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Fuzzy Color Histogram and Its Use
In Color Image Retrieval

Ju Han and Kai-Kuang M&enior Member, IEEE

Abstract—A conventional color histogram (CCH) considers calledfuzzy color histogranfFCH), to efficiently address the
neither the color similarity across different bins nor the color gforementioned issue.
dissimilarity in the same bin. Therefore, it is sensitive to noisy In contrast with conventional color histogram (CCH) which

interference such as illumination changes and quantization errors. . h pixel int f the bi | FCH id
Furthermore, CCHs large dimension or histogram bins requires assigns each pixel into one ot the bins only, our CONSICEIS

large computation on histogram comparison. To address these the color similarity information by spreading each pixel’s total
concerns, this paper presents a new color histogram representa- membership value to all the histogram bins. Furthermore, to
tion, called fuzzy color histogran{(FCH), by considering the color save computation, we introduce an efficient method to com-
similarity of each pixel's color associated to all the histogram pute these membership values udinzzye-meangFCM) clus-

bins through fuzzy-set membership function. A novel and fast . . . .
approach for computing the membership values based on fuzzy tering algorithm. Experimental results show that the obtained

e-means algorithm is introduced. The proposed FCH is further FCH is less sensitive to noisy interference such as lighting in-
exploited in the application of image indexing and retrieval. tensity changes and quantization errors than CCH.
Experimental results clearly show that FCH yields better retrieval Moreover, in contrast with quadratic histogram distance ex-
results than CCH. Such computing methodology is fairly desirable |5ited for measuring the degree of similarity between CCHs,
for image retrieval over large image databases. . . . .
i _ simple Euclidean distance measurement over their FCHs can
Index Terms—Conventional color histogram, fuzzy c-means, yja|q similar retrieval results. This is a fairly attractive and desir-
fuzzy color histogram, illumination changes, image indexing and bl ti di for th licati fi indexi
retrieval, membership matrix. able computing paradigm for the application of image indexing
and retrieval especially over large image databases.
In the next section, we introduce related works of color his-
. INTRODUCTION togram based methods for image indexing and retrieval. The

UMEROUS methods about efficient image indexing angoncept of FCH is introduced in Section Ill. An efficient scheme

N retrieval from image databases have been proposed for ti@ompute the required fuzzy membership values using FCM
applications such as digital library [1]~[3]. Low-level visual fea@!gorithm is introduced in Section IV. In Section V, we analyze
tures such as color, texture, and shape are often employed® relationship between FCH and other color histograms. In
search relevant images based on the query image. Among theggtion VI, we analyze the experimental results of image re-
features, color constitutes a powerful visual cue and is onetffval based on FCH and discuss the parameter selection of
the most salient and commonly used features in color image Fé&=H- Section VI concludes the paper.
trieval systems.

Swain and Ballard [4] have demonstrated the potential of Il. RELATED WORKS

using color histograms for color image indexing. Because eachcg|or histograms are easy to compute, and they are invariant
histogram bin represents a local color range in the given colgfine rotation and translation of image content. However, color
space, colo_r histogram r_ep_resents the coarse d|str|bu_t|on Qf ﬁi’@ograms have several inherent problems for the task of image
colors in animage. Two similar colors will be treated as identic@{exing and retrieval. The first concern is their sensitivity to
provided that they are aIIocaFed into th(_a same h|stogrqm bin. 955sy interference such as lighting intensity changes and quan-
the other hand, two colors will be considered totally different i 4ion errors. The second problem is their high dimensionality
they fall into two different bins even though they might be very, representation. Even with coarse quantization over a chosen
smplar to each other. This make; cqlor histograms sensﬂwe;égmr space, color histogram feature spaces often occupy more
noisy mterferenge such as illumination changes and.quanu;ﬁén one hundred dimensions (i.e., histogram bins) [5] which
tion errors. In this paper, we proposed a new color histogragignificantly increases the computation of distance measure-
ment on the retrieval stage. Finally, color histograms do not in-
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histograms more robust to noisy interference. To identityistogram bin are partitioned into two classes based on their
objects based on their color histograms, Swain and Ballard gjjatial coherence [16]. A pixel is considered as coherent pixel
propose adistogram intersectiomethod which is able to elim- if it is part of a sizable contiguous region; otherwise, incoherent
inate the influence of color contributed from the backgroungpixel. Huanget al. [17], [18] proposecolor correlogramsto
pixels during the matching process in most cases. Althoutgike into account the local color spatial correlation as well
their method is robust to object occlusion and image resolutiaas the global distribution of this spatial correlation. In fact, a
but it is still sensitive to illumination changes [4]. color correlogram of an image forms a table of statistics for
Funt and Finlayson [6] propose eolor constant color color pairs, where thé-th entry for pair (i, j)} specifies the
indexingmethod to extend Swain and Ballard’s color indexingrobability of finding a pixel of colorj from a pixel of color
method to be illumination independent by establishing theat a distancé in the image.
histogram of color ratios. Since the illumination remains es- All the above-mentioned approaches made some improve-
sentially constant locally, calculating the ratios of neighboringients over the CCH for the task of image indexing and retrieval.
colors removes the illumination variation component. Similddur FCH proposed in this paper makes improvement on robust-
extension can be found in Drest als work [7]. ness (less sensitive to interference), efficiency (reduced dimen-
Cumulative color histograr{B] utilizes the spatial relation- sion), and computation (less online computation consumed).
ship of the histogram bins in the color space. Consequently, ifife full development of FCH is presented as follows.
slightly more robust with respect to illumination changes than
CCH [8]. In Section V, we will show that it can be viewed as a IIl. FuzzYy COLOR HISTOGRAM

ial f our FCH. . . L .
special case of our FC In this paper, the color histogram is viewed as a color dis-

QBIC [1] takes into account the perceptual color Similarit)[/ribution from the probability viewpoint. Given a color space
between histogram bins through the measuremequaftiratic - br y point. . P
Eontalmngn color bins, the color histogram of imadecon-

distance which is a weighted distance between two CCHs wit] Lining IV pixels is reoresented &8(I) — [hi b b

each weight denoting the similarity between a pair of color his- 9N P > Tep . (1) i [ 1202 ol
; . _Whereh; = N, /N is the probability of a pixel in the image be-

togram bins. It has been shown that such measurement is n]gre

o ...~ .longing to theith color bin, andV; is the total number of pixels
closely related to human being’s judgment on color slmllarltl)(1 theith color bin. According to the total probability theof
comparison, but on the expense of large computations. ¢ ) 9 P Y Y

can be defined as follows:

B. Dimensionality

N 1 N
Many other approaches exploit their derived color histogram hi = Z Pty = N Z ok @)
methods to facilitate the design of efficient database indexing =t I=t
schemes. Hafneet al. [9] generalize computationally simplewhere P; is the probability of a pixel selected from imade
similarity measures usingingular value decompositiq§VD)  being thejth pixel, which is1/N, and P, ; is the conditional

method to compute quadratic histogram distance. It has bggBbability of the selectegith pixel belonging to théth color

mathematically shown that SVD-based approach provides thig.

lower bounds on the histogram distance measure. Maziddl In the context of CCHP | ; is defined as

[10] reduce the computational complexity of color histogram

comparison by representing the histogram in terms of its mo- 1, if the jth pixel is quantized into théth color bin

ments. Experimental results also indicate that Legendre moili = {07 otherwise

ments provide superior retrieval performance compared to reg- (2)

ular moments [10]. This definition leads to the boundary issue of CCH such that the
histogram may undergo abrupt changes even though color vari-

C. Spatial Information ations are actually small. This reveals the reason why the CCH
is sensitive to noisy interference such as illumination changes

. . . .is
Some approaches strive to incorporate spatial informatign o
and quantization errors.

into color histograms by dividing each image into subregions The proposed FCH essentially modifies probability ; as

and imposing positional constraints on image comparison lows. Instead of using the probabili#y; | ;, we consider each

order to increase image discrimination power [11]-[14]. Smltcl’)]f the V pixels in imagel being related to all the. color bins

and Chang’s method [1.1] uses back prOJectlor] of bmary F:O|O|ra fuzzy-set membership function such that the degree of “be-
sets to extract color regions. Each of these regions is efficienil

. . 2 . gingness” or “association” of thgh pixel to theith color
represented by a binary color set and its location information 8% is determined by distributing the membership value of the
well. Stricker and Dimai's method [12] tessellates each imagtﬁ1 pixel, 11;;, to theith color bin
into five partially overlapping fuzzy regions and extracts the first Definit’iog, (Fuzzy Color Hi.stogram)'The fuzzy color
two color moments of each region both weighted by the merﬂi_stogram (FCH) of imagel can be exhressed as(1) —
bership functions of the region, respectively, to form a featur? 7 F.], where
vector for the image. L2 Jnds

Other approaches augment histograms with local spatial N | X
properties. Pass and Zabih [15] propose a spl!t hlstggram, called fi = Z i Py = ¥ Z [hij- ()
color coherence vectaiCCV), where image pixels in a given =1 =
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e ¥ sy gt ph iy membership value to an FCH bin can be represented by the
W ., | men whrmsn | alwass e merse COMresponding fine color bin’s membership value to the coarse
AT o A R color bin. Note that we only need to compute these membership
A values once, and they are represented as a membership matrix
v N M = [my;]nxn . Each elementn;; in M is the membership
Icome-simae: pormpaiing for membiership mssris| - value of thejth fine color bin distributing to theth coarse
icomaprating FUH For ench lmsges color bin. Thus, the FCH of an image can be directly computed
jrsiuy T e from its CCH without computing membership values for each
oo Bhran il n e plxgl. That is, given am’-bin CCH H,,/«1, the corresponding
aha S i n-bin FCH I}, 1 can be computed as follows:

jEanilistka

anl :Man’ n'x1 (4)

Fig. 1. Procedure diagram for computing FCkf (= 16* = 4096 in our where membership matriX/ is pre-computed 0”'¥ once and

experiment). can be used to generate FCH for each database image. We em-
ploy FCM clustering algorithm to not only classify th fine

P; has been defined in (1), and; is the membership value of colors ton clusters but also obtain membership mafvixat the

the jth pixel in thesth color bin. same time. For the latter, we explain how it works with more

In contrast with CCH, our FCH considers not only the simidetails as follows. _ _ _
larity of different colors from different bins but also the dissim- FCM is an unsupervised clustering algorithm that has been
ilarity of those colors assigned to the same bin. Therefore, F@RPplied successfully to a number of problems involving feature

effectively alleviates the sensitivity to the noisy interference. analysis, clustering and classifier design. The FCM minimizes
an objective functiorv,,,, which is the weighted sum of squared

IV. FCH COMPUTING errors within each group, and is defined as follows [21]:

Equation (3) gives the definition of FCH, but it does not pro- noE
vide an applicable method to compute FCH. Given two calors Zm(Us Vi X) =3 ufillex —villh, 1<m <oc (5)
andj, Hafneret al. [9] measure their perceptual similarity in k=15=1
terms of t_he Euclidean distance between coloend j rep- whereV = [u1, vs, . . ., v,]T is a vector of unknown cluster pro-
resented in a_chosen color_spac_e. _However_, the measurer%&tpes_ The value ai;; represents the membership of the data
does not consider the nonuniformity inherent in color space rﬁﬁgéintxk from the set{ = {x1, s, ..., 2.} with respect to the
resentation. To accurately quantify the perceptual color si TS

Mh cluster. The inner product defined by a norm mattixie-

larity between two colors recorded in a specific color SPaChines a measurement of similarity between a data point and the

the nonuniformity of that color space should be considered. F(% : :
. ster prototypes, respectively. A nondegenerate fazaarti-
that, we choose the CIELAB color space which is one of perceps | ofg( is c)(/)'rjwenienit)ly repreysented byga mattix=[ui]

tually uniform color spaces and has been increasingly exploitﬂ:|e weighting exponent, controls the extent of membership
into many electronic color imaging systems (e.g., Postscript laﬁiared by: clusters

guage and Adobe Photoshop) [19]. It has been shown by Bezdek [20] thaf|if;. — v;||4 > 0 for

Since RGB color space has been most commonly used Eﬁfi andk andm > 1, thenJ,,, could be minimized atU, V')
representing color images, intuitively we need to perform nOWhere ’ ’ ’

linear color space transformation from RGB to CIELAB pixe

by pixel. Such pixel-wise transformation is computationally in- o Done (wi) ",

tensive for the entire image. Moreover, to compute the FCH " >0 (u)™

of a color image, we need to compute each pixel's membeind

ship values with respect to all available color bins, respectively. - 1 for1<i<c and

Such direct approach is also not favorable because of its large  ** ~ ___ g [12,\ 75T - -

computational load. To address the above-mentioned issues, we EJ':l (m)

propose an efficient method to compute FCH baseduaay 1<k<n (7)

c-meang(FCM) clustering algorithm [20]. The procedure dia- ) )

gram for computing FCH is illustrated in Fig. 1. Equations (6) and (7) cannot be solved analytically, but an ap-
First, we perform fine uniform quantization in RGB colofProximate solution can be obtained by performing the following

space by mapping all pixel colors t8 histogram bins. Here, iterative_procedures. (First, dendfe as the iteration index.)

the bin number.’ is chosen to be large enough so that it makes Algorithm (FuzzyC-Means):

the color difference between two adjacent bins small enough.Step 1) Input the number of clustersthe weighting expo-

forl1 <i<e, (6)

Then, we transform the’ colors from RGB to CIELAB color nentm, and error tolerance
space. Finally, we classify thesg colors in CIELAB color Step 2) Initialize the cluster centerg for1 < i < ¢.
space ton clusters using FCM clustering technique (usually, Step 3) Input dat = {z;,22,...,2,}.

n < n'; hence, a coarse quantization process), with eachStep 4) Calculate thecluster center$v§l)} by (6).
cluster representing an FCH bin. Through these steps, a pixel'Step 5) Updaté’¥ by (7).
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Step 6) If|jU@ -7 > ¢, 1 =I+1andreturnto Step4; Quadratic histogram distancil] provides more stable and
otherwise, stop. consistent matching measurement than other similarity mea-
In our work, we need to classify the fine colors in CCH sures between two CCHs. Given two color imaggsand 7',
into n clusters for FCH. Due to the perceptual uniformity othe quadratic distance between theibin CCHs,H¢ andHr,
CIELAB color space, the inner produits;, — v;||% can be is given by
simply replaced byl|z;, — v;]|%, which is the Euclidean dis-
tanfeybet\r/)veen the){l‘inke col@lrL and the cluster center,. The dg(HQ’ Hr) = [Hg — Hrl; 1 Anscn[Ho — Hrlnxa (1)
fu;zy clustering result of F_CM algorithm is represented by M3znere 4 — [ai;]nxn is @ weighted similarity matrix and;;
trix U = [uig]nxn’, @ndu;y is referred to as the grade of memyenqtes perceptual similarity between color himsd;j. With
bershlp of colqrxk with respect.to cluster centeg._ Thus, the a suitable membership matrd = [m;],xn, the FCHs of
obtained matriX/,,«,» can be viewed as the desired membe{magesQ and can be computed by (4), respectively. On the

ship matrixM,, ... for computing FCH, i.8 My xn' = Unxn'-  other hand, the squared Euclidean distance betweervitisir
Moreover, the weighting exponent in FCM algorithm con- rcHs is

trols the extent or “spread” of membership shared among the

fuzzy clusters. Therefore, we can use the parametéw con- d3,(Fo, Fr) = [Fo — Fr]: 1 [Fo — Frlaxi

trol the extent of similarity sharing among different color bins =[Ho — Hr% ME, My [Ho — Hrlnr
in FCH. The membership matri/ can be thus adjusted ac- T

cording to different image retrieval applications. In general, if =[Hq = Hrlwsa Aw s [Hg = Hrlwx1- (12)

higher noisy interference is involved, largervalue should be Compared with (11), the simple squared Euclidean distance be-

used. tween twon-bin FCHs is equivalent to the quadratic histogram
distance between their-bin CCHs. Note that the computation-

V. RELATIONSHIP BETWEEN FCH AND OTHER ally intensive matrix multiplication in computing quadratic dis-
COLOR HISTOGRAMS tance of CCHs (11) is incurred ahlineretrieval stage. On the

Cumulative color histogran{8] has been proven to beother hand, our FCH-based representation simply applies Eu-
more robust to noisy interference than CCH. Given thdidean distance measurement, and the matrix multiplication is
color histogramH of image I, the corresponding cumu- desirably avoided atnlineretrieval stage, because it has already

lative color histogram is mathematically represented &&en performed in thefflineindexing stage according to (4).
1?[(]) — [7“7%27“.77%], whereh; = S e <c hj. Here, From (12), it also shows that our FCH-based measurement

C; and Cj are the representative color \;a_|ues of thb could preserve more detailed color Slmllarlty information than
and jth histogram bins, respectively. In RGB color spacé&CH-based quadratic distance measurement with the same
Cj = (r4,95,b;) < Ci = (ri,i,b;), if r; < ri,9; < g; and number of histogram bins because< »n'. This indicates that

b; < b;. In fact, we can describe cumulative color histogram ité is possible to exploit FCH with fewer number of histogram
terms ofcrisp membership matrid/ = [m;],x. andn’ =n, bins to efficiently represent color distribution than CCH.

which is defined as follows:
VI. EXPERIMENTAL RESULTS OFIMAGE RETRIEVAL

_J1, G <G
Mij = {07 otherwise. (8) A. Retrieval Performance Evaluation Criterion
We evaluate the performance of image retrieval according to
normalized rank suniNRS) [22], which is defined as follows.
H, 1 = MysnHpxi (9) Fromamanually predefined targetimage{se} containingn,
similar images stored in the database, a query infage{/,}

For example, given an ordered color histogram with eight bissselected for performing image retrieval experiments. If all the
andC; < Cj, wherei < j, the membership matridfsxs of images in the database were sorted according to the similarity
cumulative color histogram is measured with respect to query imagéeherank of each image

10 corresponds to its location in the sorted list. When all the
images in the target image sgh } appear in the first,; loca-
tions in the sorted list, the ideal (or best) retrieval performance
is achieved. Theank sumof the query imagd, which is de-

(10) fined as the sum of the ranks of all the target images (i.e.,
the denominator of (13)), denotes the performance of a retrieval
method exploited. To compare the rank sums of target image
sets with different set sizes, the NRS of imdgs required and
defined as

Note that inherently cumulative color histogram also considers ne(ny +1)/2

the color similarity across all color bins. However, FCH is NRS(I) = =<vr——="77~- (13)

. : ; . > it rank(l)

more general as ifsizzy(rather tharcrisp) membership matrix

can be adjusted according to different noise interference aNdte that the rank sum in the denominator is normalized by

applications. n¢(ne +1)/2 in the numerator—the rank sum when the retrieval

Therefore,
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Fig. 2. ANRS values of image retrieval using FCHs with 18

different weighting exponents empirically determined, i.en =
1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.4,2.7,3.0, 3.5,4.0,

and 5.0, respectively. (ANRS’ range [0, 0.2] is omitted for the purpose o
presentation.)

Fig. 3. ANRS values of image retrieval using (a) FCHs = 1.9) and
Eb) CCHs with bin numbera = 10, 20, 30,...,290, and300, respectively.
ANRS' range [0, 0.3] is omitted for the purpose of presentation.)

performance isdeal as described earlier. As the NRS value i@€rformance of image retrieval based on FCHs with the given
approaching one, it indicates that the retrieval performanceP@rameter combination—the larger the ANRS value, the better
getting close to ideal. This makes the NRS measurement indf&€ Parameter combination. For comparison, the ANRS values
pendent of the size of the target image §Bt. Also note that 10f CCHS were also obtained in the same way.

between two consecutive correctly retrieved images lie averagdVith the 18x 30 parameter compositions, ¥80 ANRS
[1/NRS] — 1 incorrectly retrieved images [23]. values of FCH-based retrieval were obtained. We first determine

the optimalm value as follows. For each of the 18 values, we
averaged all the 30 ANRS values with differentalues. The
obtained 18 ANRS values are shown in Fig. 2. It suggests that
In order to evaluate the performance of FCH representatigfk choice ofn = 1.9 achieves the best retrieval performance
exploited inimage indexing and retrieval, we establish animaggg, experiments.
database containing about 500 color images with various sizeShe 30 ANRS values of ECH-based retrieval with= 1.9
and a wide range of image content, such as nature scenes, @hffer differentr values are shown in Fig. 3(a), and the corre-
mals, buildings, etc. o sponding 30 ANRS values of CCH-based retrieval are shown in
Our experiments for determining FCH parameter were cafiy. 3(b). Comparing these two subfigures, we can see that the
ried out based on global color distribution of the entire imaggeatrieval performance using FCHs is better than the performance
For that, we selected 39 target sets from our image databg§gg CCHs under the same bin number. Moreover, it also indi-
based on their global color distribution. Each target image sgites that the FCH-based image retrieval is less sensitive to the
contains a set of images having similar main object and baglin number changes. As the quantization errors are intimately
ground, but with some variations in position, viewing anglge|ated to the bin number used, these results demonstrate that

illumination, etc. _ _ FCH is more robust (i.e., less sensitive) to quantization errors
According to the scheme on computing FCH as describgshy ccH.

in Section IV, we first uniformly quantize the given RGB
color space intow’ = 16 = 4096 color bins [24]. Thus,
the weighting exponentn and bin numbern are the two
main parameters which jointly influence the performance of To study the robustness of FCH with respect to lighting
FCH-based image retrieval. In our experiments, we empiricallytensity changes, we carry out the following image re-
chose 18 values of. and 30 values ofi as shown in Figs. 2 trieval experiments. First, we select an image from the
and 3. With each of the 18 30 parameter combinations, thedatabase as the query image. Then, the query image is
membership matrix was obtained using FCM algorithm, and tipegocessed by using, say, Photoshop to create ten images
FCHs of all the database images were computed. Each imamgeler lighting intensity changes with amount varying from
contained in the 39 target image sets was selected as the que2y, —20, —15, —10, —5, +5, +10, +15, +20 to +25, respec-
image, and the NRS value of the query image was computidely. These ten images are then added back to the database.
by using the Euclidean distance as the similarity measuremdrr comparison, both FCH (using = 1.9) and CCH for
Then, theaverageNRS (ANRS) value over the entire imagedatabase images are independently computed with 64 bins (i.e.,
database was computed. The ANRS value thus representsrithe 64) each. Finally, all the database images are sorted with

B. FCH Parameter Selection

C. Retrieval Sensitivity Under Lighting Intensity Changes
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(k)

s

) o . o ) Fig. 5. Top-left image is the query image with a user-selected local region
Fig. 4. Arbitrarily selected four query images for sensitivity studies undghdicated by the white-line bounding box. With respect to the selected local
lighting intensity changes. region, the 16 most similar images retrieved from a database containing about

500 color images. The retrieval criterion is based on the Euclidean distance
TABLE | between FCHs.
RANKS OF CORRESPONDINGTEN PROCESSEDIMAGES UNDER
VARIOUS DEGREES OFLIGHTING INTENSITY CHANGES WITH
RESPECT TOEACH QUERY IMAGE AS SHOWN IN FIG. 4

query

image feature| ranks of the corresponding 10 images

(a) FCH |4 6 10 16 17 23 29 36 69 141
CCH |4 5 10 17 18 29 42 46 128 239
() FCH |2 3 4 5 6 7 10 22 45 143

CCH |2 3 6 9 12 18 22 121 390
() FCH |3 45 6 7 8 10 14 19 31
CCH [3 5 8 9 11 16 38 116 124 189
(d FCH |2 3 4 5 6 7 8 14 74 137
CCH |2 34 5 6 7 16 18 91 370

respect to the query image based on the Euclidean distance ] ] -
measurement Fig.6. Same experiments as those of Fig. 5 are conducted by exploiting CCHSs.

_ . . . The retrieval criterion is based on the Euclidean distance between CCHs.
Four query images are arbitrarily selected from our image

database as presented in Fig. 4. The experimental results are | )

documented in Table I, which shows the ranks of the corrB: Regional Image Retrieval

sponding ten processed (i.e., under lighting intensity changes abnage indexing by localized or regional color distribution
previously mentioned) images. For the purpose of presentatipngvides partial or subimage matching between images. For
note that the entries of each row have been arranged from hedample, if the user is interested in finding all the images
to low in their ranks without considering their correspondingontaining human faces regardless their backgrounds, the
lighting intensity changes individually. The justification is quiteegional indexing approach would be more effective as the
clear that as long as the images from the target image set camdatkground information will be completely excluded for simi-
be retrieved, the exact ordering among themselves is not ilarity matching. For that, we employ the hierarchical partition
portant anymore. It clearly demonstrates that the ranks obtairsatheme proposed in Dimai’s work [23] in our experiment.

by FCH are much higher than those obtained by CCH. SimilarFor region-based image retrieval, the query object selected
results and conclusion are also obtained from extended simudg-the user from the query image should be matched by those
tion experiments using other database images as the query database images that contain such object but appearing at
ages, respectively. Therefore, our proposed FCH is more robdsterent locations with possibly variable sizes and angles. To
to lighting intensity changes than CCH for the task of image imchieve this goal, we systematically partition each database
dexing and retrieval. image into subimages in order to increase the chances of
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TABLE I
RETRIEVAL PERFORMANCE (NRS VALUE) FOR 50 CC(B oN CCD
USING FCHAND CCH, RESPECTIVELY

CcCQ CCH | FCH CcCQ CCH | FCH
flower garden 0.0185 | 0.3846 quiz scene 0.3030 1
rock and sky 0.0053 | 0.2586 speaker 1 1
news anchor 0.9483 1 man and horse 0.9545 1

walking people 0.2122 | 0.6892 space earth 1 1
baldheaded man 1 | 0.9740 1 fountain 0.0473 | 0.1986
sports reporters 0.0366 | 0.2500 graphics before news 0.5056 1
congress 0.1023 | 0.3600 Ron Reagan 0.8182 | 0.5921
baldheaded man 2 | 0.1400 | 0.9215 | basketball game overlay 1 1
castle 1 1 glass roof 0.0383 | 0.0319
black clothes lady | 0.7241 1 snow clad mountain 0.1000 { 0.3030
singer 1 0.8824 outdoor/boats 0.0139 | 0.0345
strange hair 0.1685 | 0.8333 by the water 0.2000 | 0.6250
leather jacket people | 0.4472 | 0.3846 couple 0.0142 1
man with placard | 0.0439 | 0.4839 shop 0.0095 | 0.1556
people on the red | 0.5769 | 0.2830 flower(indoor) 0.0156 | 0.1639
snake 1 0.9873 playing on the street 0.0493 | 0.1899
fish 1 1 road with trees/grass | 0.0047 | 0.0481
tapirs 1 1 children/rock/grass 0.2128 | 0.0144
butterfly 1 1 Asian building 0.0044 | 0.0167
small monkey 0.9512 | 0.7723 containers 0.0041 | 0.2381
landscape image 1 | 0.1370 } 0.2381 sunset over lake 0.0203 | 0.0285
landscape image 2 | 0.2778 | 0.0323 big pipes 0.0321 | 0.0722
landscape image 3 1 1 man in white shirt 0.0084 | 0.0458
indoor image 0.1608 | 0.3035 wooden shack 0.0463 | 0.2727
anchor person 0.8407 | 0.9563 ruins 0.0059 | 0.0098

Our experimental results show that the performance of re-
gional image retrieval by FCH is consistently better than or
Fig.8. Same experiments as those of Fig. 7 are conducted by exploiting CCﬁg.UIvaI?m .tO that by CCH in general_' Two ex_amp_les are pre-
Note that the three target images as presented in Fig. 7 fail to be retrieved. S€nted in Figs. 5 and 6 for demonstration. The first (i.e., top-left)

picture in Fig. 5 is the query image with a selected local re-
matching the query object from the query image. The metho@ion indicated by the white-line bounding box imposed by the
ology of dividing each database image into three hierarchids§er. The images presented in Figs. 5 and 6 in the order of
levels as introduced in [23] is adopted here and generafggking show the retrieval results after searching for those im-
overlapping subimages. The highest level is the image itse¥ges containing a “red car” from the database based on FCH's
and the image is then equa”y portioned inta 3 Over|apping and CCH’s representation, respectiVE|y. In Flg 5, the 16 most
rectangle regions in the second level which has each side lengffRilar images retrieved based on FCHs include all the 9 images
be a half of the corresponding side length of the original imagentaining a red car. Note that the last three “red car” images in
Similarly, with finer partition, the lowest level is composed-ig. 5 do not appear in the 16 most similar images retrieved by
by 5x 5 rectangle regions with each region having its sig@ploiting CCHs as shown in Fig. 6. Note that even the query
lengths being one-third of the image side lengths, respectivélv.age itself is not being ranked as the most relevant retrieval in
Therefore, total35 (=1 + 9 + 25) rectangular regions are Fig. 6, as it normally should be.
obtained for each database image_ Another set of retrieval results are shown in FIgS 7 and 8.

For each of 35 regions, its 64-bin FCH (with = 1.9) and Note that the three targetimages in Fig. 7 (with ranking of third,
64-bin CCH are computed as the feature vector, respectively. @th, and ninth, respectively) are failed to be retrieved in Fig. 8.
also employ the Euclidean distance as the similarity measure for ) .
both cases. The similarity between the query local image anffa /Mage Retrieval Results on MPEG-7 Testing Database
database image is measured by the minimum distance betwee@ommon color datasefCCD) is established in MPEG-7
the feature vectors of the query local image and all the 35 reas the test database for conducting color core experiments
tangle subregions of each database image. [25]. Among the 5466 images contained in this database,
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e other low-level visual features (e.g., shape, texture, etc.) are also
gank recommended here.
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