strich, R; Woontner, M; Scott, JF. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae. Yeast. 1986 Sep;2(3):169–178. [PubMed]
  • Sugino, A; Ryu, BH; Sugino, T; Naumovski, L; Friedberg, EC. A new DNA-dependent ATPase which stimulates yeast DNA polymerase I and has DNA-unwinding activity. J Biol Chem. 1986 Sep 5;261(25):11744–11750. [PubMed]
  • Sundin, O; Varshavsky, A. Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell. 1980 Aug;21(1):103–114. [PubMed]
  • Sung, P; Prakash, L; Matson, SW; Prakash, S. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8951–8955. [PubMed]
  • Surosky, RT; Newlon, CS; Tye, BK. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc Natl Acad Sci U S A. 1986 Jan;83(2):414–418. [PubMed]
  • Surosky, RT; Tye, BK. Construction of telocentric chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2106–2110. [PubMed]
  • Surosky, RT; Tye, BK. Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics. 1985 Jul;110(3):397–419. [PubMed]
  • Symington, LS; Petes, TD. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol Cell Biol. 1988 Feb;8(2):595–604. [PubMed]
  • Symington, LS; Petes, TD. Meiotic recombination within the centromere of a yeast chromosome. Cell. 1988 Jan 29;52(2):237–240. [PubMed]
  • Szostak, JW; Wu, R. Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid. 1979 Oct;2(4):536–554. [PubMed]
  • Szostak, JW. Replication and resolution of telomeres in yeast. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1187–1194. [PubMed]
  • Szostak, JW; Blackburn, EH. Cloning yeast telomeres on linear plasmid vectors. Cell. 1982 May;29(1):245–255. [PubMed]
  • Tamanoi, F; Stillman, BW. Function of adenovirus terminal protein in the initiation of DNA replication. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2221–2225. [PubMed]
  • Taylor, GR; Lagosky, PA; Storms, RK; Haynes, RH. Molecular characterization of the cell cycle-regulated thymidylate synthase gene of Saccharomyces cerevisiae. J Biol Chem. 1987 Apr 15;262(11):5298–5307. [PubMed]
  • Thoma, F; Bergman, LW; Simpson, RT. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol. 1984 Aug 25;177(4):715–733. [PubMed]
  • Thompson, A; Oliver, SG. Physical separation and functional interaction of Kluyveromyces lactis and Saccharomyces cerevisiae ARS elements derived from killer plasmid DNA. Yeast. 1986 Sep;2(3):179–191. [PubMed]
  • Thrash, C; Bankier, AT; Barrell, BG; Sternglanz, R. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4374–4378. [PubMed]
  • Thrash, C; Voelkel, K; DiNardo, S; Sternglanz, R. Identification of Saccharomyces cerevisiae mutants deficient in DNA topoisomerase I activity. J Biol Chem. 1984 Feb 10;259(3):1375–1377. [PubMed]
  • Toh-e, A; Shimauchi, T. Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae. Yeast. 1986 Jun;2(2):129–139. [PubMed]
  • Tschumper, G; Carbon, J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene. 1980 Jul;10(2):157–166. [PubMed]
  • Tschumper, G; Carbon, J. Delta sequences and double symmetry in a yeast chromosomal replicator region. J Mol Biol. 1982 Apr 5;156(2):293–307. [PubMed]
  • Tschumper, G; Carbon, J. Copy number control by a yeast centromere. Gene. 1983 Aug;23(2):221–232. [PubMed]
  • Tschumper, G; Carbon, J. Saccharomyces cerevisiae mutants that tolerate centromere plasmids at high copy number. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7203–7207. [PubMed]
  • Uemura, T; Yanagida, M. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 1984 Aug;3(8):1737–1744. [PubMed]
  • Uemura, T; Tanagida, M. Mitotic spindle pulls but fails to separate chromosomes in type II DNA topoisomerase mutants: uncoordinated mitosis. EMBO J. 1986 May;5(5):1003–1010. [PubMed]
  • Umek, RM; Kowalski, D. Yeast regulatory sequences preferentially adopt a non-B conformation in supercoiled DNA. Nucleic Acids Res. 1987 Jun 11;15(11):4467–4480. [PubMed]
  • Umek, RM; Kowalski, D. The ease of DNA unwinding as a determinant of initiation at yeast replication origins. Cell. 1988 Feb 26;52(4):559–567. [PubMed]
  • Vallet, J-M; Rahire, M; Rochaix, J-D. Localization and sequence analysis of chloroplast DNA sequences of Chlamydomonas reinhardii that promote autonomous replication in yeast. EMBO J. 1984 Feb;3(2):415–421. [PubMed]
  • Van der Ploeg, LH; Liu, AY; Borst, P. Structure of the growing telomeres of Trypanosomes. Cell. 1984 Feb;36(2):459–468. [PubMed]
  • Volkert, FC; Broach, JR. Site-specific recombination promotes plasmid amplification in yeast. Cell. 1986 Aug 15;46(4):541–550. [PubMed]
  • Walmsley, RM. Yeast telomeres: the end of the chromosome story? Yeast. 1987 Sep;3(3):139–148. [PubMed]
  • Walmsley, RW; Chan, CS; Tye, BK; Petes, TD. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature. 310(5973):157–160. [PubMed]
  • Walmsley, RM; Petes, TD. Genetic control of chromosome length in yeast. Proc Natl Acad Sci U S A. 1985 Jan;82(2):506–510. [PubMed]
  • Walmsley, RM; Szostak, JW; Petes, TD. Is there left-handed DNA at the ends of yeast chromosomes? Nature. 1983 Mar 3;302(5903):84–86. [PubMed]
  • Watabe, K; Shin, M; Ito, J. Protein-primed initiation of phage phi 29 DNA replication. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4248–4252. [PubMed]
  • White, JH; Green, SR; Barker, DG; Dumas, LB; Johnston, LH. The CDC8 transcript is cell cycle regulated in yeast and is expressed coordinately with CDC9 and CDC21 at a point preceding histone transcription. Exp Cell Res. 1987 Jul;171(1):223–231. [PubMed]
  • Wickner, RB. Double-stranded RNA replication in yeast: the killer system. Annu Rev Biochem. 1986;55:373–395. [PubMed]
  • Williams, JS; Eckdahl, TT; Anderson, JN. Bent DNA functions as a replication enhancer in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2763–2769. [PubMed]
  • Williamson, DH. The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J Cell Biol. 1965 Jun;25(3):517–528. [PubMed]
  • Williamson, DH. The yeast ARS element, six years on: a progress report. Yeast. 1985 Sep;1(1):1–14. [PubMed]
  • Wilson, FE; Sugino, A. Purification of a DNA primase activity from the yeast Saccharomyces cerevisiae. Primase can be separated from DNA polymerase I. J Biol Chem. 1985 Jul 5;260(13):8173–8181. [PubMed]
  • Wintersberger, E. Yeast DNA polymerases: antigenic relationship, use of RNA primer and associated exonuclease activity. Eur J Biochem. 1978 Mar;84(1):167–172. [PubMed]
  • Wintersberger, U; Wintersberger, E. Studies on deoxyribonucleic acid polymerases from yeast. 1. Parial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Eur J Biochem. 1970 Mar 1;13(1):11–19. [PubMed]
  • Wintersberger, U; Wintersberger, E. Studies on deoxyribonucleic acid polymerases from yeast. 2. Partial purification and characterization of mitochondrial DNA polymerase from wild type and respiration-deficient yeast cells. Eur J Biochem. 1970 Mar 1;13(1):20–27. [PubMed]
  • Wobbe, CR; Weissbach, L; Borowiec, JA; Dean, FB; Murakami, Y; Bullock, P; Hurwitz, J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1834–1838. [PubMed]
  • Wold, MS; Li, JJ; Kelly, TJ. Initiation of simian virus 40 DNA replication in vitro: large-tumor-antigen- and origin-dependent unwinding of the template. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3643–3647. [PubMed]
  • Wood, JS; Hartwell, LH. A dependent pathway of gene functions leading to chromosome segregation in Saccharomyces cerevisiae. J Cell Biol. 1982 Sep;94(3):718–726. [PubMed]
  • Wu, LC; Fisher, PA; Broach, JR. A yeast plasmid partitioning protein is a karyoskeletal component. J Biol Chem. 1987 Jan 15;262(2):883–891. [PubMed]
  • Yamamoto, M; Miklos, GL. Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNA. Chromosoma. 1978 Mar 22;66(1):71–98. [PubMed]
  • Yang, L; Wold, MS; Li, JJ; Kelly, TJ; Liu, LF. Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A. 1987 Feb;84(4):950–954. [PubMed]
  • Yeh, E; Carbon, J; Bloom, K. Tightly centromere-linked gene (SPO15) essential for meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1986 Jan;6(1):158–167. [PubMed]
  • Yochem, J; Byers, B. Structural comparison of the yeast cell division cycle gene CDC4 and a related pseudogene. J Mol Biol. 1987 May 20;195(2):233–245. [PubMed]
  • Zahn, K; Blattner, FR. Sequence-induced DNA curvature at the bacteriophage lambda origin of replication. Nature. 317(6036):451–453. [PubMed]
  • Zakian, VA. Electron microscopic analysis of DNA replication in main band and satellite DNAs of Drosophila virilis. J Mol Biol. 1976 Dec;108(2):305–331. [PubMed]
  • Zakian, VA. Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast. Proc Natl Acad Sci U S A. 1981 May;78(5):3128–3132. [PubMed]
  • Zakian, VA; Blanton, HM. Distribution of telomere-associated sequences on natural chromosomes in Saccharomyces cerevisiae. Mol Cell Biol. 1988 May;8(5):2257–2260. [PubMed]
  • Zakian, VA; Blanton, HM; Wetzel, L; Dani, GM. Size threshold for Saccharomyces cerevisiae chromosomes: generation of telocentric chromosomes from an unstable minichromosome. Mol Cell Biol. 1986 Mar;6(3):925–932. [PubMed]
  • Zakian, VA; Brewer, BJ; Fangman, WL. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell. 1979 Aug;17(4):923–934. [PubMed]
  • Zakian, VA; Kupfer, DM. Replication and segregation of an unstable plasmid in yeast. Plasmid. 1982 Jul;8(1):15–28. [PubMed]
  • Zakian, VA; Scott, JF. Construction, replication, and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Mol Cell Biol. 1982 Mar;2(3):221–232. [PubMed]