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ABSTRACT

An application of the Arakawa-Schubert (1974) cumulus parameterization to a prognostic model of the
large-scale atmospheric circulations is presented. The cloud subensemble thermodynamical properties are
determined from the conservation of mass, moist static energy and total water (vapor, suspended liquid
water and precipitation). Algorithms for calculating the large-scale forcing and the mass flux kernel are
presented. Several methods for solving the discrete version of the integral equation for the cumulus mass
flux aré discussed. Equations describing the cumulus feedback on the large-scale thermodynamical fields

are presented.

1. Introduction

A cumulus cloud parameterization for use in large-
scalé numerical prediction models has been presented
in Part I of this series of papers (Arakawa and
Schubert, 1974). The closure assumption for the pa-
rameterization, the cloud-work function quasi-equi-
librium, has been examined using observations in
Part II (Lord and Arakawa, 1980) and the entire
parameterization has been evaluated using a semi-
prognostic approach applied to GATE Phase I1I data
in a companion paper in this issue (Lord, 1982,

- hereafter referred to as Part III). The present paper
describes an application of the Arakawa-Schubert
parameterization to a prognostic model of the large-
scale atmospheric circulations. This discretized form
of the parameterization has been incorporated into
the UCLA. general circulation model (GCM) and
has been used to analyze observed data in Parts II
and IIL

Section 2 summarizes the vertical structure of the
discrete model and the solution procedure for the
cloud subensemble thermodynamical properties. Sec-
tion 3 introduces the discrete form of the integral
equation for the mass flux distribution function and
outlines procedures for calculating the large-scale
forcing and the mass flux kernel. Section 4 describes
several methods for solving the discrete form of the
mass flux distribution equation. Section 5 presents
the discrete equations describing the cumulus feed-
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back on the large-scale fields in the discrete model.
The Appendix includes details omltted from the main
body of the paper.

2. The vertical structure of the discrete model and
the solution for the cloud subensemble thermo-
dynamical properties

Fig. 1 shows the vertical structure of the large-
scale model. Pressure p is used as the vertical co-
ordinate. The dashed lines indicate levels with integer
index k where the large-scale temperature: T(k) and
water vapor mixing ratio §,(k) are predicted. The
solid lines indicate half-integer levels where the
large-scale vertical p velocity & is defined. The region
bounded by levels k — Y2 and k + % is referred to
as “layer k”.

In numerical prediction models some preadjust-
ments of the large-scale thermodynamical structure
must be made before the cumulus parameterization
is applied. The parameterization assumes that all
layers of the large-scale environment are at least
neutral with respect to dry convection. This assump-
tion requires that the large-scale dry static energy
§ = ¢,T + gz does not decrease with height, i.e.,

stky<s(k—1) for 2<k<KM, (1)
where KM is the index of the lowest model layer. "
When this requirement is not satisfied a dry convec-
tive adjustment is performed.

The following vertically interpolated variables are
supplied by the large-scale model at all half-integer
levels: T(k + '2), Gk + %), z(k + &) (the height
above sea level) and g ¥(k + %2) (the saturation water
vapor mixing ratio). Interpolations of these variables
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to half-integer levels must not create any computa-
tional subgrid-scale dry convective instability or any
computational subgrid-scale moist convective insta-
bility (Conditional Instability of the Computational
Kind, Arakawa and Lamb, 1977).

In this application of the parameterization the in-
teger level mixing ratio g,( k) and moist static energy
h(k) are treated as layer-averaged quantities

go(k) = B[Guk — 5) + gk + '2)]
and
h(k) = B[h(k — %) + h(k + 1))

for2< k< KM — 1. Values for k = 1 and k = KM
are taken directly from the large-scale variables at
the integer levels. The layer-averaged saturation
moist static energy A*(k) is calculated from the
h(k) and g,(k) given above and from z(k) given by
the large-scale model. Virtual temperature effects
are not discussed here for simplicity but they can be

_included in a straightforward manner as in Lord
(1978).

The lowest model layer k = KM is the subcloud
layer (SCL) and the layer k = KF is the layer just
above cloud base. The pressure at cloud base, k
= KF + Y%, is denoted by p; and may be predicted,
as in the UCLA GCM, or prescribed, as in the semi-
prognostic study presented in Part III. The updrafts
at the cloud base have moist static energy

h,, = h(KM), 2)
and water vapor mixing ratio
Gom = G KM). (3)
LEVEL
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F1G. 1. The vertical structure of the large-scale model. KM is the
index of the subcloud layer (shaded) and KF denotes the layer
immediately above. Pressure p, temperature T and mixing ratio
g, are provided at both integer and half-integer levels, and vertical
velocity @ is given at half-integer levels only.
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F1G. 2. The vertical structure of the ith cloud type. Entrainment
E takes place at all integer levels penetrated by the cloud-top
including the cloud-top level, while detrainment D takes place at
the cloud-top level only. The subensemble vertical mass flux 5 is
stored at the half-integer levels and is normalized at cloud base
(level KF + '5).

For simplicity the presence of stratus clouds in the
SCL is neglected here.

When a discrete version of the Arakawa-Schubert
parameterization is used in a prognostic model, it is
convenient to decompose the cloud ensemble into
subensembles according to the cloud-top level (rather
than the fractional entrainment rate) as discussed
in Part II. Therefore, the cloud top is defined at the
integer levels and a cloud which has its top at level
i, where 1 < i < KF, is defined as the ith cloud type
(Fig. 2). The ith cloud type is assumed to be rep-
resentative of all members of the cloud subensemble
with tops in layer i. The fractional entrainment rate
of the ith cloud type is denoted by A(i) and the cloud-
top pressure is denoted by p(i). Note that A(i) is a
dependent variable here, whereas it is taken as an
independent variable in the continuous version de-
scribed in Part 1.

The vertical structure of the ith cloud type is
shown in Fig. 2. Height-dependent cloud-subensem-
ble variables are represented by double arguments
throughout this paper. For example, the subensemble
vertical mass flux for cloud type i, defined at the half-
integer levels, is denoted by J#M(k — Y2, i) and can be
written as

Mk — Y, i) = gk — Y%, M), 4)
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FiG. 3. Typrcal vertical profiles of normalized vertical mass flux
7 and moist static energy & for the ith cloud type. These variables
are formally defined at the half—mteger levels, e.g., h(KF Y2, i).
The cloud-base moist static energy is h(KF + '4; i) = h,, and the
subensemble vertical mass flux is n(KF + %, i) = 1. The cloud-
top monst stauc energy is denoted by h(l)

where Mg(i) is the cloud-base mass flux for cloud
type i and n(k Y4, i) is the nprmalized subensemble
_vertical mass flux at'level kK — %. The entrainment
of environmental air, denoted by E(k, i), occurs at
all integer levels penetrated by the cloud including
the cloud top. The detrainment of cloud air, denoted
by D(#), occurs only at the cloud-top level. Note that
the-variables’ E(k, i) and D(i) represent the total
entrainment ‘and dctramment mtegrated over each
layer. . :

The cumulus cloud ensemble mode] determmes
the subensemble thermodynamical properties from
the known large-scale thermodynamical structure
through the conservation of mass, moist static energy
and the total amount of water during entrainment
and detramment processes. In this discrete model,
the subensemble thermodynamlcal properties are
represented as step functions in the vertical whose
values change due to entrainment at the integer lev-
~els. Typical vertical profiles of n(k — ', i) and sub-
ensemble moist static energy h(k — Y2, 1) are shown
schematically in Fig. 3. The respective conservation
equations can then be integrated from cloud-base to
cloud-top level, using a trial value of A(7). The true
value of A(i) is obtained iteratively by applying -a
non-buoyancy condition at the cloud-top level. The
subensemble thermodynamical properties at ali half-
integer levels and the cloud-top level are then deter-
mined and the cloud-work function can be calcu-
lated. The reader is referred to the discussion of
(133) of Part I, (5) of Part II and (3) of Part III for
a definition of the cloud-work function and a dis-
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cussion of its central importance to this cumulus pa-
rameterization. The discretized forms of the suben-
semble budget equations, the iteration procedure for
the fractional entrainment rate, and the discretized
form of the cloud- work functron are presented in the
Appendix. A parameterized ice phase described by
Lord (1978), may be mcluded in this model but is
not drscussed here.

3. I‘he mass flux distribution equation
a. The discretized eq'uaiion

The mass flux dlstrlbutron equation. for the con-
tinuous case is given by (158) of Part L. In discrete

numerical prediction models, this equation is inte-
grated over a time step At and is written as

./%B(r)At >0 and

{max

2 [KG, ])MB(J)At] + F(i)at =0, (5a)
j_
or .
Mp(i)At =0 and
2 (KU, Ms()AL] + F(D)AL <0,  (Sb)
for 1 < i < .ip.. Here iy is the number of exrstmg

subensembles K@, j),for 1 <i,j< 1,.,“, is a discrete
form of the mass flux kernel which gives the stabi-
lization of the ith subensemble through modification
of the large-scale environment by the jth subensem-
ble; and F(i) is the large-scale forcing for the ith
subensemble. The following sections describe algo-
rithms for calculating F(z) and K(i, _]) for each i
and j. -

b The large scale forcmg

The large-scale forcing for the ith subensemble
was defined in Part I-as the change in cloud-work
function due to large-scale processes

0-[47],

where the subscrlpt LS refers to the large-scale pro-
cesses. Let us now assume that the cumulus param-
eterization is apphed to a numerical prediction model
having a time step Az as noted earlier. Let the large-
scale thermodynamlcal variables (temperature, water
vapor mixing ratio, etc.) be denoted collectively by
Yo wheré the subscript denotes a partncular time .
The effects of the large-scale processes (e.g., large-
scale vertical and horizontal advections of temper-
ature and moisture, radiative heating and boundary-
layer processes) are applied over Atz to give °

S, W
'p - ‘pO + [at}LsAt,

6)

7
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where [8y/dt],s represents the time change of ¥ due
to the large-scale processes. Let the cloud-work func-
tion for the ith subensemble calculated from ¥’ be
denoted by 4'(i). Then (6) is written as

Py = A0 = 4D

At

as shown schematically in Fig. 4.

When this cumulus parameterization is used to
analyze observational data, as in Part III, 4y(i) may
be calculated from data at a given observation time.
However, when this parameterization is applied in
a prognostic model, Ay(i) can be replaced by a char-
acteristic value for the ith subensemble. The replace-
ment of Ay(i) by a characteristic value can be jus-
tified as follows. In Part II it was shown that when
both large-scale and cloud processes are operating,
cloud-work function values calculated from obser-
vations in the tropics and subtropics fall into a well-
defined narrow range for each subensemble, and the
variation in the cloud-work function becomes neg-
ligible over the time scale of the large-scale motions.
It follows that observed time-mean cloud-work func-
tion values may be used as Ay(i) in a large-scale
prognostic model. Modification of ¢’ by the cumulus
mass flux obtained from (5) should restore A'(i) to
the characteristic value Ay(i). In the UCLA GCM,

Ao(i) = An(D)[ps — P()] 9

is used, where the Ay (i) are calculated -from the
Marshall Islands data as described by Lord (1978)
and are listed in Table 1.

(8)

¢. The mass flux kernel

The kernel element K(i, j) is defined as the time
rate of change of the cloud-work function for the ith
subensemble due to modification of the large-scale
environment by a unit mass flux of the jth suben-
semble. The changes in the large-scale environment

Ali) 55
A f

Afi)fe=

1, t

Fi1G. 4. A schematic diagram showing the change in the suben-
semble cloud-work function by the large-scale processes over a
time At. A(i) and Ay(i) are defined in the text.
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TABLE 1. The average observed cloud-work functions Ax(i) of
(9) for each cloud type and the number of observations from the
Marshall Islands data set used to determine the averages.

B(i) An(i) No. of observations
150 1.6851 755
200 1.1686 1860
250 0.7663 2191
300 0.5255 2261
350 0.4100 2214
400 0.3677 2157 °
450 0.3151 2140
500 0.2216 2044
550 0.1521 1640
600 0.1082 1020
650 0.0750 641
700 0.0664 407
750 0.0553 250
800 0.0445 95
850 0.0633 7

are given by the cumulus terms in the large-scale
budget equations (74) and (75) of Part I. These
terms are written in discrete form as (A7) in the
Appendix. Following the above definition of K(i, j),
the large-scale environment, represented by {’ from
(7), is modified by an arbitrarily chosen amount of
mass per unit area from the jth subensemble
My )AL to give

Y'(k) = ¢'(k) + sl Har.  (10) -

Here the index k has been added to indicate the level
in the large-scale model, 6,[\p(k)] refers to the time:
rate of change in ¢/(k) per unit mass flux of the jth
subensemble and is given by (A7) as noted previ-
ously, and the double prime denotes a value used in
the mass-flux kernel element calculation. A new frac-
tional entrainment rate \”(i) and cloud-work func-
tion A"(i) are then calculated for the ith subensemble
using ¢. Finally, the kernel element is calculated as

AG) — AG) an

K(l’ J) %(])At”
A procedure similar to (11) is used to calculate the
kernel elements in the observational semi-prognostic
study described in Part III. However, A(i) and ¢’
are replaced by Ay(i) and ¥, which are readlly avail-
able from observations in the case of a semi-prog-
nostic study. The choice of a particular value for
M)At is not important provided that it is suffi-
ciently small (but large enough to avoid significant
roundoff errors).

Since a given cloud type tends to stabilize the
large-scale environment for all cloud types, the ker-
nel elements K(i, j) should be typically negative. In
particular, a given subensemble must reduce its own
cloud-work function, i.e., for all i,

K(@i, i) < 0. (12)
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F1G. 5. A schematic diagram showing the procedure used in ap-
plying this discretized model of the Arakawa-Schubert parame-
terization to a prognostic model of the large-scale atmospheric
circulations. See text for details.

However, under-very unusual circumstances, result-
ing primarily from too coarse a vertical resolution,
the calculated value of K(i, /) may not satisfy this
condition. Therefore, K(i, i) < —§, where £ is arbi-
trarily chosen to be 5 X 107> J m™2 kg2, is enforced.
Note that when i = ip = 1, (12) is a necessary
condition for Mg(i)Ar > 0.

The procedure for obtaining the cloud-base mass
flux distribution in a numerical prediction model is
summarized in Fig. 5. The thermodynamical vari-
ables after modification by the large-scale processes
(y") are inputs to this cumulus parameterization

scheme. From these variables N'(i) and A4'(i) are cal- -

culated for each subensemble. Using an empirically
defined cloud-work function Ay(i), the large-scale
forcing is calculated from (8). The large-scale en-
vironment is then modified by an arbitrary amount
of subensemble mass flux M5( j)At” to produce ther-
modynamical variables y” which are then used to
calculate a new value of the cloud-work function
A"(i). The kernel elements are calculated from (11)
and the Mz(i) are determined from the mass flux
distribution equation (5). The next section describes
the solution of (5).

4. Solution of the mass flux distribution equation

The mass flux distribution equation (5) must be
solved subject to the constraints of non-negative
My(i) and the inequality conditions (5b) in addition
to the usual difficulties associated with the numerical
solution of a Fredholm integral equation of the first
kind (Courant and Hilbert, 1953, p. 159). Schubert
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(1973) discussed the difficulties associated with a
straightforward solution to this problem; he proposed
an initial-value iterative method of solving the equa-
tion. Hack and Schubert (1976) and Silva-Dias and
Schubert (1977) have discussed the sclution of (5)
as an optimization problem using linear program-
ming techniques. Here two solution methods are
briefly described.

a. A direct solution method
The method proceeds as follows (Fig. 6):

STEP 1: Solve the system of equations (5a) by
Gaussian elimination.

Examine the solution, Mz(i)Ar for 1 < i
< imax. If Mp(i)At > 0O for all i, the cal-
culations are terminated.

If Mg(i)At < O for any cloud type these
cloud types are ignored in future calcu-
lations and step 1 is repeated.

STEP 2!

STtEP 3:

A solution obtained with the above procedure sat-
isfies the equality conditions of (5a) and the condi-
tions of non-negative mass flux. However, the in-
equality conditions (5b) must also be. satisfied for the
cloud types with M z(i)At = 0. If s0, an exact solution
of (5) has been determined. In general, however,
there is no guarantee that the solution will satisfy
the condition (5b). For this reason, and since the
direct method includes the rather ambiguous pro-
cedure,. step 3, it is not desirable for general use.
However, when discussing alternative methods of
solving the mass flux distribution equation, such as
the simplex linear programming method described
below, it is useful to compare results to those of the

START

SOLVE (Sa)
(STEP 1)

ELIMINATE ALL

Mgtirat<o
(STEP 3)

Mgtirat<o
(STEP 2)

END

FIG. 6. Flow diagram for the direct solution method for solving
the mass flux distribution equation. See text for details.
b
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direct method. Such a comparison is discussed in
Part III

b. A linear programming method

The generalized linear programming problem for
lnax equations and my,, unknowns (where my,,,
= Inax) x(m), is stated as follows (Gass, 1975): solve
the set of linear equations '

Mmax

Z a(l, m)x(m) = b(l) for 1<!<lpy, (13)
m=1
subject to the constraints of
x(m)=0 for

(14)

and a minimized linear objective function Z defined
by

1 <m< my,

Mmax

Z= 2, c(m)x(m). (15)

One method of solving this problem is the simplex
algorithm (Dantzig, 1963; Gass, 1975). To solve the

a(l, Dx(1)+ a(1, 2)x(2) + - - -
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mass flux distribution equation as a linear program-
ming problem, let /0y = imax and My = 2ima. Then
let b(I) = F(I)At, a(l, m) = —K(I, m) and x(m)
= Mg{m)At for 1 <, m < . For lpey + 1 < m
< My let a(l, m) be given by

b | m= I+ Iy

0 for m# 1+ lna

for

a(l,m) = [ (16)

where the choice of + or — is discussed below, and
x(m) be |g(i)l, where i = m — l,.x and

g(i) = ji': [KG, )Ma()AL) + F(AL  (17)

The g (i) are referred to as “slack” variables. As seen
from (17) the slack variables represent the deviation
of the cumulus stabilization from the large-scale de-
stabilization for each cloud type. They would be iden-
tically zero if an exact solution to (5), with all
M(i)At > 0, were determined by the simplex al-
gorithm. Let us now rewrite (13) in an expanded
form '

+ a(1, lnax)X(lmax) £ X(Imax + 1) = b(1)
a(2, Dx(1) + a(2, 2)x(2) + + - - + a(2, Imax)x(lm,s).i X(lnax + 2) = 5(2)

(18)

a(fmax: l)x(l) + a(lmax, 2)X(2) oot a(lmmu lmax)x(lmax) * x(mmax) = b(lmax)

When the slack variables are preceded by minus
signs, the cumulus stabilization, given by the first
Imex terms on the left-hand side of (18), is always
greater than or equal to the destabilization given on
the right-hand side. This case is referred to as the
“overadjustment” method by Silva-Dias and Schu-
bert (1977). The “underadjustment” method is posed
by using plus signs in (18).

The statement of the problem is completed by
specifying the coefficients c(m) for 1 < m < my,,.
Obviously,

ec(m)=0 for l<sms<l,, (19a)

is required since the unknown mass fluxes x(m), for
1 < m < I, should not be subject to the minimi-
zation constraint on (15). At present the remaining
weighting coefficients cannot be determined from
any physical principle. Therefore, the slack variables
are weighted equally with

c(m)=1.0 for I+ 1<m<mpy,.

(19b)

The sensitivity of the simplex solution method to the
choice of the ¢’s has been discussed in Part IiI.
The advantage of the simplex linear programming
method is that it produces an optimal solution by
minimizing the objective function Z. However, it is

important to choose the proper signs preceding the
slack variables so that the simplex solution is in fact
an optimal solution of (5). From (18) and (17) it is
evident that the underadjustment method tends to
produce g(i) = 0 for all i. However, (5b) requires
g(i) < 0 whenever Mg(i)At = 0. Therefore, the un-
deradjustment method should not produce a solution
satisfying (5) unless g(i) = 0 and Mz(i)Ar > O for
all i. Experience has shown that these conditions very
rarely occur; therefore, the simplex underadjustment
solution is not the best solution of the optimization
problem. From (18) and (17) it is evident that
overadjustment occurs when g (i) < 0. Therefore, the
optimal solution under these conditions will tend to
satisfy (5b) whenever Mz(i)Ar = 0 and, although
(5a) may not be satisfied exactly when Jz(i)At
> 0, the simplex method should produce the optimal
solution by minimizing the overadjustment. Results
with the simplex and direct solution methods are
compared in Part III.

5. The cumulus cloud feedback on the large-scale
fields

It is a simple procedure to calculate the feedback
of the cumulus ensemble on the large-scale environ-
ment for given Mz(i)At. Consider the kth layer of
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the discrete model. The total temperature and mois-
ture changes at each level over the time At¢ due to
cumulus convection are given by

[@] A= 3 ITUOML(DA (200)
ot oy j=1 ,

and

;) -‘u k Imax _ .
220 ar= 5 saomaia, (o
where the form of §; is given by (A7) in the Appendix.
The subsidence at the SCL top is given by

imax

1
—[walcuAt = 2 — Ma( )AL,
J=1 P8

where pp = (ps — ps)/(gzs) and p, is the surface
pressure. The amount of precipitation PAt is given
by Imax KF '
PAt = 20 2 coAz(k)qlk — %, i)

j=1 k=i

X Mk — Yh, )AL, (22)

where ¢o = 2 X 107° m™! is an empirically defined
conversion (per unit height) of suspended liquid
water droplets to precipitation, Az(k) is the thickness
of layer k, gk — ', i) is the suspended liquid water
mixing ratio and M(k — ¥, i) is defined by (4). Lord
(1978) has shown that this value of ¢, produces good
agreement with observed liquid water content in hur-
ricanes summarized by Ackerman (1963). Similar
calculations by Schubert (1973) for Marshall Islands
data also have shown good agreement with obser-
vations. Further details of the precipitation param-
eterization are found in the Appendix.

6. Summary

An application of the Arakawa-Schubert cumulus
parameterization to a prognostic model of the large-
scale atmospheric circulations has been described.
The cloud subensemble properties are determined
from the conservation of mass, moist static energy
and total water. The large-scale forcing and the mass
flux kernel are calculated from changes in the cloud-
work function produced by the large-scale processes
and the cumulus clouds respectively. Several meth-
ods for solving the mass flux distribution equation
are described. The predicted distribution of cumulus
mass flux is then applied to the large-scale thermo-
dynamical budget equations to determine cumulus
feedback on the large-scale environment. The Ap-
pendix gives some details which are not described in
the main body of the paper.
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APPENDIX
The Discrete Cumulus Ensemble Model

This Appendix describes more details of a discrete
form of the Arakawa-Schubert cumulus ensemble
model. Section 1 gives the discrete form of the sub-
ensemble budget equations for mass, moist static
energy and total cloud water. Section 2 presents the
solution procedure for the subensemble fractional
entrainment rate. The discretized form of the cloud-
work function is given in Section 3 and the discre-
tized large-scale budget equations are derived in Sec-
tion 4.

1. The subensemble budgets for mass, moist static
energy and total water

a. The mass budget

A discretized form of the subensemble mass bud-
get (95) of Part I for layer k, k # i, can be written
as ) '

n(k — Y, i) — n(k + Y%, i) . N
= k+1!
AZCR) A()n( Y2, i),

from which X .
9k — %, i) = 9(k + Y, D1 + Mi)Az(k)]. (Ala)

Here Az(k) = z(k — ) — z(k + ¥2). The mass budget
for the cloud-top layer k = i is given by ‘

d(i) = 5(i + 5, D1 + Mi)Az(i)], (Alb)

where d(i) is the cloud-top mass detrainment inte-
grated over layer 7, and normalized by the cloud-base
mass flux Mg(i), and Az(i) = z(i) — z(i + ).

b. Ti/te moist static energy budget

For layer k and cloud type i let A(k + ‘%, i) be the
subensemble moist static energy before entrainment
and let h(k — ¥, i) be the subensemble moist static
energy after entrainment (Fig. 3). Then the discre-
tized subensemble moist static energy budget inte-
grated over layer k may be written as
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n(k — Vo, Dh(k — %, i) = gk + %, Dh(k + 4, i)
+ ANDAz()n(k + VA, DA(k),
from which ,
~  h(k+ %, i)+ MDAz(k)A(k)
— I -
h(k — Y, i) I T %G0)az(k) . (A2a)
When k = KF in (A2a), h(KF + ‘4, i) = h,,. In the
cloud-top detrainment layer (A2a) becomes
R [ + l/ . + 0 A . W
B = h(i + %, 1) + MDAz(DHAG) (A2b)

1 + Ni)Az(D) ’

where /(i) is the moist static energy at the cloud-
top. Sequential substitutions of (A2a) into (A2b)
with i + 1 < k < KF result in a complicated expres-
sion for (i) which depends on the known h,, and
h(k) for i < k < KF and the unknown A(i). By re-
quiring non-buoyancy at the cloud top, i.e. A(Y)
= h*(i), A(i) may be determined iteratively as shown
in Section 2 below.

c. The total water budget

The budget for total cloud water is calculated in
two steps as described below. Let the values of the
total cloud water (vapor and suspended liquid water)
mixing ratio for layer k and cloud type i be defined
as follows: let g(k + ', i) be the value entering layer
k from below, q(k, i) the value after entrainment but
before the precipitation process, and g(k — Y%, i) the
value after the precipitation process, which also is
the value leaving layer k. Also, let gk, i) be the
cloud suspended liquid water mixing ratio before
precipitation, and q(k — %, i) the value after the
precipitation process has been completed.

" The first step in the total cloud water budget cal-
culates g(k, i) from

~ _ gtk + ', i) + MDAz(k)g(k)
qlk, D) = 1+ aDazk) -

where (k) is the large-scale total water mixing ratio
and is identical to ¢, (k) when the environment is not
s;xpersaturated When k = KF in (A3), q(KF + 1,
i) = qom

The second step in the total water budget calcu-
lation determines the amount of precipitation pro-
duced in layer k from cloud type i. When the cloud
is saturated at level k the cloud water vapor mixing
ratio g,(k, i) is calculated from a dlSCI’CtlZCd form
of (90) of Part I,

qu(k, i) =

(A3)

(k) .
[1+ (k)L
X [h(k — %, i) — h*(k)],

where v(k) = L/c,,[aq ,‘,"(k) / 9T],. The resulting sus-
pended liquid water mixing ratio before prec1p1tat1on
is q,(k i) = q(k, i) — qk, i). Part of gk, i) is

é#(k) +
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converted into precipitation by assuming a constant
conversion rate per unit height. Therefore,

ql(k - 1/2’ l) = ql(k9 l.) - COAZ(k)ql(k - 1/2) l),
from which
1 A ql(k’ l) A4
gk — ', i) T+ codz(k) | (A4)

At the cloud top, q.(i, i) = g¥(i) is required in the
absence of virtual temperature effects and (A4) is
applied with k = i to determine the cloud-top sus-
pended liquid water mixing ratio §(i) = q,(i — ',
i). For clouds with tops above.400 mb it is assumed
that all detrained suspended liquid water is converted
to precipitation. This assumption crudely represents
the effect of mesoscale stratiform rain although it
cannot account for additional subgrid-scale precipi-
tation due to saturated ascent. All precipitation is
assumed to fall directly to the ground in this model.

2. The solution procedure for A(i)

In the absence of virtual temperature effects the
cloud-top non-buoyancy condition for cloud type i
is k(i) = A*(i), where h(i) is given by (A2b). Now
let a functional F[A(i)] be defined by

CFINGD)] = AG) — R*(),

where F depends on A(7) through h(z) Thus the van-
ishing buoyancy condition is

FIMD)] = (A5)

which is an implicit equation for A(i) and can be
solved iteratively by the method of false position
(Gerald, 1970). Let v be the number of iterations,
and let \,(i) be A(i) at the »th iteration. To begin
the iteration A,(i) = 0 is used and F[\,(7)] is cal—
culated, Then F[A,(i)] is calculated with A\,(i) =

X 1.0 X 1073 m™', This choice of )\2(1) is made em-
pirically to produce fast convergence for shallow
clouds with relatively large fractional entrainment
rates. For succeeding iterations, A,,,(i) forv > 1'is
given by

Aa(i) = A (DFING)]

MDF (D] = A
FIMa()] = FINGD)T

The iteration is repeated until |F[,(i)]] < 5.0 J kg™
which is equivalent to a cloud-top/environment tem-
perature difference of about 5 X 107 K. The iter-
ation usually converges sufficiently after 5 or 6 it-
erations. ' .
The solution of (A5) gives A for non-buoyant cloud
air at level i. However, if the non-buoyancy level is
bounded by a positive buoyancy layer above and a
shallow negative buoyancy layer below3 the cloud

3 For example, immediately above a trade-wmd inversion (Nitta,
1975).
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FIG. Al. A schematic diagram of non-buoyancy levels for sub-
ensembles with X in the range A, < A < As: The open circles
represent non-buoyancy levels between z = #(As) and z = 2'(A\p)
which have a layer of positive buoyancy above. #(A,) and 7(As)
are cloud-top non-buoyancy levels for subensembles with A = A,
and A = A, respectively.

tops will not be at that level. The circled non-buoy-
ancy levels shown in Fig. A1, corresponding to clouds
with A in the range A, < X < Ag, are examples of
such points in a continuous case. The subscripts D
and § denote deep and shallow clouds, respectively.
These clouds should have their tops at Z(A) in the
range Z(As) < 2(A) < Z(Ap) or £'(Ag) < 2(N) < 2'(Np),
whereas clouds with A-< A\, will have their tops above
#Z(Ap) and clouds with A > As will have tops below
2'(As). .

- o CLOUD TYPE i
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This situation may occur in the discrete model if
the vertical resolution is sufficiently fine to resolve
an inversion layer. In Fig. A1, the non-buoyancy lev-
els Z()\) in the range 2'(A\p) < Z(\) < Z(\g) for clouds
with Ap < A < Ag are a monotonically increasing
function of A. Therefore, the solution A(i) of (A5)
should be rejected as physically unrealistic if the
condition A(i — 1) > A{#) > A(i + 1) holds for a
particular value of i.

3. The cloud-work function

The discretized forms of the large-scale forcing
and the mass flux kernel have been defined for the
discrete model in Section 3 of the main body of this
paper. Both definitions are in terms of the cloud-work
function which is defined for the discrete model as

KF+1 g
AD= 2 TRk =)
><[h(k’ — W, i) — B*(k — Vz):l
1+ (k' —A)
X [z(k' = 1) — z(K')],

where Z(KF + 1) = z,.

(k' — Y4, 1)

(A6)

4. The large-scale budget equations

Fig. A2 shows the large-scale budget of ¥ (A or
q) for layer k and cloud type i. The downward fluxes
of ¥ per unit cloud-base mass flux at the top and
bottom of the layer are given by n(k — Y%, iW(k
— %) and n(k + %, i}(k + Y2), respectively. The
entrainment of ¢ is A(i)Az(k)n(k + %, i)¥(k). Let
3{¥(k)] represent a change in Y(k) per unit Mz(7)
and let the mass per unit area of layer'k be Ap(k)/
g, where Ap(k) = p(k + 2) — p(k — '4). Then the
large-scale budget of ¢ is written as

k=4, 0P (k—4)
| L

- k_*
M) Az(KIn(k+4, 0P (k- — — K
k4, ik +g) _

I k+§

Fi1G. A2. A schematic diagram of the large-scale budget of ¢ for layer k and
cloud type i.
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CLOUD TYPE i
i-1
——— X Azliynlis §,DP (D) i) ————— i
Nisg, D) P livg)
"{} i }
FiG. A3. A schematic diagram of the large-scale budget of ¥ for the cloud-top layer for
cloud type i.
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