Pest Management and Biocontrol Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Research Staff
 

Research Project: Biology, Ecology and Control of Whiteflies

Location: Pest Management and Biocontrol Research

Title: Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen

Authors
item Prabhaker, Nilima - UOFA, TUCSON, ARIZONA
item Castle, Steven
item Buckelew, L - BAYER CROPSCIENCE
item Toscano, N - UC RIVERSIDE, CA

Submitted to: Journal of Economic Entomology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: September 17, 2007
Publication Date: February 1, 2008
Citation: Prabhaker, N., Castle, S.J., Buckelew, L., Toscano, N.C. 2008. Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen. Journal of Economic Entomology 101(1): 174-181.

Interpretive Summary: : Development and commercialization of new insecticide chemistry has proven invaluable for gaining control over the sweetpotato whitefly, Bemisia tabaci. In light of the history of insecticide resistance occurrences in B. tabaci populations worldwide, it is essential that each new compound be baseline tested to establish a standard by which future B. tabaci populations can be compared. In the present study, populations from California and Arizona were sampled and tested with spiromesifen, a new compound belonging to the novel insecticide chemistry known as tetronic acid derivative. Spiromesifen proved to be quite toxic to 1st instar nymphs across most of the geographic range from which samples were collected. This compound was also tested against two greenhouse-maintained strains having resistance to neonicotinoid compounds. Spiromesifen was equally effective against the resistant strains suggesting absence of cross-resistance with neonicotinoids.

Technical Abstract: : Susceptibility to spiromesifen, a tetronic acid derivative, was determined for three imidacloprid-resistant strains and 12 geographically discrete natural populations of Bemisia tabaci (Gennadius) (= Bemisia argentifolii Bellows and Perring) from California and Arizona by laboratory bioassays. Newly emerged 1st instar whitefly nymphs were sprayed with aqueous serial dilutions of spiromesifen and evaluated for toxicity to establish baseline susceptibility data. Interpopulation variability in susceptibility to spiromesifen was observed among the natural populations of whiteflies up to 29-fold, however, there was only 30- fold difference in susceptibility among natural and resistant populations tested. In general, spiromesifen was quite toxic to 1st instar nymphs across most of their geographic range with LC50 values ranging from 0.210 to 6.08 'g[AI]/ml. The magnitude of variation was smaller among the three-resistant strains. These results suggest that the observed variability reflect natural variation in spiromesifen susceptiblity among all the test populations, possibly due to previous exposure to insecticides at each location. The effectiveness of spiromesifen was also evaluated against all immature stages of whiteflies from three field and two resistant strains. Spiromesifen was significantly more active against early instars of whiteflies based on lower LC50 values recorded compared to the 4th instars. Spiromesifen was effective against the resistant strains including a Q-biotype of B. tabaci from Spain which is highly resistant to neonicotinoids. Results of this study indicate absence of cross-resistance between spiromesifen and more commonly used neonicotinoids. Our findings suggest that spiromesifen should be considered an ideal candidate for whitefly resistance management programs in rotation with other effective chemistries.

   

 
Project Team
Naranjo, Steve
Fabrick, Jeffrey
Brent, Colin
Byers, John
Castle, Steven
Hagler, James
 
Publications
   Publications
 
Related National Programs
  Crop Protection & Quarantine (304)
 
Related Projects
   Insecticide Resistance Monitoring and Management of Invasive Pests As An Essential Component of Integrated Pest Management
 
 
Last Modified: 02/08/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House