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A B S T R A C T

We present a comprehensive set of mock 2dF and SDSS galaxy redshift surveys constructed

from a set of large, high-resolution cosmological N-body simulations. The radial selection

functions and geometrical limits of the catalogues mimic those of the genuine surveys. The

catalogues span a wide range of cosmologies, including both open and flat universes. In all the

models the galaxy distributions are biased so as approximately to reproduce the observed

galaxy correlation function on scales of 1–10 h
¹1 Mpc. In some cases models with a variety of

different biasing prescriptions are included. All the mock catalogues are publicly available at

http://star-www.dur.ac.uk/˜cole/mocks/main.html. We expect these catalogues to be a valu-

able aid in the development of the new algorithms and statistics that will be used to analyse the

2dF and SDSS surveys when they are completed in the next few years. Mock catalogues of the

PSCz survey of IRAS galaxies are also available at the same World Wide Web location.

Key words: surveys – galaxies: clusters: general – cosmology: theory – large-scale structure

of Universe.

1 I N T RO D U C T I O N

Our knowledge of large-scale stucture in the Universe is going to

change dramatically as a result of the new generation of galaxy

redshift surveys now underway. The Anglo-Australian 2-degree

Field (2dF) galaxy redshift survey will measure redshifts for

250 000 galaxies selected from the APM galaxy survey (Maddox

et al. 1990c), and the Sloan Digital Sky Survey (SDSS) will obtain a

redshift sample of one million galaxies. These surveys will be more

than one order of magnitude larger than any existing survey and will

allow measurements of large-scale structure of unprecedented

accuracy and detail. Precise estimates of the standard statistics

that are used to quantify large-scale structure [e.g., the galaxy

correlation function yðrÞ and power spectrum PðkÞ] will be possible,

and the surveys will provide the first opportunity to examine more

subtle properties of the galaxy distribution. Achieving these goals

will require the development of faster algorithms capable of dealing

with the very large numbers of galaxies involved, and the develop-

ment of new statistical measures. To facilitate both of these tasks

before the surveys are complete will require synthetic data sets on

which the techniques can be developed and tested.

This paper presents an extensive set of mock 2dF and SDSS

galaxy catalogues. These artificial galaxy redshift catalogues have

been constructed from a series of large, high-resolution cosmolo-

gical N-body simulations. The N-body simulations span a wide

range of cosmological models, with varying values of the density

parameter, Q0, and the cosmological constant, L0, and with varying

choices of the shape and amplitude of the mass fluctuation power

spectrum, PðkÞ. For some models several different catalogues have

been produced, each employing a different biasing algorithm to

relate the galaxy distribution to the underlying mass distribution.

All the mock galaxy catalogues have selection functions that mimic

those expected for the real surveys. The details of the construction

of catalogues and their basic properties are described here. The

catalogues themselves can be obtained from http://star-www.dur.

ac.uk/˜cole/mocks/main.html.

The mock redshift catalogues are the principal scientific product

of this paper. We expect to use them ourselves as we prepare for the

analysis of large-scale structure in the 2dF and SDSS redshift

surveys. We are making them publicly available in the hope that

they will be useful to other researchers, both inside and outside the

two collaborations. Our illustrative plots also provide a qualitative

prediction of the structure expected in these redshift surveys if the

leading scenario for structure formation, based on Gaussian pri-

mordial fluctuations and a universe dominated by cold dark matter,

is basically correct. The mock catalogues have a number of

limitations (discussed in Section 6 below) – for example, the

345:6 h
¹1 Mpc simulation cubes are not as large as one might

like, and we do not model some of the detailed selection biases that

will affect the real surveys, such as loss of members of close galaxy

pairs because of a minimum fibre separation. The strength of this

collection of catalogues is that it covers a wide range of theoreti-

cally interesting cosmological models in a systematic, homoge-

neous, and documented fashion. We anticipate that these catalogues

will be especially helpful to researchers who want to test the

discriminatory power of statistical techniques that probe intermedi-

ate scale clustering (,1–100 h
¹1 Mpc) and/or to develop practical
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implementations of these techniques for large data sets. Eventually,

mock catalogues like these, or improved versions of them, will be a

valuable tool for comparing the survey data against the predictions

of cosmological theories.

The cosmological models we have selected fall into two sets,

which we refer to as ‘COBE normalized’ and ‘structure normalized’

(or ‘cluster normalized’). In the COBE normalized models, the

amplitude of the density fluctuations is set by the amplitude of the

cosmic microwave background temperature fluctuations measured

by the COBE satellite and extrapolated to smaller scales using

standard assumptions. The shape of the spectrum of density

fluctuations is fixed by applying additional constraints on the age

of the universe and the baryon fraction. The structure normalized

models are, on the other hand, intended to produce approximately

the observed abundance of rich galaxy clusters, and all of them have

the same shape for the density fluctuation spectrum, chosen to be

consistent with existing observations of large-scale structure. Each

set contains both open (L0 ¼ 0) and flat (Q0 þ L0 ¼ 1) models with

a range of values of Q0. Some of the models we consider come close

to satisfying simultaneously the COBE and cluster abundance

constraints. For each simulation we apply a ‘biasing’ algorithm to

select galaxies from the N-body particle distribution, choosing its

parameters so that the simulated galaxy population approximately

reproduces the amplitude and slope of the observed galaxy correla-

tion function on scales ,1–10 h
¹1 Mpc. For a few of the models

we create multiple catalogues using several different biasing

schemes, so that the sensitivity of methods to the detailed properties

of biased galaxy formation can be investigated. The COBE normal-

ized models arguably have a stronger theoretical motivation, since

they represent the predictions of models that assume inflationary

primordial fluctuations and cold dark matter with the specified

values of Q0, L0, Qb, and the Hubble constant. Since the structure

normalized CDM models all have the same spectral shape they are

particularly useful for testing techniques designed to measure Q0 or

L0 independently of an assumed shape of the primordial mass

power spectrum. We have presented analyses of aspects of these

simulations elsewhere (Eke, Cole & Frenk 1996; Cole et al. 1997,

hereafter CWFR; Hatton & Cole 1998).

The paper is structured in the following way. The choice and

parametrization of the cosmological models is discussed in

Section 2. Section 3 is a full description of all the details of our

N-body simulations. The construction of the initial conditions and

their evolution are described in Sections 3.1 and 3.2. The biasing

prescriptions are explained in Section 3.3. The method by which the

biased distributions are converted into mock galaxy catalogues is

presented in Section 4. Our modelling of the survey geometries and

selection functions is detailed in Section 4.2. Section 5 presents

plots showing slices of the galaxy distributions in a selection of the

mock galaxy catalogues. The qualitative differences that are dis-

cernible in these distributions and the processes that give rise to

them are discussed. In Section 6 we discuss the limitations of our

approach. Section 7 gives instructions on how to obtain and

manipulate the mock galaxy catalogues. We conclude in Section 8.

2 C O S M O L O G I C A L M O D E L S

All our cosmological models are variants of the cold dark matter

(CDM) scenario. The functional form we adopt for the matter power

spectrum is that given by Bardeen et al. (1986),

PðkÞ~
k

n

1 þ 3:89q þ ð16:1qÞ2 þ ð5:46qÞ3 þ ð6:71qÞ4
� �1=2

×
lnð1 þ 2:34qÞ
� �2

ð2:34qÞ2
; ð2:1Þ

where q ¼ k=G and k ¼ 2p=l is the wavenumber in units of

h Mpc¹1. The index n is the slope of the primordial power spectrum,

and in all but one case we adopt n ¼ 1, as predicted by the simplest

models of inflation. Two further parameters complete the descrip-

tion of the matter power spectrum. These are the shape parameter G
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Table 1. Simulation parameters: the first column gives the label of each of the cosmological models; alternative, more

descriptive names for the Q0 ¼ 1 models are given in parentheses. The following eight columns give the corresponding values

of the density parameter Q0, cosmological constant L0, Hubble parameter h, age of the universe t, baryon content Qb, power

spectrum shape parameter G, and normalization j8 respectively. The final two columns give the initial expansion factors, ai,

and number of time-steps, Nsteps, used in the N-body simulation.

Model Q0 L0 h t=Gyr Qb G j8 ai Nsteps

O3 0.3 0.0 0.65 12.2 0.030 0.172 0.5 0.15 93

O4 0.4 0.0 0.65 11.7 0.030 0.234 0.75 0.1 168

O5 0.5 0.0 0.6 12.3 0.035 0.27 0.9 0.08 254

L1 0.1 0.9 0.9 13.9 0.015 0.076 0.7 0.15 150

L2 0.2 0.8 0.75 14.0 0.022 0.131 0.9 0.12 220

L3 0.3 0.7 0.65 14.5 0.030 0.172 1.05 0.101 266

L4 0.4 0.6 0.6 14.5 0.035 0.213 1.1 0.09 275

L5 0.5 0.5 0.6 13.5 0.035 0.27 1.3 0.07 331

O2S 0.2 0.0 – – – 0.25 1.44 0.028 447

O3S 0.3 0.0 – – – 0.25 1.13 0.050 313

O4S 0.4 0.0 – – – 0.25 0.95 0.073 258

O5S 0.5 0.0 – – – 0.25 0.83 0.096 212

L2S 0.2 0.8 – – – 0.25 1.44 0.057 405

L3S 0.3 0.7 – – – 0.25 1.13 0.080 287

L4S 0.4 0.6 – – – 0.25 0.95 0.102 224

L5S 0.5 0.5 – – – 0.25 0.83 0.122 184

E1 (CCDM) 1.0 0.0 0.5 13.1 – 0.5 1.35 0.061 327

E2 (tilted) 1.0 0.0 0.5 13.1 0.05 – 0.55 0.20 200

E3S (tCDM) 1.0 0.0 – – – 0.25 0.55 0.21 103

E4 (SCDM) 1.0 0.0 0.5 13.1 – 0.5 0.55 0.15 170



and the amplitude of the power spectrum, which we specify through

the value of j8, the linear theory rms fluctuation of the mass

contained in spheres of radius 8 h
¹1 Mpc. The background cosmo-

logical model in which these fluctuations evolve is specified by the

density parameter Q0 and the cosmological constant L0, which we

express in units of 3H
2
0 =c

2, where H0 is the present value of the

Hubble parameter. Thus, with the exception of the one tilted model

with n Þ 1, our models are fully specified by the values of four

parameters, Q0, L0, j8 and G. For each of our 20 models, Table 1

lists the values of these parameters along with other parameters that

are described below. The names we have listed for the cosmological

models are consistent with the convention used in CWFR, but in

addition we have included (in parentheses) some more descriptive

names for the various Q0 ¼ 1 models.

The COBE-normalized set of models consists of an Einstein–

de Sitter, Q ¼ 1, model (labelled E1 or CCDM for COBE normal-

ized CDM), three open models with Q0 ¼ 0:3, 0:4 and 0:5 (labelled

O3–O5) and five flat models with Q0 ¼ 0:1–0:5 and Q0 þ L0 ¼ 1

(labelled L1-L5). We do not include COBE normalized open

models with Q0 ¼ 0:1 or 0.2 because they are hopelessly incon-

sistent with the observed abundance of rich galaxy clusters

(CWFR). For each of the open models we choose the value of the

Hubble parameter h
1 that gives a universe of age t < 12 Gyr, the

largest value of h that is consistent with standard globular cluster

age estimates (Chaboyer et al. 1996; Renzini et al. 1996; Salaris,

Degl’Innocenti & Weiss 1997). For each of the low-Q0 flat models

we choose the value of h that gives t < 14 Gyr. For Q0 ¼ 1 we take

h ¼ 0:5. Having chosen these values of h, we fix the baryon fraction

in these models using the constraint from primordial nucleosynth-

esis of Qb ¼ 0:0125 h
¹2

(Walker et al. 1991). We then use the

following expression for the shape parameter G,

G ¼ Q0h expð¹Qb ¹ Qb=Q0Þ; ð2:2Þ

which approximately accounts for the effect of baryons on the

transfer function (Sugiyama 1995)2. Finally, in each of these

models the amplitude of the density perturbations is set so as to

be consistent with the COBE measurements of fluctuations in the

cosmic microwave background (Smoot et al. 1992). Further details

of these models can be found in CWFR, which examines the

abundance of galaxy clusters in COBE normalized CDM and

presents some analysis of clustering of the mass distributions.

For the set of structure normalized models, we adopt a fixed value

of G ¼ 0:25, as suggested by observations of the large-scale

structure traced by galaxies (e.g. Maddox, Efstathiou & Sutherland

1990a). The amplitude of the power spectrum we set according to

the formula, j8 ¼ 0:55Q¹0:6
0 , which results in an abundance of rich

galaxy clusters in good agreement with observations (White,

Efstathiou & Frenk 1993). These models include the Einstein–

de Sitter model E3S (of which we have 10 realizations on our web

site and here analyse the first two labelled E3S A and E3S B), a

series of open models with Q0 ¼ 0:2–0:5 (labelled O2S–O5S), and

a series of flat models with Q0 ¼ 0:2–0:5 and Q0 þ L0 ¼ 1 (labelled

L2S–L5S). Physically, these models could be produced either by

having h ¼ G=Q0 or by a change from the standard model of the

present energy density in relativistic particles. For example the E3S

model is very similar to the tCDM model of Jenkins et al. (1997),

which is motivated by the decaying particle model proposed by

Bond & Efstathiou (1991). The final model listed in Table 1, E4

(SCDM), is the ‘standard’ CDM model (G ¼ h ¼ 0:5), normalized

by the abundance of galaxy clusters.

We consider one further model that falls into both the COBE and

structure normalized categories. This is the tilted Einstein–de Sitter

model, E2 (tilted). For this model, the above constraints have been

applied in relating the baryon fraction Qb, the Hubble parameter h,

and the shape parameter G, but in addition the slope n of the

primordial power spectrum has been adjusted to match COBE

observations at large scales while simultaneously achieving

j8 ¼ 0:55, as required for consistency with the observed cluster

abundances. This procedure results in a tilted primordial spectrum

with n ¼ 0:803 and a transfer function with G ¼ 0:4506 as given by

equation (2.2). In normalizing to the COBE observations, we have

included a gravitational wave contribution as predicted by the

power-law model of inflation. For our model gravitational waves

contribute approximately 55 per cent of the rms temperature

fluctuations on the scales probed by COBE.

3 N- B O DY S I M U L AT I O N S

We now describe how the initial conditions of our simulations were

set up, how the simulated mass distribution was propagated to the

present day, and how the particles labelled as galaxies were

selected.

3.1 Initial conditions

Before imposing the desired density perturbations, we set up a

‘uniform’ distribution using the technique described by White

(1996) and Baugh, Gaztañaga & Efstathiou (1995) to generate a

particle distribution with a ‘glass’ configuration. This was achieved

by first randomly placing 1923 particles throughout the simulation

box and then evolving this distribution with the N-body code, but

with the sign of the gravitational forces reversed. We used large time-

steps that were approximately logarithmically spaced in expansion

factor and evolved the distribution until the gravitational forces on all

particles practically vanished. With this approach, the initial particle

distribution is not regular, but the small random fluctuations in the

particle density field do not seed the growth of spurious structures.

Simulations with glass and grid initial conditions have been found to

give very similar statistical results once they are evolved into the non-

linear regime (Baugh et al. 1995; White 1996), but the simulations

with glass initial conditions have the advantage that they do not

retain an unseemly grid signature in uncollapsed regions.

Each of the simulations was of a periodic box of side

345:6 h
¹1 Mpc (192 × 1:8 h

¹1 Mpc). For each, we created a Gaus-

sian random density field on a 1923 grid, using the same Fourier

phases from one model to the next, but varying the mode amplitudes

according to the model power spectrum. We applied the Zel’dovich

approximation to this density field to compute displacements and

peculiar velocities at each grid point. We then displaced each

particle from its ‘glass’ position according to the displacements

interpolated from the grid values. The initial expansion factors of

the simulations ai, listed in Table 1, were determined by setting the

amplitude of the initial power spectrum at the Nyquist frequency of

the particle grid to be 0:32 times that for an equivalent Poisson

distribution of particles. Thus PinitialðkNÞ ¼ 0:32
=n̄, where n̄ is the

mean particle density and the Nyquist frequency is

kN ¼ pn̄
1=3

¼ ð2p=3:6Þ h Mpc¹1. The residual power in the glass

configuration is only 0.5 per cent of that in a Poisson distribution at
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1 We use the convention that h is the value of the Hubble parameter in units

of 100 km s¹1 Mpc¹1.
2

The expression for G which we have adopted is from the original version of

the Sugiyama (1995) paper and differs slightly from the expression in the

published version of that paper, which was modified to improve its accuracy

for high values of Qb.



the Nyquist frequency and drops very rapidly at longer wavelengths

(see fig. A2 of Baugh et al. 1995). This choice is safely in the regime

where (a) the initial density fluctuations are large compared to those

present in the glass, but (b) the Zel’dovich approximation remains

accurate. In particular, no shell-crossing has occurred.

3.2 Evolution

We evolved the simulations using a modified version of Hugh

Couchman’s Adaptive Particle–Particle–Particle–Mesh (AP3M,

Couchman 1991) N-body code. We set the softening parameter

of AP3M’s triangular-shaped cloud force law to h ¼ 270 h
¹1 kpc,

15 per cent of the grid spacing. The softening scale is fixed in

comoving co-ordinates. This choice corresponds approximately to a

gravitational softening length e ¼ h=3 ¼ 90 h
¹1 kpc for a Plummer

force law, and we adopt e as our nominal force resolution. The size

of the time-step Da was chosen so that the following two constraints

were satisfied throughout the evolution of the particle distribution.

First, the rms displacement of particles in one time-step was less

than h=4. Secondly, the fastest moving particle moved less than h in

one time-step. Initially these two constraints are comparable, but at

late times the latter constraint is more stringent, particularly in low

Q0 simulations. We monitored energy conservation using the

Layzer–Irvine equation (equation 12b of Efstathiou et al. 1985)

and found that for this choice of time-step, energy conservation with

a fractional accuracy of better than 0:3 per cent was achieved. We

also tested the inaccuracy incurred by these choices of starting

amplitude and time-step by comparing the final particle positions

with two additional versions of the E1, Q0 ¼ 1 simulations, which

were run starting from a fluctuation amplitude a factor of two lower

and using time-steps a factor of two smaller. In each case we found

that the final particle positions agreed very accurately, with rms

differences of less than e. More importantly, the correlation func-

tions of the particle distributions in all cases were indistinguishable

at scales larger than e ¼ 90 h
¹1 kpc. Thus, the statistical clustering

properties of these simulations have a resolution that is limited by

the particle mass and force softening and not by the choice of time-

step or starting redshift.

3.3 Biasing

In this section we describe the methods we use to select the particles

we label as galaxies from the distributions of mass produced in the

N-body simulations. It is unlikely that galaxies are unbiased tracers

of the underlying mass distribution. This would only occur if the

ability to form a galaxy were independent of the properties of the

surrounding density field, so that each mass particle no matter

where it resided was equally likely to be associated with a galaxy.

Simple, physically motivated models such as the high peaks model

(Davis et al. 1985; Bardeen et al. 1986) illustrate how a dependence

of galaxy formation on the properties of the local density field can

make the galaxy distribution more strongly clustered than the

underlying mass distribution. This effect can be quantified in

terms of a bias factor br ¼ j
gal
r =j

mass
r , relating the fractional rms

fluctuation in the number of galaxies in spheres of radius r h
¹1 Mpc

to the corresponding variation in the mass.

Observational evidence for bias is presented by Peacock &

Dodds (1994). They assume a simple, constant linear bias model

in which a perturbation in the mass distribution is accompanied by

an amplified perturbation in the galaxy distribution, dgal ¼ bdmass.

They find that the power spectra of differently selected galaxy

samples require a bias relative to the power spectrum of IRAS

galaxies, b=bIRAS, of 4.5:1.9:1.3, for Abell clusters, radio galaxies

and optically selected galaxies respectively. Since a relative bias

exists between any two of these differently selected samples, it

seems natural to assume that all galaxy samples will be subject to

some degree of bias. We note that bias is also important in

interpreting the estimates of the mass-to-light ratio of galaxies in

clusters. These have been used in conjunction with estimates of the

galaxy luminosity function to infer Q0 < 0:2 (e.g. Carlberg, Yee &

Ellingson 1997). This inference assumes that galaxies are unbiased

tracers of the mass distribution. If galaxies form preferentially in

proto-cluster environments, then this estimate translates to

Q0=B < 0:2, where B is the factor by which the efficiency of

galaxy formation is enhanced in regions destined to become

clusters, relative to the field.

Since the physics of galaxy formation is very complex, it is not

yet possible to determine the function that relates the probability of

forming a galaxy to the properties of the mass density field, though

first steps towards this goal have been taken using cosmological

simulations with gas dynamics (Cen & Ostriker 1992; Katz,

Hernquist & Weinberg 1992; Summers, Davis & Evrard 1995;

Frenk et al. 1996; Jenkins et al. 1997). For this reason we take the

approach of defining our biasing algorithm in terms of a simple

parametric function. Then for each cosmological model we con-

strain the values of the function’s parameters using estimates of

observed small and intermediate-scale galaxy clustering. For a

subset of the cosmological models we repeat this procedure for a

variety of different biasing algorithms. This enables the extent to

which the properties of the catalogues depend on the arbitrary

choice of the adopted biasing algorithm to be quantified.

For optically selected galaxies in the APM survey, j
gal
8 ¼ 0:96

(Maddox, Efstathiou & Sutherland 1996). Many of our simulations

have jmass
8 > 0:96 and therefore require an anti-bias (b < 1) on the

8 h
¹1 Mpc scale. Anti-bias seems less physically motivated than

bias because it requires negative feedback processes to suppress

galaxy formation in high-density regions. Such an anti-correlation,

however, might be produced even if the production rate of galaxies

in proto-clusters is higher than in low-density regions, so long as

galaxy merging in the proto-clusters is sufficiently efficient to

suppress the overall number of galaxies in clusters.

All the biasing schemes we consider are local, in the sense that

the probability of a mass particle being selected as a galaxy is a

function only of the neighbouring density field, e.g. the density field

smoothed on a scale 3 h
¹1 Mpc. Such models have the property that

on scales (in the linear regime) that are much larger than that

defining the neighbourhood they produce a constant, scale inde-

pendent bias (Scherrer & Weinberg 1998). A derivation of an

expression for this asymptotic bias is given in Section 3.3.2

below. Our algorithms include both Lagrangian models, in which

the selection probability is a function of the initial density field, and

Eulerian models, in which the probability is a function of the final

mass density field. For a consideration of the differences between

these approaches, see Mann, Peacock & Heavens (1998).

We use six different prescriptions for creating the biased galaxy

samples. All of them involve defining a probability field from either

the initial or the final density distribution, and then Poisson

sampling the simulation particles using this field to define the

selection probability. The probability is normalized such that a

mean of 1283 out of our original 1923 particles are selected. This

corresponds to a galaxy number density n̄g < 0:05 h
3 Mpc¹3,

which approximately equals that of galaxies brighter than L,=80.

Although this density is less than that of the original simulation,

occasionally the bias may demand that in certain regions there is a

greater galaxy density than the original particle density. The
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Poisson sampling achieves this by allowing some particles to be

selected more than once. This double sampling is generally rare but

can occur in the highly biased models. The functions defining the

selection probability have one or two free parameters. In the case of

those with just one free parameter, we fix its value by demanding

that j
gal
8 ¼ 0:96, in agreement with the value estimated from the

APM galaxy survey. The models with two parameters (a and b)

enable us to control both the amplitude of galaxy clustering on large

scales and, to some extent, the slope of the galaxy correlation

function on small scales. We set their parameters by attempting to

match simultaneously the observed variance of the galaxy density

field in cubic cells of 5 and 20 h
¹1 Mpc on a side. These, we take to

be jcell 5 ¼ 2:0 and jcell 20 ¼ 0:67, the values we have obtained from

the power spectrum shape estimated for APM galaxies by Baugh &

Efstathiou (Baugh & Efstathiou 1994), scaling its amplitude for

consistency with the more recent estimate of j
gal
8 ¼ 0:96. In some

cases, where, for instance, the small-scale mass correlation function

is very much steeper than the observed galaxy correlation, it does

not prove possible to simultaneously satisfy these two constraints.

For computational simplicity and to avoid any ambiguity, we
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Figure 1. The galaxy correlation functions, yðrÞ, for each of our cosmological models when biased using bias model 1. Each of the lines corresponds to a different

cosmological model as indicated on the legend. The solid data points are the same on each panel and are an estimate of the galaxy correlation function from the

APM survey (Baugh 1996). The open data points, shown on the first panel, show an alternative estimate of the APM correlation function obtained by Fourier

transforming the Baugh & Efstathiou (1993) estimate of the APM power spectrum.



choose, in all cases, to fit the observed values by minimizing the

cost function

Cða; bÞ ¼
ðjcell 20 ¹ 0:67Þ

0:67

� �2

þ
ðjcell 5 ¹ 2:0Þ

2:0

� �2

þecða
2

þ b2
Þ:

The third term has ec ¼ 4 × 10¹7 and is included to avoid extremely

large values of jaj and jbj being selected for very little improvement

in the values of jcell 5 and jcell 20.

3.3.1 Biasing algorithms

Here we define the selection probability functions, PðnÞ, which

define each of our biasing algorithms. The resulting biased galaxy

correlation functions, yðrÞ, and power spectra, PðkÞ, are shown in

Figs 1, 2 and 3 and discussed below. The biasing algorithm that we

apply to all of the cosmological models is model 1; the other biasing

models are used only to create additional mock catalogues for the

O4S, L3S, and E3S simulations.

Model 1. This model bases the selection probability on the value

of the smoothed initial density. The initial density field is smoothed

with a Gaussian of width RS ¼ 3 h
¹1 Mpc [in expð¹r

2
=2R

2
SÞ] to

define a smoothed density field rSðrÞ at the initial particle position.

A dimensionless variable n is defined as nðrÞ ¼ dSðrÞ=jS, where the
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Figure 2. The galaxy power spectrum, PðkÞ, for each of our cosmological models when biased using bias model 1. Each of the lines corresponds to a different

cosmological model as indicated on the legend. The data points are the same on each panel and are an estimate of the galaxy power spectrum from the APM

survey (Baugh & Efstathiou 1993).



density perturbation dSðrÞ ¼ ½rSðrÞ ¹ r̄ÿ=r̄ , and j
2
S ¼ hjdSj

2
i. We

then adopt

PðnÞ ~
expðan þ bn3=2

Þ if n $ 0

expðanÞ if n # 0

�

; ð3:1Þ

as the selection probability. The model has two free parameters a

and b. This choice of functional form is essentially selected for its

simplicity. Its exponential form ensures that the probability cannot

be negative. The dependence on b for n > 0 enables the selection

probability to be enhanced (b > 0) or suppressed (b < 0) in the

densest regions. It is this property which gives some control over the

slope of the small-scale correlation function. The choice of n3=2 is

such that the probability converges when integrated over a Gaussian

distribution of n.

Model 2. For this model the same functional form (equation 3.1)

is used to define the selection probability, but this time the variable n

is defined in terms of the smoothed final density field around each

particle. Again, a Gaussian smoothing with RS ¼ 3 h
¹1 Mpc is

adopted.

Model 3. This is the standard high peaks model of Bardeen et al.

(Bardeen et al. 1986). Their results are used to predict the number of

peaks of amplitude n > np defined on the scale of a galaxy as a

function of the density smoothed on a larger scale that is resolvable

in our simulation. In this case we choose the larger scale to be

defined by applying a sharp cut-off to the power at a wavelength

l & 4 h
¹1 Mpc, which is quite well resolved in the initial condi-

tions of the simulation. We define the galaxy mass scale by a

Gaussian smoothing with RS ¼ 0:54 h
¹1 Mpc as adopted by White

et al. (1987). Here the model parameter is np. An unavoidable

property of assuming that galaxies form in peaks of the density field

is that they are more clustered than the mass distribution (b > 1).

Thus this method cannot be applied in cases where an anti-bias is

required.

Model 4. In this model a sharp cut-off is applied to the final

smoothed density field, so that galaxies are entirely prohibited from

forming in very underdense regions, but have an equal chance of

forming wherever the overdensity rises above a certain threshold,

rT. Thus

PðnÞ ~
1 if rðrÞ $ rT

0 if rðrÞ # rT

�

: ð3:2Þ

This is the case if a bias greater than unity is required. For an anti-

bias, the conditions are reversed and galaxies are prohibited from

forming in the very densest regions. Note that this prescription for

producing anti-bias seems quite unphysical, as it implies that the

highest mass density regions have no galaxies at all.

Model 5. As in model 2 the selection probability is defined in

terms of the smoothed final density, but this time the functional

form adopted is a power law,

PðnÞ ~ na
: ð3; 3Þ

Here a positive value of the parameter, a, will induce a bias (b > 1)

and a negative value an anti-bias (b < 1). The bias inferred by Cen &

Ostriker (1993) from their hydrodynamic cosmological simulations

has roughly this form, with a < 1:5.

Model 6. This algorithm is a variation of model 2 and again uses

the formula (3.1), but with a different definition of the overdensity

parameter n. Instead of smoothing on a fixed scale of 3 h
¹1 Mpc,

the distribution was adaptively smoothed by setting the density at

the position of each particle, r ~ 1=r
3
10, where r10 is the distance

to the 10th nearest neighbour of that particle.

The various galaxy correlation functions and power spectra

Mock redshift surveys 951

q 1998 RAS, MNRAS 300, 945–966

Figure 3. For three selected, structure-normalized cosmological models

(E3S, O4S and L3S), we show the galaxy correlation functions that result

from each of the bias models. Note that both of the Q0 < 1 models require

anti-bias and therefore cannot be biased using the peaks bias model 3. The

line types corresponding to each of the bias models are indicated on the

legend. The data points again show the estimate of the galaxy correlation

function from the APM survey.



resulting from applying biasing model 1 to each of our cosmo-

logical simulations are shown in Figs 1 and 2 respectively. The

solid data points show the estimates of the galaxy correlation

function, yðrÞ, (Baugh 1996) and power spectrum, PðkÞ, (Baugh

& Efstathiou 1993) of APM galaxies, scaled in amplitude to match

the updated estimate of j
gal
8 ¼ 0:96 for the APM survey (Maddox

et al. 1996). The data points plotted as open symbols on the top left-

hand panel of Fig. 1 show the APM correlation function as

estimated from the Fourier transform of the estimated APM

power spectrum. There is a slight difference between this and the

direct estimate at large separations, which arises because both yðrÞ

and PðkÞ are estimated using non-linear inversions of the measured

angular correlation function. The difference is an indication of one

of the systematic errors involved in estimating yðrÞ on large scales.

In general the two parameter biasing model is successful in

matching both the amplitude and the shape of the galaxy correlation

function on scales of 1–10 h
¹1

Mpc, as can clearly be seen in Fig. 1.

For a few cases, such as E1, O2S, and L2S, which have high values

of jmass
8 and consequently steep non-linear mass correlation func-

tions, the bias model cannot reduce the slope of the correlation

function enough to match the observed value accurately. The

behaviour of the correlation functions on large scales reflects

each model’s value of the power spectrum shape parameter G.

The APM data, if fitted with a G-model, prefer G ¼ 0:15–0:2 (e.g.

(Efstathiou, Sutherland & Maddox 1990), so even our structure

normalized, G ¼ 0:25 models fall short of the amount of large-scale

power evident in the APM correlation function. This short-fall is

also exaggerated by a statistical fluctuation in our simulation initial

conditions. As can be seen in the top-right-hand panel of Fig. 2, the

first realization (A) of model E3S has less power on scales

0:03 & k & 0:06 h Mpc¹1 than the second realization (B) of the

same model. This downward fluctuation in the power is present in

all the other cosmological models, since all the initial density fields

were generated from the same basic Gaussian random field but with

expected mean amplitudes rescaled according to the model power

spectrum. We also note that the longest wavelength modes, with

k ¼ 0:018 h Mpc
¹1

, are noisy because of the small number of such

modes contained in the simulation box. The comparison of model

and APM galaxy power spectra on small scales (high k) is in accord

with the small-scale behaviour of the correlation functions.

The manner in which the galaxy clustering statistics vary with the

form of the biasing is illustrated in Fig. 3, and the corresponding

bias model parameters are listed in Table 2. The one-parameter bias

models (models 3, 4 and 5) do not have the flexibility to control both

the amplitude and slope of the galaxy correlation function. Thus, in

general, these models do not match the APM galaxy correlation

function over a wide range of scales. In particular, the galaxy

correlation functions of the three models selected for Fig. 3 are

steeper than the correlation function of APM galaxies, reflecting the

steepness of the underlying mass correlation functions. The

3 h
¹1 Mpc filter used in bias model 2 smooths over the structure

of groups and clusters in the final density field. As a result, the

small-scale slope of the galaxy correlation function ends up being

insensitive to the bias model parameters in this case. In model 6, on

the other hand, the use of an adaptive smoothing results in better

resolution on the scale of groups and clusters. In some cases this is

enough to enable the required adjustments to the slope of the

correlation function on small scales.

3.3.2 The asymptotic bias

In general all the biasing algorithms discussed above give rise to a

bias that is scale dependent. However, since these biasing algo-

rithms only depend on local properties of the density field, the bias

should tend to a constant on large scales. Where the selection

probability is a function of the initial density field, the value of this

asymptotic bias can be computed analytically. The probability that a

mass particle is selected as a galaxy is taken to be PðnÞ, where n is

the amplitude of the initial density fluctuation in units of the rms, js.

The normalization of PðnÞ is determined by the integral over the

Gaussian distribution of initial density fluctuations,

1
������

2p

p

�

PðnÞ e¹n
2
=2 dn ¼ 1: ð3:4Þ

The density of galaxies selected in a region in which a large-scale

perturbation D is added will be given by

rgal ¼ r̄gal

ð1 þ DÞ
������

2p

p

�

Pðn0
Þ e¹n2

=2 dn; ð3:5Þ

where n0
¼ n þ D=js. A first order series expansion of PðnÞ yields

Pðn0
Þ ¼ PðnÞ 1 þ

d ln P

dn

D

js

� �

: ð3:6Þ

Hence

rgal

r̄gal

¼
ð1 þ DÞ
������

2p

p

�

PðnÞ 1 þ
d ln P

dn

D

js

� �

e¹n
2
=2dn; ð3:7Þ

which simplifies to

rgal

r̄gal

¼ ð1 þ DÞ 1 þ
D
������

2p

p

js

�

dP

dn
e¹n

2
=2 dn

 !

: ð3:8Þ

We can thus define an asymptotic bias factor, the ratio of the galaxy

to the mass perturbations on large scales, as

basymp ¼ 1 þ
1
������

2p

p

js

�

dP

dn
e¹n

2
=2 dn: ð3:9Þ

This result is compared to the bias estimated from the simulations

in Fig. 4. The figure clearly shows that the bias does indeed tend

towards its asymptotic value, as calculated above, on large scales.

4 M O C K C ATA L O G U E S

In the previous section we described the procedure by which we

create a galaxy distribution within each simulation cube. We now
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Table 2. Bias model parameters: for the three selected cosmological models we list the parameter values required in each of the six bias

models. The resulting galaxy correlation functions are compared in Fig. 3.

Identifier Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ai bi af bf np rT a af bf

O4S 3.60 ¹9.05 2.17 ¹1.31 – <19.7 ¹0.02 3.96 ¹2.69

L3S 2.55 ¹17.75 0.15 ¹0.06 – <15.5 ¹0.13 7.11 ¹7.15

E3S 1.10 ¹0.56 1.26 ¹0.51 1.005 >0.98 0.56 2.98 ¹1.25



describe how these are manipulated and sampled to create the mock

galaxy catalogues. It should be noted that we do not attempt to

mimic the imperfections that will inevitably be present in the

genuine catalogues, e.g., Galactic extinction, excluded regions

around bright stars, or missing members of galaxy pairs separated

by less than the minimum fibre spacing. Our goal is instead to create

idealized catalogues with the expected redshift distributions and

geometrical properties of the genuine surveys. We anticipate that

members of the 2dF and SDSS collaborations will create a few

mock catalogues that incorporate the finer details of the survey

properties.

4.1 Survey geometry

The specifications of both the 2dF and Sloan surveys may be

slightly modified after evaluating the results from the current

period of test observations. The areas which we have adopted are

shown in Fig. 5 and defined below.

The main SDSS area is an elliptical region centred at

RA ¼ 12h20m d ¼ 328: 8, close to the North Galactic Pole (NGP)

and covering 3:11 sr. The minor axis of the ellipse spans 1108 and

runs along a line of constant RA. The major axis spans 1308. Our

mock catalogues do not include the strips in the Southern Galactic
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Figure 4. The scale-dependent bias, bðkÞ ¼ PgalðkÞ=PmassðkÞ, for each of our cosmological models when biased using bias model 1. Each of the lines corresponds

to a different cosmological model as indicated on the figure. To the right of each panel we show the value of the expected asymptotic bias on large scales, as

explained in Section 3.3.2.



Cap that will also be part of the SDSS redshift survey; larger

simulation volumes are needed to model simultaneously the North-

ern and Southern SDSS.

The main 2dF survey consists of two broad declination strips.

The larger is approximately centred on the SGP and covers the

declination range ¹228: 5 > d > ¹378: 5. This declination range

breaks into three contiguous, 58 wide strips, each with slightly

different ranges in RA, which from north to south are

21h48m
< RA < 3h24m, 21h39:

m5 < RA < 3h43:
m5 and 21h49m

<

RA < 3h29m. The smaller strip in the northern galactic hemisphere

covers ¹7:58 < d < 2:58 and 9h50m
< RA < 14h50m. Together

they cover a solid angle of 0:51 sr. There is considerable overlap

between the northern slice and the area covered by the SDSS (see

Fig. 5).

4.2 The radial selection function

The galaxies of the 2dF survey are selected from the APM galaxy

survey and will be complete to an extinction corrected apparent

magnitude of BJ < 19:45. The SDSS will have galaxies selected

from its own multi-band digital photometry. The primary selection

will be made in the Gunn-r band, and it will include a surface

brightness threshold to ensure that an adequate fraction of the

galaxy light goes down a 3-arcsec fibre (see Gunn & Weinberg 1995

for details). For simplicity, and because our goal is merely to match

the geometry and depth of the two surveys, we make our selection

for both catalogues in the BJ band. For the SDSS we adopt a

magnitude limit of BJ < 18:9 so as to approximately reproduce the

SDSS target of 900 000 galaxies in the survey area. A mock

catalogue from a ð600 h
¹1 MpcÞ

3
N-body simulation that mimics

the SDSS selection function in greater detail will be presented

elsewhere (Colley et al., in preparation; see also Gunn & Weinberg

1995). In addition to its primary galaxy sample, the SDSS will

target a set of ,100 000 luminous red elliptical galaxies, to create a

deep, sparse sample that is approximately volume-limited to

z , 0:4. Similarly, the 2dF programme includes a deep extension

to R , 21 which will contain ,10 000 galaxies. We do not attempt

to model these samples because their median depths are larger than

our simulation cubes.

In order to compute the radial selection functions of the surveys,

we adopt a Schechter function description of the BJ band luminosity

function,

dfðLÞ

dL
dL ¼ f, ðL=L,Þ

a, expð¹L=L,Þ dL=L,; ð4:1Þ

with absolute magnitude MBJ
¼ M

(

BJ
¹ 2:5 log10ðL=L(Þ. We

relate the apparent magnitude BJ of a galaxy at redshift z to the

corresponding absolute magnitude MBJ
at redshift z ¼ 0 using

BJ ¼ e þ k þ 5 log10ðdL= h
¹1 MpcÞ þ 25 þ ðMBJ

¹ 5 log10 hÞ:

ð4:2Þ

Here dL is the luminosity distance to redshift z in the appropriate

cosmological model. The term ‘k’ denotes the so-called k-

correction, which arises from the Doppler shift to the wavelength

of the galaxy’s spectral energy distribution when viewed in the

observer’s frame. The term ‘e’ describes the effect of luminosity

evolution in the galaxy as a result of a combination of passive

evolution of the stellar populations and star formation. This model

therefore allows for luminosity evolution, but not for any change in

the shape of the galaxy luminosity function, which might occur as a

result of galaxy merging or luminosity dependent evolution.

Even over the relatively limited range of apparent magnitudes

covered by the APM survey, the galaxy number counts are a

significantly steeper function of apparent magnitude than is pre-

dicted by non-evolving models (Maddox et al. 1990b). In contrast

the K-band galaxy counts have shown no evidence for such a steep

slope Gardner et al. (1997), but recently Phillips & Turner (1998)

have used a compilation of survey data to argue that at the brightest

magnitudes the K-band slope is as steep as that seen in the B-band.

Unless we live in a very large underdense region or there exists

some as yet unidentified systematic error in the bright galaxy

counts, some form of rapid galaxy evolution is necessary. The

counts can be reproduced by a model with strong luminosity

evolution such as can be accommodated in equation (4.2), but at
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Figure 5. An equal area (Mollweide) projection of the whole sky showing the regions covered by the 2dF and SDSS galaxy redshift surveys. The regions covered

by the 2dF survey are indicated by the areas populated by points. These are the galaxy positions for a narrow range in redshift from one of our mock catalogues.

The 2dF consists of two strips. The larger crosses the SGP while the small one runs close to the NGP. The solid curve marks the boundary of the SDSS survey,

which is an ellipse centred close to the NGP. We do not include the SDSS southern strips. The grid indicates the RA and Dec. coordinates.



somewhat fainter magnitudes than those covered by the SDSS and

2dF surveys such a model predicts a tail of high-redshift galaxies

that is not seen in deep spectroscopic galaxy samples (e.g. Colless

et al. 1990). Thus, a more complicated form of evolution is required,

either one in which different galaxies evolve at different rates or one

in which galaxies merge so that the number of galaxies is not

conserved. The new redshift surveys themselves will give important

information on evolution of the galaxy luminosity function. How-

ever, for the purposes of quantifying large structure this is not a

problem provided that the selection function can be accurately

determined. We have therefore adopted a simple model that

produces a selection function with similar depth to that which we

expect the surveys to have.

In our standard model we adopt the parameters found by Loveday

et al. (Loveday et al. 1992) for the APM–Stromlo bright galaxy

survey, M
,

BJ
¹ 5 log10 h ¼ ¹19:5, a, ¼ ¹0:97 and f, ¼ 1:4 ×

10
¹2

h
3

Mpc
¹3

. We also set k þ e ¼ 0, we assume that strong

luminosity evolution occurs which cancels the k-correction. While

this cancellation seems coincidental, Fig. 6 shows that this simple

choice gives reasonable agreement with the observed galaxy

number counts at BJ < 19:5 and so will produce mock galaxy

catalogues with approximately the number of galaxies expected in

the 2dF survey.

As a variation, we have also produced a selection of mock

catalogues in which the artificial assumption that k þ e ¼ 0 has

been dropped. For these we use the evolution law k þ e ¼

2:5 log10ð1 þ zÞ, which corresponds to weaker luminosity evolution

than in our standard model. To compensate for this we increase the

value of f, by 24 per cent to 1:73 × 10¹2
h

3 Mpc¹3 to keep the total

number of galaxies in the survey approximately the same as in our

standard model. This model’s galaxy counts and redshift distribu-

tions (for the case of Q0 ¼ 1) are shown by the dashed lines in Figs 6

and 7.

4.3 Survey construction

The task of generating a mock galaxy catalogue now consists of two

steps: choose the location of the observer, and select galaxies

subject to the geometrical constraints and radial selection function

specified above.

To aid in the comparison between the different cosmological

models, we choose to place the observer at the same position in each

of the galaxy catalogues. The observer’s position was essentially

chosen at random, although we did apply the weak constraint that

the velocity dispersion of particles within 5 h
¹1 Mpc of the

observer should be less than 350 km s¹1 in the Q ¼ 1 model, in

order to avoid observers placed in rich galaxy clusters. This

constraint was only directly applied in model E3S, but by virtue

of the fact that all our simulations have the same phases it is

effectively satisfied in all the structure normalized models. How-

ever, for the COBE normalized simulations that have j8 greater than

that required to match the observed abundance of rich clusters, the

galaxy velocity dispersion is typically higher, and the constraint

may be violated. For most analyses of the 2dF and Sloan surveys the

choice of the observer should not be important, as the volumes of

the surveys are large compared to the local region whose properties

are constrained by the choice of observer.

Having chosen the observer’s location, we replicate the periodic

cube of the N-body simulation around the observer to reach a depth
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Figure 6. Galaxy number counts in our two evolution models compared with

observational data. Over this range of magnitudes, the counts are weakly

dependent on cosmology and are plotted here for Q0 ¼ 1. The solid line

corresponds to our standard model in which luminosity evolution cancels the

k-corrections. The dashed line corresponds to the less extreme model in

which k-corrections are larger than the luminosity evolution. The data points

are taken from Maddox et al. (1990b) (APM), Heydon-Dumbleton, Collins

& MacGillivray (1989) (EDSGC), Jones et al. (1991) and Metcalfe et al.

(1991).

Figure 7. The model galaxy redshift distributions. These distributions are

weakly dependent on cosmology and are plotted here for Q0 ¼ 1. The heavy

curves, peaking at the higher redshifts, correspond to the magnitude limit of

BJ < 19:45 of the 2dF survey and light lines to the BJ < 18:9 of the SDSS. As

in Fig. 6, the solid curves are for our standard selection function and the

dashed curves for the alternative model with weaker luminosity evolution.

The median redshifts are zm ¼ 0:13 and 0:12 for the 2dF catalogues and

z ¼ 0:11 and 0:10 for the SDSS catalogues.



of z ¼ 0:5. We choose the same position for the observer in both the

2dF and SDSS surveys, but the observer’s orientation was not

chosen consistently between the two surveys. We then loop over

all the galaxies within the geometrical boundaries of the survey.

From the model luminosity function and cosmological model we

compute the expected mean number density n̄sðrÞ of galaxies

brighter than the survey magnitude limit at the distance r of each

of these galaxies. We then select the galaxy zero, one or more times

according to a Poisson distribution with mean n̄sðrÞ=n̄g, where n̄g is

the mean galaxy number density in the biased galaxy distribution

described in Section 3.3. In this process approximately 1 per cent of

the galaxies are selected more than once and appear with identical

positions and velocities in the mock catalogue. This double

sampling essentially never occurs at z > 0:02, where the selection

function drops to a space density less than ng. For each selected

galaxy we generate an apparent BJ magnitude consistent with the

selection function, and also a value of zmax, defined as the redshift

corresponding to the maximum distance at which the younger

counterpart of the galaxy would still be brighter than the survey

apparent magnitude limit. In computing this redshift we include the

effect of both the k-correction and evolution on the galaxy’s lumin-

osity. As our idealized models assume that galaxy mergers do not take

place this definition of zmax makes it easy to contruct volume limited

catalogues in which the mean galaxy density is independent of

redshift. For the genuine surveys removing the effect of evolution

from the radial dependence of the galaxy density field will be more

problematic as evolutionary corrections for each galaxy will be

uncertain and over the limited redshift range probed by these surveys

galaxy mergers may also play a small role. In our catalogues we

record the galaxy redshift, its angular coordinates, the redshift it

would have if it had no peculiar velocity, its apparent BJ

magnitude, and zmax. We also record an index which can be used to

identify the particle to which it corresponded in the original N-body

simulation.

4.4 Adding long wavelength power

For a subset of simulations we have applied a technique which

allows the spectrum of density fluctuations present in the final

galaxy catalogues to be extended to wavelengths longer than those

included in the original N-body simulation. This method, dubbed

the Mode Adding Procedure (MAP), was proposed by Tormen &

Bertschinger (1996) and discussed further by Cole (1997). Essen-

tially, one uses the Zel’dovich approximation with a change of sign

to remove from the N-body particle distribution the displacements

caused by the longest wavelength modes in the original simulation.

This can be done accurately if these modes are still in the linear

regime. One then generates a new large scale density field in a much

larger box, which samples this same region of k-space more finely.

Displacements are computed by the Zel’dovich approximation from

this new field and used to perturb both the original simulation cube

and the adjacent replicas. The displacements applied to each of the

replicas differ, as the new large scale density field is not periodic on

the scale of the original simulation cube. We choose to remove the

inner 53 modes from the original simulations and generate the large-

scale density field in a box with edge 7 times that of the original

simulation (NS ¼ 2 and L=S ¼ 7 in the notation of Cole 1997).

As pointed out by Cole (1997), it is important that the biasing

algorithm takes account of the effect of the added long wavelength

power. This is most easily carried out for algorithms such as

model 1, which are a function of the initial linear density field.

One simply replaces the original linear density field by a new one

constructed by removing the original long wavelength power and

adding the new large-scale density field. It is more complicated to

correctly apply a biasing algorithm that is a function of the final

density field, because the final density field is non-linear, and its

short wavelength modes are coupled to the linear long wavelength

modes. With this in mind, we applied the MAP only in combination

with our bias model 1. In order to keep computer storage require-

ments within reasonable bounds, it is necessary to combine into a

single program the application of the MAP, the biasing prescription,

and the survey selection criteria.

4.5 Inventory

For each of the cosmological simulations listed in Table 1 (21,

including the second realization of model E3S), we have created

mock SDSS and 2dF surveys using bias model 1 and the standard

selection function, in which the evolution and k-corrections cancel.

The MAP was not used to add long wavelength power to these

catalogues. For four structure-normalized cosmological simula-

tions – the open Q0 ¼ 0:4 model (O4S), the flat Q0 ¼ 0:3 (L3S),

and the two realizations of the Einstein–de Sitter model (E3S) – we

constructed a number of variants (listed in Table 2): changing the

bias model to models 2, 3, 4, 5, and 6; without bias; using the

variation of the selection function described in Section 4.2, in which

luminosity evolution is weaker than the k-corrections; and using

bias model 1 with long wavelength power added using the MAP.

5 I L L U S T R AT I O N S

We now compare and contrast the visual properties of the galaxy

distributions in each of the mock catalogues using a series of

redshift space wedge diagrams.

Figs 8 and 9 show the galaxy distribution in redshift space slices

extracted from the mock 2dF and SDSS catalogues constructed

from the cluster-normalized N-body simulations. Each of the

catalogues was biased using model 1 of Section 3.3. The 2dF

slices (Fig. 8) are 908 wide in RA, 38 thick in declination and plotted

out to a redshift of z ¼ 0:3. By contrast, the SDSS slices (Fig. 9),

which are 1308 wide (corresponding to the full length of the long

axis of the SDSS ellipse) are 68 thick but plotted only to z ¼ 0:2. A

visual inspection reveals that the structure in all six models looks

remarkably similar. This is essentially a reflection of the facts that

all the simulations were started with the same phases and that the

observer is alway located at the same position. Also, because these

models are designed to produce similar abundances of rich galaxy

clusters, the strength of the ‘fingers-of-God’ effect is also similar.

The one-dimensional galaxy velocity dispersions in all the cluster-

normalized models is in the range 440–465 km s¹1. The visible

effects on the galaxy distribution that result from varying Q0, L0,

and the amount of large scale power (G) are quite subtle. Of the two

Q0 ¼ 1 models, E3S (tCDM) has more large scale power than E4

(SCDM). A manifestation of this is that structure in E3S (tCDM)

appears more connected and less choppy than that of E4 (SCDM).

The changes that occur when Q0 is varied are related to the strength

of galaxy biasing. For models that are normalized to produce the

observed abundance of rich clusters, the amplitude of mass fluctua-

tions, j8, increases as Q0 is decreased. Thus, the Q0 ¼ 1 models

require a strong bias, the Q0 ¼ 0:5 models a weak bias, and the

Q0 ¼ 0:2 models an anti-bias. The effect of this can be seen

most clearly in the inset square panels of Fig. 8. These show, in

real space, a 100 × 100 × 20 h
¹1 Mpc slab of the mass and corre-

sponding galaxy distribution, both sampled to the same density of
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Figure 8. Redshift space slices showing galaxy positions from a variety of the mock 2dF galaxy catalogues. Each wedge shows a strip 908 wide in RA and 38 thick

in declination, extending to z ¼ 0:3. Each of the six models shown is normalized by the present abundance of galaxy clusters and biased using model 1 (see

Section 3.3). The inset square panels illustrate the effect of bias by showing the real space particle and galaxy distributions in a 100 × 100 × 20 h
¹1 Mpc slab. The

top panels show Q0 ¼ 1 models: E3S (tCDM) on the left and E4 (SCDM) on the right. Below these are the open and flat Q0 ¼ 0:5 models, O5S and L5S, and, at

the bottom, the open and flat Q0 ¼ 0:2 models, O2S and L2S.



n̄g< 0:05 h
3

Mpc
¹3

. In the Q0 $ 0:5 models, the biasing algorithm

clearly has the effect of mapping underdense regions in the mass

distribution to completely empty voids in the galaxy distribution. In

the anti-biased, Q0 ¼ 0:2 models, galaxies continue to trace the

mass in the underdense regions. Finally, comparison of the open and

flat models indicates that the value of the cosmological constant, L0,

has virtually no detectable effect on the galaxy distribution.

Figs 10 and 11 show redshift space slices with the same geometry

as those of Figs 8 and 9. The top left-hand panels in each figure show

the tilted Q0 ¼ 1 model, E2, which by virtue of the tilt is both cluster

and COBE normalized. These distributions should be compared

with those in the upper panels of Figs 8 and 9, which show

corresponding slices for our other two cluster normalized, Q0 ¼ 1

models. The tilted (E2) model appears intermediate in character

between the tCDM (E3S) and SCDM (E4) models. This is con-

sistent with the relative amounts of power on scales of 50–

100 h
¹1

Mpc in these models. The tilt of n < 0:8 with G < 0:45

produces more power on these scales than SCDM with n ¼ 1 and

G ¼ 0:5, but less than tCDM with n ¼ 1 and G ¼ 0:25. The

remaining three panels in Figs 10 and 11 are for the open

(L0 ¼ 0) COBE normalized models. In this sequence, as Q0 is

decreased j8 decreases, the bias increases, and G decreases. The

most visible effect comes from the variation of j8. There is a clear

trend such that the mass distribution looks more evolved, with more

crisply defined filaments and voids, as j8 is increased. This trend is

also visible in the galaxy distribution, but here the bias partially

compensates for the changing j8, and the relationship appears

weaker. On small scales the effect of the random velocities within

galaxy clusters is just discernible. The ‘fingers-of-God’ are largest

in the Q0 ¼ 0:5 in which the galaxies have a mean one-dimensional

velocity dispersion of 485 km s
¹1

– compared to only 225 km s
¹1

– in the Q0 ¼ 0:3.

Figs 12 and 13 show 2dF and SDSS redshift space slices for the

set of COBE normalized, flat (Q0 þ L0 ¼ 1) models. For this
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Figure 9. Redshift space slices from the cluster normalized mock SDSS catalogues. The correspondence between model and panel is the same as for Fig. 8. The

slices are 1308 wide by 68 thick and extend to z ¼ 0:2. The qualitative differences between the structure visible in these slices and in the corresponding 2dF slices

of Fig. 8 are a result of the choice of slice thickness and depth rather than any intrinsic difference in the 2dF and SDSS selection functions.



sequence of models, j8 decreases weakly as Q0 decreases. Thus we

see a weaker version of the same trend we noted in the open COBE

normalized models. The higher Q0 models have a more evolved

density distribution with more sharply defined voids and filaments.

Also there is a similar trend in the galaxy velocity dispersion and the

resulting ‘finger-of-God’ features. The one-dimensional velocity

dispersion is 200 km s¹1 – for Q0 ¼ 0:1 and climbs to 665 km s¹1

– for Q0 ¼ 0:5. The ‘fingers-of-God’ are extremely pronounced in

the Q0 ¼ 1 model which has a one-dimensional velocity dispersion

of 890 km s¹1.

Fig. 14 shows 2dF redshift space slices illustrating the effect of

varying the choice of biasing algorithm. Each slice was constructed

from the same cosmological model E3S (tCDM), but with a variety

of biasing algorithms as indicated on each panel. The correlation

functions of each of these galaxy distributions, shown in Fig. 3, are

quite similar. Despite this some of the distributions are visually

quite distinct. The most striking feature is variation in the size and

number of voids. The voids are largest and most numerous in bias

model 4 as a result of its sharp density threshold. The models in

which the bias function is a more gradual function of density, such

as the power-law case of model 5, have far fewer voids. The panel at

the bottom right shows the effect of using the MAP in conjunction

with bias model 1 to add long wavelength power to the mock

catalogue. The distortion of the small-scale galaxy distribution is

small as the perturbations are of very long wavelength, but there

effect on measurements of large-scale power can be appreciable.

Fig. 15 contrasts the galaxy distribution in redshift space (upper

panel) with what would be observed if true distances rather than

redshifts were measurable (lower panel). The model that has been

plotted here is the E3S (tCDM) model with galaxies selected using

bias model 1. The thickness of the slice is just 28.

6 L I M I TAT I O N S

We plan to use the mock catalogues presented in this paper to help in

the important task of testing and calibrating the algorithms and

statistics that will be applied to the analysis of the 2dF and SDSS

redshift surveys. We hope that they will be similarly useful to other

researchers. However, it is important to be aware of the limitations

of this compilation of mock catalogues.

(i) The mock catalogues are idealized and do not suffer from

some problems which, at some level, are inevitable in the genuine

surveys. These include systematic errors in the photometry used to

select the target galaxies, cosmetic defects such as regions cut out

around bright foreground stars, failure to measure redshifts for
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Figure 10. Redshift space slices from the mock 2dF catalogues for the tilted CDM model E2 (top left) and the open COBE normalized models, O5, O4 and O3.

The corresponding value of Q0 and the normalization j8 are indicated on each panel. The geometry of the slices and inset plots of the real space mass and galaxy

distributions is the same as in Fig. 8.



100 per cent of the target galaxies, redshift measurement errors, and

the residual effects of extinction by foreground dust.

(ii) The model selection functions are simplistic and do not allow

for the effects of galaxy mergers. It will only become possible to

adequately constrain evolution models that incorporate galaxy

merging once the joint apparent magnitude–redshift distributions

are accurately measured from the surveys themselves. Furthermore,

we have not attempted to mimic the details of the SDSS target

selection criteria, although we expect that the selection function of

the SDSS will not differ substantially from that implied by the BJ-

magnitude limited criterion that we have used.

(iii) Evolution of clustering over the redshift range of the surveys

is ignored – each of our mock catalogues is constructed from a single

output time from the N-body simulations. Clustering evolution is

probably very weak over the depth of the SDSS and 2dF surveys but it

may not be negligible for deeper surveys and will be important for

some applications (see e.g. Nakamura, Matsubara & Suto 1998).

(iv) The N-body simulations solve the equations describing

Newtonian gravity and therefore explicitly ignore space curvature

across the simulation box. One consequence of this is that in the

open models we are forced to use 4pr
2
c drc, where rc is the comoving

distance to redshift z, as the volume element rather than the correct

relativistic expression. However for the depth of the present surveys

this is a very small effect.

(v) The simulations have limited mass and force resolution. The

spatial resolution in the initial conditions is limited to scales greater

than the mean particle separation of 1:8 h
¹1

Mpc. However, the

power on these scales in the final configuration is dominated by

non-linear transfer from large scales. Thus, the range of reliability

of the estimated correlation functions and power spectra is deter-

mined by the force resolution, e ¼ 90 h
¹1 kpc (comoving), and the

particle mass, mp ¼ 1:64 × 1012Q0 h
¹1 M(. The smallest struc-

tures that are resolved are galaxy groups and clusters.

(vi) Because of the finite size of the N-body simulation volume,

k-space is coarsely sampled and, in the absence of the MAP

extension, the catalogues have no power in wavelengths

l > 345:6 h
¹1

Mpc. Since the depth of the surveys is comparable

to the size of the N-body simulations, the coarse sampling could be

problematic if one were to estimate the power spectrum from the

mock catalogues using a high-resolution estimator at values of k

which do not match modes in the original simulation. There should

be no problems for clustering statistics, such as the correlation

function, which contain contributions from a broad range of k.

(vii) The application of the MAP extends the power coverage in

the mock catalogues to wavelengths as large as l ¼ 2420 h
¹1 Mpc

and improves the sampling of -space at low k (k & 0:026 h Mpc¹1),

but the sampling of k-space remains coarse at larger k. Also, the

MAP slightly modulates the frequencies of the existing high-k

modes, with the result that although the high-k power is still peaked

around the modes present in the original simulation, some power is

distributed to neighbouring values of k. Thus, narrow band

estimates of the power spectrum at high k may still be slightly

affected.

(viii) The mock catalogues assumegalaxies trace thevelocity field

of the dark matter and thus that there is no velocity bias in the sense

discussed, for example, by Carlberg, Couchman & Thomas (1990).

(ix) The adopted models of spatial bias are at best simplifications

of the complex physics of galaxy formation. Since reliable a priori

predictions of bias are not possible with current simulation tech-

niques, we have given each of our adopted cosmological models a

‘good chance’ by choosing bias parameters that force-fit the

amplitude and (to the extent possible) the shape of the observed

galaxy correlation function. Our logic is that if the cosmological

model in question is to be consistent with current galaxy clustering

data, then the ‘true’ description of galaxy formation must somehow

achieve the same thing that our biasing prescription does. In
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Figure 11. Redshift space slices from the mock SDSS catalogues for the same models as Fig. 10, the tilted CDM model E2 and the open COBE normalized

models, O5, O4 and O3. The geometry of the slices is the same as in Fig. 9.
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Figure 12. Redshift space slices from the mock 2dF catalogues for the flat COBE normalized models, E1 (CCDM), L1, L2, L3, L4 and L5. The corresponding

values of Q0, L0 and the normalization j8 are indicated on each panel. The geometry of the slices and inset plots of the real space mass and galaxy distributions are

the same as in Fig. 8.



selected cases we have produced multiple mock catalogues with a

variety of biasing algorithms, so that the sensitivity of methods to

the details of biasing can be investigated.

7 I N S T RU C T I O N M A N UA L

Each mock catalogue can be downloaded from our World Wide

Web site http://star-www.dur.ac.uk/˜cole/mocks. Included in these

pages is a detailed description of the catalogue file format. Each of

the SDSS catalogue files occupies 24 Mbytes. The smaller 2dF SGP

and NGP catalogues occupy 5.4 and 2.7 Mbytes respectively. For

each catalogue file there is an associated selection function file that

tabulates the expected number of galaxies and the number density

of galaxies as a function of redshift for each model. We have also

made available a number of FORTRAN subroutines. The first can be

used to read the mock catalogue files. A second reads one of the

tabulated selection functions and can be used to used to generate

random galaxy positions consistent with the survey radial selection

function and geometric boundaries.

The main catalogue files list seven properties for each catalogued

galaxy, x, y, z, zrest, BJ , zmax and iident. The first three of these

are Cartesian redshift coordinates, the galaxy redshift is

zgal ¼ ðx
2

þ y
2

þ z
2
Þ
1=2

and two angular coordinates are defined

by the relations sin v ¼ z=zgal and tan f ¼ y=x. For the 2dF cata-

logues these angles are simply the declination d ¼ v and right

ascension RA ¼ f. In the case of the SDSS they instead give a

latitude, v, and longitude, f, relative to a pole at the centre of the

SDSS survey region and with respect to the major axis of the SDSS

ellipse. The quantity zrest is the redshift the galaxy would have if it

had no peculiar motion and was just moving with the uniform

Hubble flow. The redshift space coordinates can be converted to real

space coordinates by simply scaling each component by the ratio

zrest=zgal. The galaxy’s apparent magnitude is given by BJ. The

maximum redshift at which the galaxy would enter into the

catalogue taking account of the k-correction and luminosity evolu-

tion is zmax. Thus selecting galaxies with both zrest < zcut and

zmax > zcut will produce a volume limited catalogue to redshift

zcut. Note that such volume limited catalogues will have a mean
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Figure 13. Redshift space slices from the mock SDSS catalogues for the same models as Fig. 12, the flat COBE normalized models, E1 (CCDM), L1, L2, L3, L4

and L5. The geometry of the slices is the same as in Fig. 9.
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Figure 14. Redshift space slices from the mock 2dF catalogues showing the effect of varying the choice of biasing algorithm. Each slice was constructed from the

same cosmological model E3S (tCDM), but with a variety of biasing algorithms as indicated on each panel. The panel at the bottom right shows the effect of

using the MAP in conjunction with bias model 1 to add long wavelength power to the mock catalogue. The geometry of the slices and inset plots of the real space

mass and galaxy distributions are the same as in Fig. 8.



comoving number density of galaxies which is independent of

redshift. This occurs in our idealized models because we have

assumed that galaxy merging can be ignored over the limited

redshift range probed by the surveys and because we have included

both the k-correction and evolutionary correction in our definition

of zmax. The last property, iident, is simply an index which relates the

galaxy to a particle in the original N-body simulation.

8 D I S C U S S I O N

We have constructed, and made publicly available, a set of mock

galaxy catalogues constructed from N-body simulations having the

geometry and selection function appropriate to the forthcoming

SDSS and 2dF redshift surveys. Our main intention has been to

generate an extensive and flexible suite of artificial datasets which
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Figure 15. A comparison of the galaxy distribution in redshift space (upper panel) and real space (lower panel) for a 28 thick slice from a SDSS mock catalogue

constructed from model E3S (tCDM).



may be used to develop, test, and fine-tune statistical tools intended

for the analysis of the real surveys and, eventually, for testing the

real data against theoretical predictions. To this purpose we

have generated mock surveys from simulations with a range of

cosmological parameters and made a variety of (biasing) assump-

tions for extracting galaxies from the N-body simulations.

Our mock catalogues are restricted to CDM cosmologies with

Gaussian initial fluctuations, but with a range of values for the

cosmological parameters Q0, L, H0, spectral shape parameter, G,

etc. It will be interesting in future to extend this kind of work to

other cosmological models, particularly models that do not assume

Gaussian initial fluctuations. At present it remains somewhat

unclear which non-Gaussian models will be the most profitable to

investigate. In our CDM simulations, the fluctuation amplitude is

set in two alternative ways: by matching the amplitude of cosmic

microwave background fluctuations as measured by COBE (and

extrapolated to smaller scales according to standard assumptions)

or by matching the observed abundance of rich galaxy clusters. One

of our models (tilted Q0 ¼ 1) is deliberately constructed so as to

match both of these constraints while two others (open Q0 ¼ 0:4

and flat Q0 ¼ 0:3) come close to doing so on their own right.

Although our suite of 20 models is far from providing a well-

sampled grid in this multidimensional parameter space, it does

include many of the cosmological models currently regarded as

acceptable.

We have implemented a variety of biasing prescriptions, all of

which are designed to reproduce approximately the known APM

galaxy correlation function over a limited range of scales. The

motivation for providing alternative biasing schemes is to enable

tests of the sensitivity to these assumptions of statistics which

attempt to infer properties of the mass from the measured properties

of the galaxies. In the absence of reliable theoretical predictions for

the formation sites of galaxies, we have taken the pragmatic

approach of using simple formulae, with one or two adjustable

parameters, to characterize the probability that a galaxy has formed in

a region where the density field has a givenvalue. We have considered

both Lagrangian and Eulerian schemes in which the galaxies are

identified in the initial and final density fields respectively. We have

restricted attention to ‘local biasing" models in which the probability

depends solely on the value of the field smoothed in the local

neighbourhood of a point. An interesting extension would be to

implement non-local biasing prescriptions such as the cooperative

galaxy formation model of Bower et al. (1993).

Over the range of scales adequately modelled by our N-body

simulations (,1–10 h¹1 Mpc), our two-parameter biased galaxy

distributions match the APM data remarkably well in almost all the

cosmological models we have considered, including those in which

an antibias is required on small scales. In some cases, a one-

parameter model suffices to obtain acceptable results. In all cases

the bias in the galaxy distribution is scale-dependent even over the

relatively narrow range of scales covered in our simulations. As

discussed by Jenkins et al. (1998), scale-dependent biasing is a

requirement of all viable CDM models, and it is encouraging that

simple heuristic models that depend only on local density can

achieve this, albeit over a limited range of scales. When using our

mock catalogues it is important to bear in mind that while the

locations of the galaxies are biased, the velocities are not – our

galaxies are assumed to share the velocity distribution of the

associated dark matter.

A number of extensions of our work are possible. One that we

have already implemented but not discussed in this paper is the

construction of mock catalogues with the properties of other

surveys, particularly surveys of IRAS galaxies like the 1.2 Jy

(Strauss et al. 1990) and the PSCz surveys (Saunders et al. 1995).

Mock catalogues of the latter are already available at the same web

address as our 2dF and SDSS mock catalogues. There are several

ways in which our catalogues could be improved to overcome at

least some of the limitations discussed in Section 6. For example,

better N-body simulations are certainly possible with current

technology. Larger simulations would be particularly advanta-

geous, since the size of those we have used here is comparable to

the depth of the real surveys. The 1-billion particle ‘Hubble

Volume’ simulation of a 2 Gpc CDM volume currently being

carried out by the Virgo consortium (Evrard et al., in preparation;

Glanz 1998) will certainly be large enough, and we plan to extract

mock catalogues from it shortly. An interesting aspect of this

simulation is that data are output along a light cone and so the

evolution of clustering with lookback time can be incorporated into

the mock catalogues. Clustering evolution is expected to be

negligible in the main 2dF and SDSS surveys, but it will be

important in the proposed faint extensions of these surveys and to

QSO surveys.

A further improvement would be to construct ensembles of mock

catalogues from independent simulations of each cosmological

volume. These would help quantify the cosmic variance expected

in the real surveys. As we discussed in Section 3, sampling effects

are still appreciable on large scales even with the huge volumes that

will be surveyed with the 2dF and SDSS data. In fact, the funda-

mental mode in our simulations had a noticeable stochastic down-

ward fluctuation which can confuse the comparison with data on

large scales. Although this sort of effect can be quantified analyti-

cally to some extent, simulations are useful in order to check for the

effects of biasing. Finally, within a given N-body simulation, there

are already better ways of identifying galaxies than the simple

heuristic biasing formulae that we have used. These new methods

consist of grafting into an N-body simulation the galaxy formation

rules of semi-analytic galaxy formation models (e.g. Kauffmann,

White & Guiderdoni 1993; Cole et al. 1994). Examples of this

approach already exist (Kauffmann, Nusser & Steinmetz 1997;

Governato et al. 1998), but extensive mock catalogues are still to be

constructed using this technique. The combined N-body/semi-

analytic approach offers the advantage of producing realistic

catalogues that include internal galaxy properties such as colours,

star-formation rates, morphological types, etc. Such information

would be particularly valuable to exploit the photometric data of the

SDSS survey.

We are planning to implement several of the improvements just

mentioned and to update our web page as we progress. In the

meantime we hope that the gallery of mock catalogues already

available will be of use to researchers interested in the 2dF and

SDSS surveys.
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