
Enabling Bayesian Inference for the Astronomy Masses

Performance Report submitted by M. D. Weinberg, PI
Period: 3/15/06–3/14/07

Grant Number: NNG-06-GF25G

1 Executive summary

Active development proceeded in four of the five defined research topics:

1. Development of statistical methodology

• Implemented theReversible JumpMarkov chain as an alternative model selection tool
for multicomponent mixture models

• Implemented theParallel chainsalgorithm for accelerating convergence

• Implemented theParticle filter algorithm as an alternative to pure MCMC simulation

• Updated the posterior visualization tool using the GL-based Visualization Tool Kit with
a GTK+ GUI.

• Augmented the BIE architecture to for user defined likelihood routines.

• Updated the read/write methods to allow arbitrary SQL tableoutput with named fields

2. Development of persistence technology

• Reviewed and redesigned current experimental persistencedesign based on preproces-
sor macros

• Developed conceptual design for persistent store based on SVN repositories

• Began re-implementation of serialization and persistencemethods
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3. Astronomical applications

• Developed and implemented a GALFIT-based galaxy image analyzer, in discussion
with the GALFIT author, Chien Peng. Tests show that the new application, BIE–
GALFIT, is significantly less biased. Moreover, we have shown that standard ap-
proaches to model selection using GALFIT andχ2 statistics fails where Bayes ratio
methods succeed. We anticipate releasing a stand alone BIE–GALFIT package in the
upcoming year.

• Developed and implemented semi-analytic method routine.

I will detail some of advances below and end with a list of Milestones for Year 2.

Administrative issues

Although the start date is 3/1/06, we were notified of the award in June, 2006. Work began in
early Summer by the PI followed by the entire team in September. The work reported here covers
approximately the first 7 months of activity.

Because of the award timing, we advertised the post-doctoral position in Fall 2006 and have
recently hired Jörg Colberg, who will begin in September 2007.

2 Research milestones and summary

2-1 Persistence subsystem development

In the area of persistence and work flow management, we have three objectives at present: 1) restore
inter-command state save/restore to functionality, whilesimplifying the programmer’s interface and
making it more robust from a software engineering perspective; 2) add support for checkpointing
while running Monte-Carlo Markov chains; and 3) begin design of the high level persistence tool
and interface that will present and manage the various computations and lines of work a researcher
is investigating, providing support analogous to that offered by integrated development environ-
ments to programmers.

We have nearly met the first objective. The new research assistant has now mostly climbed the
learning curve on approaches to adding persistence (save/restore) to Java. He picked apart our pre-
vious code and determined that it broke because it was relying on properties of particular compilers
that tend to change from release to release. We redesigned that part and are also moving towards
using the better persistence support available from the Boost C++ libraries, which are widely used
and well-maintained. We reworked the way in which the programmer indicates which fields of a
class must be saved and in which the system works in the necessary automatically generated code
for the actual saving and restoring. The result is easier forprogrammers to use and will also better
help them avoid certain possible mistakes. We are now well positioned to tackle checkpointing,
which should be relatively straightforward given working save/restore, and then to dig in to the
intellectually more challenging issues of the high level tool.
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2-2 BIE–GALFIT

2-2.1 Motivation

The galaxy structure is evolving due to gravitational and gas dynamical physics in the expanding
Universe. To understand the evolution of galaxy structure based on their morphology has been
done by human eye, which led to the systems in use today such asHubble type. As galaxy sur-
veys have become deeper and more voluminous, researchers have explored a variety of automatic
classification schemes.

There are two main approaches towards describing galaxy structure from the two dimensional
images. Non-parametric approaches estimate several quantities such as total brightness, galaxy
half-light radius, concentration and asymmetry. However the results are sensitive to the depth
of image. Thus one can underestimate the flux and size of faintgalaxies on noisy background
(Blanton et al., 2003). On the other hand, parametric approaches use particular functional light
profiles(observationally motivated or sometimes physically motivated) for modeling galaxy light
distribution in the image. Although parametric approach has less flexible than non-parametric
one, it can capture the light which is at larger radius and still significant contribution but not seen
clearly in the image. Also since we know that there are several common types of luminous compo-
nents(disk, bulge, bar and spiral arms) which consist of thegalaxy light distribution, the parametric
approach using different light profiles modeling each component can provide the information of
galaxy structures which vary over cosmic time scale and depend on density environment.

The various researches about galaxy structural parametershave been done using two popular
parametric galaxy fitting code, GALFIT and GIM 2D . Recently Häußler et al. have done exhaustive
tests and comparisons between GALFIT and GIM 2D . They show that GALFIT offers a number
of important advantages over GIM 2D for galaxy fitting on large moderate depthHST/ACSdata,
foremost its much higher speed and its robustness to nearby galaxies (Häußler, 2007).

GALFIT is a modular package written to perform two dimensional image decompositions for
galaxies which are from nearby to distant (Peng et al., 2002). GALFIT takes an input image and
outputs a model-subtracted images as well as a catalog of structural parameters for an arbitrary
number of components. The predefined components include most of the commonly used profiles.
Each predefined component has up to ten parameters but allowsfor an arbitrary number of user-
defined profiles and components. Some parameters may be fixed depending on one’s application
but a typical fit will require greater than 12 parameters. GALFIT optimizes the parameters of the
likelihood function using Levenberg-Marquardt downhill algorithm. However it is possible that it
converges on a local minimum of likelihood. This becomes severe when the number of parameter
is large since the topology of likelihood can be multi-modal. Also if the image quality is poor,
there may be no strong mode in likelihood function and it is hard to know which combination of
parameter should describe the galaxy structure.

This motivates our Bayesian Inference Engine back end, which will allow GALFIT-based inves-
tigations of the full posterior not just the extremum mode, and will establish proper prior distribu-
tions, which allow inferences using Bayes Factors over a wide variety of competing models and
hypotheses.
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2-2.2 Galaxy image modeling

All tests and investigations described here usesyntheticdata. We generate two simple, simulated
galaxies using MIDAS package. They are idealized galaxies with very highS/N . Secondly, we
select several high and lowS/Nisolated galaxy images from large, simulated ensemble of galaxies
in Häußler (2007). They simulated the galaxy light profilesand putting them in an empty space.
This image was convolved with a real F850LP-band PSF derivedfrom GEMS dataset and appropri-
ate amount of noise was added to it. For more details, see Häußler (2007). We estimate meanS/N
based on Häußler (2007)) using mean surface brightness(mag/arcsec2) within half-light radius,re

µ= mag+2.5log(2
b
a

πr2
e) (1)

whereb/a is axis ratio. For example,µ= 20.5,24.0 correspond toS/N = 10,0.9 respectively. See
their figures for the scaling betweenS/Nandµ. The typical surface brightness of sky background
is µ = 22.5. All images are kindly provided by Dr. Daniel McIntosh and Mr. Yicheng Guo. Last,
we use one image with three galaxies with same Sérsic index,n = 4. The light profiles of those
galaxies are blended.

The most critical issue about galaxy fitting is to estimate sky background. Although we can fit
sky background as an extra parameter, this can lead to the biased result if the model light profile
does not exactly describe the real galaxy light distribution. The estimation of sky background
is also affected by the relative size of galaxy to the image, especially for the Sérsic profile with
long tail(i.e. n = 4). Thus it is usually better to fix the sky background based onindependent
measurement(Häußler (2007)). We thus select relatively small galaxies(re < 10) with the image
size of from 240 by 240 or 400 by 400.

For modeling these data, we use single Sérsic model from GALFIT and the different priors for
each parameters.BIE currently provides 7 types of different prior. SeeBIE website for more
information.

2-2.3 Synthetic galaxy images

All images are generated following Sérsic light profile with two different indices,n = 1 andn =
4, which correspond exponential disk and de Vaucouleur galaxy respectively. The radial surface
brightness profile of Sérsic function is given by

Σ(r) = Σeexp[−κ(
r
re

)1/n−1)] (2)

whereΣe is the surface brightness at effective radiusre which is such that half of the total flux is
within re. The parametern is Sérsic index or often called concentration parameter. Whenn is large,
it has steep inner profile, and a highly extended outer wing. Inversely, when it is small, it has a
shallow inner profile and a steep truncation at large radius.The κ is not a independent variable
and related withn. Usually a good approximation forκ for n > 0.5 is κ = 2n−1/3+0.009876/n
(MacArthur et al. (2003)). Figure 1 shows Sérsic profile fordifferentn using this approximation
for κ.
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Figure 1: Sérsic surface brightness profiles for n=0.5, 1, 2, 4 and 8 (equation 2). The profiles have
been normalized atre = 1.

For an exponential profile (n=1), 99.1% of the flux resides within the inner 4re and 99.8% of the
flux resides within the inner 5re. For an n=4 profile, 84.7% of the flux resides within the inner 4re

and 88.4% of the flux resides within the inner 5re (Graham and Driver, 2005).

2-2.4 Bayesian approach for modelling data

For the likelihood function, we construct the likelihood function using models in GALFIT .

P(D | θ) =
exp(−1

2[D−M(θ)]tW[D−M(θ)])

(2π)Npix/2| W |−1/2
(3)

whereD is data vector(Nx×Ny), M(θ) is a model vector andW is a weight matrix for pixel value.
For the prior for parameters, we mostly adopt the uniform prior with a range(top-hat) which

leads the likelihood dominated posterior probability distribution and basically the same case with
the maximum likelihood method, a least informative case of Bayesian statistics. As we shall see in
later, the effect of prior becomes more significant when we have data where the information is weak
and degenerated. For example, in case of lowS/Ndata, the informative priors for some parameters
help to obtain the robust estimate for those parameters.

We use GALFIT model with single Sérsic profile and different prior for each parameter. In GAL -
FIT , each Sérsic function has 8 free parameters in the fit: centroid of the profile(xc,yc), integrated
magnitude(Mtot) which is related withΣe, effective radius(re), Sérsic index(n), axis ratio(b/a), po-
sition angle(PA) and diskiness/boxiness(c). Also GALFIT can add another profile for setting up the
sky background with 3 free parameter:sky level, sky gradient in X,Y direction. Some of parameters
can be hold to fix while fitting. See Peng et al. (2002) for more general information. This is the
modelM(θ) used in the likelihood function.

2-2.5 Selected results

In this section, we illustrate and interpret the Bayesian MCMC results for all simulated galaxies
with different structural parameters. First we show very ideal cases, which are two isolated galaxies
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Figure 2: The surface plot of light profiles from disk0 and sph0. Left is exponential disk(n=1) and
right is spheroid(n=4).

Table 1: PARAMETER VALUES OF DISK0 AND SPH0

Parameter disk0 sph0
image size 200×200 200×200
position X
position Y
Total magnitude[mag],Mtot 20.0 20.0
Effective radius[pix],Re 10.0 10.0
Sersic index, n 1.0 4.0
Axis ratio, b/a 1.0 1.0
Position Angle, PA[deg] 0.0 0.0
GALFIT best fit
Total magnitude[mag],Mtot 20.0±0.00 20.0±0.01
Effective radius[pix],Re 10.12±0.04 10.13±0.13
Sersic index, n 1.01±0.01 3.99±0.05
Axis ratio, b/a 0.99±0.00 1.00±0.01
Position Angle, PA[deg] – –

with very strong signal. we check ifBIE is working as we expect and try different techniques for
improving chain mixing and convergence. Then we compare theresult with GALFIT and study the
parameter correlation and uncertainties. We have also explored more realistic galaxy images with
high and lowS/Nand characterize howBIE works for the strongly or weakly informative data. We
also show the effect of strong prior over weakly informativelikelihood. Last we model the multiple
galaxies in one image, where their light profiles are blended.

Two ideal galaxies: Disk and Spheroid

We show two galaxy images, disk0 and sph0 in Figure 2. Their input parameter values are listed
in Table 1. The galaxies are modelled by Sérsic profile with 7free parameters. The diskiness vs.
boxiness parameter is fixed to zero and the sky background level is also hold to the known value.
However the sky background fitting is very robust for these galaxies. We generate MCMC using
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Figure 3: The trace of states for disk0. Left is for pure Metropolis-Hastings(MH) and right is for
simulated tempering. Although the simulated tempering algorithm takes longer time than pure MH
for advancing one step, it converges with smaller number of iteration than pure MH. PA is not
converging since it could have any value.

different sampling algorithms inBIE and confirm its feasibility. Three different algorithms are
Metropolis-Hastings, simulated tempering and parallel chain.

Comparison between different algorithms

For the exponential disk, we runBIE with Metropolis-Hastings and tempered simulation algo-
rithm. The chains for all model parameters are shown in Figure 3. After burn-in period (marked
as black vertical line in Figure 3) , all values are closely converging to true input parameters. The
left and right panels in Figure 3 are respectively MCMC with Metropolis-Hastings and simulated
tempering algorithms for 7 free parameters. Since their axis ratios are both 1.0, there is no preferred
values for PA. Although the simulated tempering requires Metropolis-Hastings ‘internal’ steps for
advancing one step, it converges more quickly than Metropolis-Hastings algorithm.

For spheroid, we show MCMC with simulated tempering and parallel chain algorithms in Figure
4. In parallel chain simulation,BIE runs several chains with different starting points and tem-
peratures. Each chains probe different regions of parameter posterior probability distribution and
the swaps between different chains start to occur based on relative probability of each chain state.
In this experiments, parallel chain algorithm is generallymore robust and faster than Metropolis-
Hastings and simulated tempering.

We show 1D marginalized distributions of parameters for disk0 and sph0 in Figure 5 and Figure
6 respectively. The parameter distribution in Figure 5 is sampled from the chain with Metropolis-
Hastings and the parameter distribution in Figure 6 is from the simulations with simulated temper-
ing (black) and parallel chain (blue) algorithms. There aretwo different error bars in the figures.
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Figure 4: The trace of states for sph0. Left is for simulated tempering and right is for parallel chain
algorithm. PA is not converging since it could have any value.

The dotted lines are 1, 2 & 3 standard deviations from the expected values. The solid lines are
68.3,95.4 and 99.73% percentiles from the median, which correspond to 1,2 & 3 standard devia-
tions in one dimensional parameter space. The solid vertical lines indicate the true input parameters.

Random sampling from the posterior is distributed around the true input parameters but the peak
is not located at the exact input value. In Figure 6 the posterior probability distributions for each
parameters are relatively smooth in case of simulated tempering algorithm. This is because one
single chain probes the parameter space and chain transition is smooth. In parallel chain algo-
rithm, several chains start from different initial conditions probing different parameter spaces and
meanwhile, there is chain swapping which is based on the relative posterior probability of each
chain. This makes discrete jumps in the trace of parameters and peaks in the marginalized param-
eter distributions. There are slight offsets of median/expected values forMtot,re andn from the
true input parameters in simulated tempering algorithm. However, the expected and median values
from parallel chain simulation are very close to the true input parameters although the offset ofre is
slightly larger than that from simulated tempering simulation. This indicates that the parallel chain
effectively probes the parameter space. In Figure 5 we also see slight offsets of expected/median
values from the true parameters. Pure Metropolis-Hastingsprobes parameter space less efficiently
than simulated tempering and parallel chain algorithm.

In general the topology of parameter space for exponential disk is smoother than spheroid given
the sameS/N. Since spheroid has a light profile with long tail, the correct modeling including the
outer part of the profile is severely hampered by sky background and noise. For example, it is hard
to reveal clear uni-modality ofre andn around true values for spheroid. This can be more clearly
seen in the 2D marginalized parameter distributions in nextsection. For both disk0 and sph0,
magnitude is the most robust parameter even though there is slight offset from the true magnitude.
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Figure 5: 1D marginalized parameter posterior probabilitydistribution for disk0 with arbitrary
normalized factor. It is sampled by Metropolis-Hastings algorithm.

Uncertainties and correlation of parameters

The errors fromBIE are consistent; all true input parameters are enclosed within at least two
standard deviations (see Figs. 5, 6). As a comparison, GALFIT best fits and errors are listed in Table
1. The marginalized contours of parameter distribution with offsets from the true input values for
Mtot,re, n andb/a are shown in Figure 7 and Figure 8. The distribution in Figure7 is sampled
from the simulation for exponential disk with Metropolis-Hastings algorithm and the distribution
in Figure 8 is sampled from the simulation for spheroid with parallel chain algorithm. In these
figures, black diamonds and error bars are the GALFIT best fit and uncertainty. Each contour
level corresponds to 5, 10, 20, 30, 40, 50, 68.5, 90, 95, 99% cumulative marginal percentages
respectively. The 5% contour means that 95% of samples are within the contour. Thus these levels
correspond to confidence levels. GALFIT errors are estimated from parameter covariance matrix,
which is standard way of estimating parameter errors.

For disk0, the probability density peaks ofBIE and GALFIT best fits have offsets from the true
input parameters(see Figure 7). They are both mutual close in value, however GALFIT estimates
for re has larger offset from the true valuere = 10 thanBIE . GALFIT estimated zero errors forMtot

andb/a (see Table 1). The one standard deviation error bar forn barely encloses the true value, but
the error bar forre does not. On the other hand, in case ofBIE , the true input values are within 50%
marginalized confidence level except for the axis ratiob/a, which should be inverse if it is larger
than 1. The size of 50% marginalized confidence level is comparable to the size of GALFIT error
bar. However GALFIT error quotation forre is too small and the truere = 10.0 is barely enclosed
by three standard deviations.
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Table 2: PARAMETER VALUES OF HIGH S/NGALAXIES

disk310 disk309 sph545 sph438

image size 401×401 401×400 400×400 400×400
S/N ∼ 8.0 ∼ 7.0 ∼ 8.0 ∼ 8.0
Input parameter

position X
position Y
Total magnitude[mag],Mtot 23.51 22.41 24.42 25.41
Effective radius[pix],Re 8.91 7.55 3.07 2.14
Sersic index, n 1.0 1.0 4.0 4.0
Axis ratio, b/a 0.19 0.94 0.59 0.45
Position Angle, PA[deg] 75.8 13.1 131.9 140.1
GALFIT best fit

Total magnitude[mag],Mtot 23.55±0.02 22.43±0.01 24.42±0.06 24.89±0.4
Effective radius[pix],Re 9.11±0.28 7.29±0.11 3.25±0.3 7.05±7.66
Sersic index, n 1.25±0.09 0.97±0.03 3.47±0.85 13.99±11.65
Axis ratio, b/a 0.14±0.01 0.98±0.01 0.46±0.06 0.12±0.06
Position Angle, PA[deg] 75.8±0.51 60.39±32.52 141.6±4.37 167.9±3.37

For sph0, like the case of disk0, the density distribution peak of BIE and GALFIT best fits are
close to each other but offset from the true input parameters. All parameter butre are enclosed
within 50% marginalized confidence level. ThusBIE provides statisticallyrealisticerrors of model
parameters for disk0 and sph0.

One of the distinct features of Figure 7 and Figure 8 is the correlation of parameters. In contrast
to the parameter fitting as GALFIT does, Bayesian inference naturally reveals the correlation of
parameters by measuring correlation of two MCMCs for corresponding parameters.

For disk0,Mtot, re, n and b/a are weakly correlated. Their absolute correlation coefficients
range from 0.17 to 0.55.Mtot has negative correlation withre andn. re has positive correlation
with n and negative correlation withb/a. For sph0,Mtot, re andn are strongly correlated. Their
absolute correlation coefficients range from 0.65 to 0.82.Mtot has negative correlation withre

andn. re has positive correlation withn. The parameter of Sérsic profile with largen which has
highly concentrated central cusp and very shallow long tailin outer region significantly varies with
changing other parameters. This strong correlation of parameters is the main reason to hamper to
fit the data correctly.

Isolated galaxies with high S/N from large ensemble image

We select isolated galaxy images with highS/N, which means that it’s mean surface brightness
is lower than sky surface brightness. As in last section, we model those galaxy with single Sérsic
profile with the sky background level as a free parameter. True input sky background level is 18.14
with r.m.s. deviation of pixel values, 3.78. de Jong et al. emphasizes the importance of determin-
ing sky background in 2D galaxy image fitting(de Jong (1996)). Häußler et al. compared several
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methods to determine sky background and found that, for simulated galaxies, allowing GALFIT

to determine the sky background appears as reliable as theirisophotal sky method, for real galax-
ies, complex structures that deviate from profile assumptions may affect sky estimation(Häußler
(2007)). Thus we letBIE determine the sky background in this study. The images of twoexponen-
tial disks and spheroids are shown in Figure 9. And the all true input parameters for those galaxies
are listed in Table 2. We use parallel chain algorithm for these galaxy images.

Isolated galaxies with low S/N from large ensemble image

We selected isolated galaxy images with lowS/N , typically 2.0, which means that it’s mean
surface brightness is higher than sky surface brightness. We model them with the same way in
section 4.2. The galaxies are barely seen by eye in the image center. We intentionally choose these
extreme cases for characterizing the power and limit ofBIE . Since the data quality of lowS/N
image is poor, signal and noise contribution to data are almost equal. The Bayesian inference has
significant advantage compared with fitting technique in this case. In Bayesian approach, the equal
or even more important question is not what the best parameters are, but, for a given data, what the
relative significance of model parameter sets, one of which may be the true one, is. Since there is
more severe degeneracy of parameters in lowS/Ndata than highS/Ndata, it is hard to model the
signal correctly. Then downhill method to findχ2 minimum is highly probable to fail to reach the
global minimum. However the Bayesian approach with MCMC canprobe and reveal the global
structure of probability distribution of parameters.

In addition to this, Bayesian approach has another advantage, which is the usage of prior in-
formation for model parameters. The parameter posterior ismultiplication of the likelihood and
the prior. Therefore the non-uniform prior can change the posterior as different from the posterior
with uniform prior. In many cases, the likelihood dominatesthe prior. That is why the maximum
likelihood method works well. However if the likelihood is not a strong function of parameters, the
prior can severely affect the result. The carefully selected prior can be a very useful information or
cause a bias in the result. The lowS/Nimage is weakly informative and the likelihood may not be
a very strong function of parameters.

We will present a summary of these results in a later report.

Multiple galaxies

Here, we study more complicatedly structured data, which may be highly degenerated in param-
eter space. If the galaxies are close to each other in the image, their light profile may be blended.
Then the model with increased dimension in parameter space for those multiple galaxy may have a
degeneracy and complicated topology in parameter posterior probability distribution. In this case,
the standardχ2 minimization technique using downhill method may fail to find global minimum.

In real galaxy survey data, we often encounter the case of blended light profile from multiple
galaxies. The solution is to simultaneously fit those galaxies with multicomponent models or mask
other galaxies with suitable masking map. GALFIT can do these. However neither of them can give
us a way to fully understand the parameter probability space. Simultaneous fit byχ2 minimiza-
tion with downhill method may be stuck to local minimum and image masking is only helpful in a
limited case. Bayesian inference on this case can be a very powerful way to probe parameter prob-
ability space and to determine the significance of other neighbor peaks and parameter uncertainties.
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We show the example with three spheroids close to each other in Figure 10. The image size is
321× 269 with plate scale, 0.03 [arcsec/pixel]. Thus the physical scale of this image is 9.63×
8.07 arcsec2. They are all spheroids with n=4, but other parameters are not known. These galaxies
are modelled using single Sérsic profile with 7 free parameters each and fixed sky background level.
Thus total free parameters are 21. MCMC is constructed by parallel chain algorithm.

The 1D marginalized distributions ofn for these three galaxies are shown in Figure 11.xc,yc of
each galaxies are shown on the top of each panel. The galaxy atupper right corner is masked.

GALFIT result for n of these galaxies(galaxy1, galaxy2, galaxy3) aren1 = 3.96± 0.04,n2 =
4.52±0.14,n3 = 3.27±0.09 respectively. the estimation for galaxy1 is reasonable,however even
three standard deviation error for galaxy2 is not large enough to enclose 4.0, moreover, best fit
Sérsic index for galaxy3 is very different from 4.0 and error is too small.BIE estimations for these
galaxies aren1 = 3.87,n2 = 4.06 andn3 = 4.15. They also have offsets from 4.0. However the
errors indicate that the estimations are realistic. The true input n = 4.0 is enclosed within one
standard deviation for galaxy2 and two standard deviationsfor galaxy1, galaxy3.

As we go higher dimensional parameter space, the parameter probability space becomes more
complex and it is hard to reach the global minimum using downhill method since more parameters
are probably degenerated. Bayesian MCMC shows the real power on this problem. Although
BIE takes much longer time than the low dimensional case, it successfully samples the parameter
posterior.

2-2.6 Conclusions

• BIE–GALFIT is both feasible and advantageous for studying galaxy parameters.

• Under a wide variety of conditions, the parallel chain algorithm is more effective that the
other algorithms.

• Mtot, re andn are strongly correlated in spheroid and weakly correlated in disk.

• For highS/Nimage, the marginalized posterior has multi-mode.BIE error quotation is more
realistic than GALFIT and all true parameters are enclosed by two standard except for b/a of
disk310, which is enclosed by three standard deviations.

• For low S/N image, the marginalized posterior has multiple mode. The robust parameters,
xc,yc,Mtot, of which posterior are smooth and uni-modal in highS/N image, have multi-
mode.BIE error quotation is much better than GALFIT and all true parameters are enclosed
by two standard deviations except for disk115, of whichre,b/a are not included in three
standard deviations.

• We test the effect of prior to posterior. For lowS/Nimage, the posterior is sensitive to prior.
Since the results can be biased using prior, we should carefully choose the prior or uniform
prior is better.

• For multiple galaxy with samen, GALFIT fails to fit simultaneously howeverBIE recovern
which is close to the truen within two standard deviations.
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2-3 SAMS–GALFIT

Semi-Analytic Models (SAMs) have been extensively used to study the formation and evolution of
galaxies (e.g. Kauffmann et al., 1999; Somerville and Primack, 1999; Cole et al., 2000). In SAMs,
one starts with a catalog of merger trees which describe the assembly of individual dark matter
halos, and all other additional physical processes, e.g. gas cooling, star formation and feedback,
AGN, galaxy mergers, etc., are also added into SAMs through empirical functions. With SAMs,
one models the formation and evolution of a large number of galaxies. As the output of SAMs,
a catalog of the properties of the modeled galaxies is produced. Base on the catalog many statis-
tical properties, for instance luminosity function, Tully-Fisher relation, etc., can be obtained and
such properties can be directly compared with observed sample galaxies. We build a SAM and
incorporate Bayesian Inference and Markov Chain to explorethe model parameters space.

2-3.1 Dark matter halo merger trees

We have developed sophisticated programs to generate the merger trees using Monte-Carlo meth-
ods. For a given halo massM2 at a given redshiftz2, we calculate the conditional probability for
such a halo having a progenitor with with massM1 < M2 at an earlier redshiftz1. We generate
random numbers according to the conditional probability toallocate progenitor halo masses. We
implement a number of merger tree generating schemes and study the properties of these different
schemes. We briefly describe the methods and the comparison in this section.

2-3.2 Binary tree without accretion

In the binary tree without accretion, at each time step a haloeither splits into two progenitors or
does not fragment but retain its mass. In practice, to make the Monte-Carlo method more efficient,
we change variables. In stead of redshift and mass, we chooseω ≡ δc(z) = δc,0/D(z) as our time
variable, andS(M) ≡ σ2(M) as our mass variable. The probability for taking a new step∆S in a
time-step∆ω is

P(∆S,∆ω)d∆S=
1√
2π

∆ω
(∆S)3/2

exp

[

−(∆ω)2

2∆S

]

d∆S. (4)

If we make a change in variables further,x ≡ ∆ω/(2
√

∆S), the variablex becomes a Gaussian
distribution with zero mean and unit variance. By generating a Gaussian random number, we
produce a new mass for one of the two progenitor halos and the rest mass if any is assigned for the
other progenitor.

In Figure 12, we show the conditional mass functions at four redshifts of halos generated by this
merger tree scheme and compare them with theoretical model.Clearly, this scheme over produces
halos in high redshifts. The reason for that is because this method does not consider another chancel
for halos to gain their their mass, smooth accretion.

2-3.3 binary tree with accretion

In the binary tree with accretion, at each time step there is also a mount of mass which is smaller
than the mass resolution is allocated as smooth accretion. We follow the method of Somerville et
al. (1999) which is described below to generate such merger trees.
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(i) Pick a massM from the mass-weighted probability distribution equation4. This mass can be
anywhere in the range 0≤ M ≤ M2. If M < Mres, we count it as accreted mass. IfM ≥ Mres, we
count it as a progenitor.

(ii) Compute the unallocated mass∆M = M2−M.
(iii) If the unallocated mass∆M is larger thanMres, then it may or may not contain a progenitor.

To determine this, pick another massM from the distribution, but with the restrictionM < ∆M.
Depending on its mass, count it as accreted mass or a progenitor as before. In either case, subtract
M from the mass reservoir.

(iv) Repeat this process until either
(a) the mass reservoir∆M falls below the minimum halo massMres, in which case it must aban-

don any aspirations of harboring a real progenitor and must be accreted mass, or
(b) we have found a total of two progenitors (M > Mres), in which case the remaining mass is

considered to be accreted mass in accord with our ansatz.
(v) Each progenitor now becomes a parent, we calculated a newtime-step, and repeat the whole

process.
We compare the realization of such a merger tree with theory in Figure 13. This method as

pointed out by Somerville et al. (1999) under produces halos.

2-3.4 n-branch trees

In the n-branch tree, a halo can fragment into an arbitrary number of progenitors and in the same
time some mass may be also allocated as accretion. To make n-branch trees, we follow the scheme
of the binary tree with accretion but continue picking progenitor masses until the unallocated mass
∆M is less thanMres, loosening requirement of having less than two progenitorsused previously. In
Figure 14, we show the conditional mass function of such merger trees. It follows the theory nicely
especially at high redshifts, but has some over production in low mass bins at low redshifts.

2-3.5 Two-branch tree

We modify the program based on the one for the n-branch trees.To make such a two-branch tree,
we only allow two or less progenitors to be generated. Once a progenitor haloM1 and an amount of
accretion massMacchave already been randomly picked up, the rest mass∆M = M2−M1−Macc is
directly assigned as the other progenitor halo. If both of the previously randomly picked two masses
are larger thanMres, these two masses are allocated as the progenitors and the rest, no matter it is
smaller or larger thanMres, is assigned to be accretion. We show the conditional mass function in
Figure 15. The realization recover the theory nicely at all redshifts.

2-3.6 Galaxy formation model

We developed a semi-analytic galaxy formation model base onhalo merger trees, including recipes
for hot gas and radiative cooling, star formation and feedback, chemical evolution, stellar popula-
tion synthesis, and galaxy mergers.

After two halos merge, the galaxies contained by the halos are expected to merge in a timescale
about dynamical friction timescale. In observation, galaxy mergers are found to be triggers of star
bursts and structure transformations. The physical processes involved in mergers depend on the
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mass ratio of the two progenitors. When a small halo mergers into a big halo, dynamical friction
and tidal stripping work; when two halos with comparable masses merger, the old structure in each
of the objects will be destroyed. Because of this, people categorize mergers into two groups, major
mergers and minor mergers. Usually, people use a characteristic mass ratio to classify major/minor
mergers – if the smaller halo has mass lower than 1/3 (or 0.3) of the bigger halo, the merger is
classified as a minor merger; otherwise it is treated as a major merger. For different mergers, SAMs
have completely different treatments.

In our model, we assume the most massive galaxy in a newly merged halo becomes the central
galaxy. In stead of stick on 0.3 as the merger threshold, we set it to be a free parameter. When two
halos merge, we start the merger clocks for all galaxies other than the central galaxy in the halos.
In merger timescale, the galaxy will merge into the central galaxy. For minor mergers, we add all
the gas mass in the small galaxy into the primary galaxy and add its stellar mass into the bulge
of the primary galaxy. For major mergers, we add dark matter,hot gas, cold gas and stellar mass
from the two galaxies together. The shape of the remnant is spheroid. A star burst is assumed to be
associated with a merger. It converts a fraction of cold gas into stars instantaneously.

In summary, we have 13 free parameters in total in our currentmodel. They are:

• Vcut: cooling cut-off

• α0: amplitude of star formation efficiency

• Vsf: turn-over circular velocity of star formation efficiency

• n: power index of circular velocity dependence of star formation efficiency

• ε0: amplitude of SN feedback

• Vfb: turn-over circular velocity of SN feedback

• βfb: power index of circular velocity dependence of SN feedback

• fmerg: merger threshold for mass ratio

• kmerg: merger timescale in units of dynamical friction time

• βburst,min: star burst amplitude for minor mergers

• αburst,min: power index of mass ratio dependence of star burst in minor mergers

• βburst,maj: star burst amplitude for major mergers

• αburst,maj: power index of mass ratio dependence of star burst in major mergers

With properly chosen parameters, our model reproduces the galaxy luminosity functions atz= 0 in
K-band and SDSS-bands presented in published literatures (Somerville and Primack, 1999; Kang
et al., 2005; Croton et al., 2006).
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2-3.7 Preliminary results

We have jointed our SAM with BIE. The likelihood of a parameter set is evaluated by comparing the
predicted K-band luminosity function with observation. Firstly, we use mock luminosity function
which is generated by the model with a given set of parameters. We release only a few parameters
to study the behavior of the BIE-SAM. We found that 1) the BIE-SAM works nicely for searching
the true parameter if only one parameter was set to be free, 2)some parameters in the model are
highly degenerate, so that the BIE-SAM hardly converges to true parameters if those parameters
were released. 3) With a big number of free parameters and bigrange of prior for the parameters,
the model is still not able to reproduce the observed K-band luminosity function.

Single parameter models

Using our model, with fixed parameters we generate a mock K-band luminosity function (solid
line in Fig. 16). To test our BIE-SAM, we set only one of those 13 parameters free to fit the mock
luminosity function. The tests show that our code convergesto the true value very quickly.

multiple parameter fit

We now increase the dimensionality of the models and use the BIE-SAM to search the true
parameter values by comparing the K-band luminosity function with the mock. In the tests which
involve α0 andVsf (the amplitude and the turn-over circular velocity of star formation efficiency),
a strong degeneracy shows up. The code spends long time to converge into the true value. Figure
17 shows the posterior distribution of these two parametersfrom a test which only has these two
free parameters; Figure 18 shows the same distribution froma three free parameter test (these two
andn). In both cases, a number of modes and a long degeneracy valley present. Figure6 shows
a predicted K-band luminosity function withα0 andVsf very different from the true value. These
result show clearly that the SAM has strong degeneracy amongthe parameters.
/emphfitting observed luminosity function

We adopt our BIE-SAM to fit the real observed K-band luminosity function with all the 13 free
parameters. With very broad prior distribution of the parameters, the model is still not able to fit the
data well, especially in the faint end (see Fig. 20). Although we may have poor mixing problem,
the failure to reproduce the faint end slope is a robust result.

3 Milestones for Year 2

1. Statistical & MCMC development
Continued testing and benchmarking of Bayesian model selection methods, including Bayes
factors and Reversible Jump algorithms. further MP optimization.

2. Persistence subsystem
We anticipate a working implementation of our persistence subsystem. this will support
recording computations and the relationships between inputs and outputs, in a research log,
so that one can always go back and determine the origin of dataand how it was processed,
replaying from a previous state, but with different commands or parameters—what we call
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what-if exploration. One can always go back to some previous time or step and compute
forward in new directions, and checkpointing and recovery.

3. Star count modeling with SQL databases
We anticipate beginning on the final project, star count analyses of the Galaxy and its satel-
lites, interfacing to 2MASS and/or SDSS catalogs with largeSQL databases. Because our
own galaxy and nearby local group companions can be studied in careful detail, we can probe
the features of Milky Way structure to refine theories of galactic interaction. We anticipate
working with a new graduate student colleague in the upcoming year.

4. BIE–GALFIT
We are currently testing idealized data sets and benchmarking the efficiency of BIE in hy-
pothesis testing. During Year 2, we anticipate moving on to inference on real astronomical
data and publications demonstrating the methods and application. In addition, we are cur-
rently implementing computational optimizations that will allow production analysis. We
anticipate a full-up stand-alone version of BIE to be released to the public in the upcoming
year.

5. Semi-analytic models
We will continue to improve the performance of our SAM implementation and test its perfor-
mance. In Year 2, we plan to apply the Bayes Factor methodology to test specific hypotheses
about the importance of various parameters in the underlying physical mechanisms or used
to test the effect of different physical hypotheses, i.e., different parameterizations and com-
binations of physical processes, without the constraint that their prescriptions be nested. We
have begun discussions with other SAM practitioners hope totest BIE with their codes as
well.
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Figure 6: 1D marginalized parameter posterior probabilitydistribution for sph0 with arbitrary nor-
malized factor. Black line corresponds to the sampling by simulated tempering algorithm and blue
line corresponds to the sampling by parallel chain algorithm.
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Figure 7: Two dimensional marginalized distribution of parameters for disk0. Sampling algorithm
is Metropolis-Hastings. There are slight correlations betweenMtot, re andn.
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Figure 8: Two dimensional marginalized distribution of parameters for sph0. Sampling algorithm
is Metropolis-Hastings. There are clear correlations betweenMtot, re andn.

20



disk310 disk309

sph545 sph438

Figure 9: HighS/Ngalaxy images. The top two is exponential disk and the bottomtwo is spheroid.

Figure 10: The simulated image of multiple galaxies withn = 4.
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Figure 11: The marginalized distribution ofn for the galaxies

Figure 12: The conditional mass functions of the binary merger trees without accretion at the
redshifts indicated at the upper-right corner of each panel. The solid lines are the eps predictions.
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Figure 13: The conditional mass functions of the binary merger trees with accretion.

Figure 14: The conditional mass functions of the n-branch merger trees.
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Figure 15: The conditional mass functions of the two-branchmerger trees.

Figure 16: Each panel shows a MCMC trace of the free parameterof a single free parameter test.
The true value of the parameters are, respectively, 400, 1, 300, and 2 forVcut, α0, Vsf, andn.
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Figure 17: The predicted K-band luminosity function compared with the mock. To produce the
shown curve, we adoptα0 = 9.0 andVsf = 900, which are very different from the true values
(α0 = 1.0 andVsf = 300).

Figure 18: Posterior distribution ofα0 (x-axis) andVsf (y-axis) from a two free parameter test. The
contours enclose from 10% to 90% of the distribution with 10%increment.
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Figure 19: Posterior distribution ofα0 (x-axis) andVsf (y-axis) from a three free parameter test.

Figure 20: The K-band luminosity function produced by the best fitting parameters (in histogram)
is compared with real observation (in solid curve, Cole et al. 2001). In big range of freedom of the
parameters, the model can not reproduce the luminosity function in the faint end.
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