Unsolved Problems in Plasma Astrophysics Jeremy Goodman Princeton University Observatory

PPPL 50th Anniversary Celebration 6 June 2002

Some unsolved problems

Name	Age
Magnetic Dynamo	Larmor 1919
Magnetic Reconnection	Giovanelli 1947
Accretion Disks Collisionless Shocks Astrophysical Jets Cosmic-Ray Acceleration Interstellar Turbulence	von Weizsäcker 1943 Ness et al. 1964 Shlovskii 1955 Fermi 1949 Scheuer 1968
Pulsar Emission	Pacini 1967

Collisionless shocks

- What is the division of postshock energy among ions, electrons, cosmic rays, and magnetic field?
- What processes mediate the shock?

Planetary bow shocks:

- $M_A \equiv V_{\rm Sh}/V_{\rm A} \sim 5-20$
- $\Delta T_e \approx (0.1 0.3) \Delta T_e$
- $L_{\rm sh} \sim r_{g,i}$

Shock passage 2/20/02 (NASA/ACE)

Supernova remnants/shocks

Collisional equilibration $\Rightarrow \frac{T_e}{T_p} \approx 0.4 (t/10^3 \text{yr})^{28/25}$

Tycho

Exploded 1572 AD \Rightarrow t = 429 yr

	Observed	Predicted*
$V_s [{ m kms^{-1}}]$	$2600\pm260^{\dagger}$	1870
$ar{T}_2$ [keV]	?	4.2
$T_{e,2}$ [keV]	5 ± 0.5	1.6

*For $n = 1.13 \& E = 2 \times 10^{50}$ (Smith et al. 1988) [†]From radio, if D = 2.3 kpc (Strom et al. 1982)

1E 0102.2-7219

	Observed*	Predicted*
$V_s [\mathrm{km}\mathrm{s}^{-1}]$	6200 ± 1600	free expansion ?
$ar{T}_2$ [keV]	?	$45\pm25^\dagger$
$T_{e,2}$ [keV]	0.78 ± 0.16	\gtrsim 4.5

*Hughes et al. 2000, ApJ, 543, L61

 † based on $V_{\!s}$ observed

SN 1006

X-ray image (ROSAT)

- Thermal component: $kT_e \approx 0.6 \text{ keV}$ (1.3 keV predicted)
- Nonthermal X-rays dominate, seen mainly in rims
- \bullet Synchrotron model favored, with electrons up to $\sim 100\,\text{TeV}$!

SN1006 in radio & gamma rays

$$\hbar\omega_{\rm sync} \approx \gamma_e^2 \hbar\omega_{\rm cyc} \approx 4 \, \text{keV} \left(\frac{\mathcal{E}_e}{100 \,\text{TeV}}\right)^2 \left(\frac{B}{9\mu\text{G}}\right)$$
$$\hbar\omega_{\rm IC} \approx \gamma_e^2 \mathcal{E}_{\rm CMB} \approx 30 \,\text{TeV} \left(\frac{\mathcal{E}_e}{100 \,\text{TeV}}\right)^2 \left(\frac{T_{\rm CMB}}{2.73 \,\text{K}}\right)$$

1st-order Fermi acceleration

 $n = \frac{\text{particles}}{\text{volume}}$ downstream; $r = \frac{V_1}{V_2}$ =shock compression ratio. Energy gain δ & escape probability P per shock crossing:

k crossings : $\langle n(\geq k) \rangle = n_0 (1 - P)^k$, $\langle \mathcal{E}_k \rangle = \mathcal{E}_0 (1 + \delta)^k$ $n(\geq \mathcal{E}) \propto \mathcal{E}^{-3/(r-1)} \rightarrow \mathcal{E}^{-1} \text{ for } r = 4.$ Relativistic shocks: $\mathcal{E}^{-1.23}$ [Kirk et al. 2000]

Extragalactic radio jets

Cygnus A at 5 GHz (VLA)

- Observed radio synchrotron $L_{\nu} \propto P_e P_B^{3/4}$ $\Rightarrow P \ge P_B + P_e \ge 3 \times 10^{-9} \,\text{dyn}\,\text{cm}^{-2}$ in hot spot
- SSC X-rays $\Rightarrow B \ge 150 \,\mu\text{G} \sim B_{\text{eq}}$
- Pressure balance of lobes & IGM \Rightarrow $P_i \sim 10(P_e + P_B)$

Cygnus A, continued

Polarization in N^{rn} lobe, 6 GHz

 \Rightarrow Not much field amplification in shock

Gamma-Ray Bursts

A typical GRB (BATSE/GRO)

GRB Afterglows

X-ray afterglow of GRB970508 (Beppo-SAX)

Optical afterglow of GRB970508 (Djorgovski/Palomar)

GRB Afterglows, continued

GRB inferences

- 1. Cosmological distance $D \sim 10^{10}$ lt yr
 - Isotropic distribution
 - afterglow redshifts $z\gtrsim$ 1
- 2. Highly energetic: $dE_{\rm burst}/d\Omega = D^2 F \sim 10^{51} \, {\rm erg \ sr^{-1}}$
- 3. Relativistic source: $\Gamma_{\rm src} \equiv \left[1 (V_{\rm src}/c)^2\right]^{-1/2} \gtrsim 10^2$.

– Optical depth for $\gamma\gamma \rightarrow e^+e^-$ in stationary source is

$$au_{
m pair} \sim rac{\sigma_{
m T} \dot{E}_{\gamma}}{m_e c^4 \Delta t} \gtrsim 10^{12}$$

GRB Standard Model

- Unsteady relativistic jet, $E_{\rm j}\gtrsim 10^{50}\,{\rm erg}$
- Variable Lorentz factor $\Gamma_{\rm j}=\dot{E}_{\rm j}/\dot{M}_{\rm j}c^2\gtrsim 300$
- Fast ejecta overtake slower; kinetic \Rightarrow internal energy
- Synchrotron/IC emission; photon energy $< m_e c^2$ in rest frame
- $\bullet\,$ Net radiative efficiency $\lesssim 20\%$
- \bullet Postshock magnetic energy \sim equipartition value

GRB Afterglow Model

Relativistic version of Sedov solⁿ:

swept-up mass $M(t) \approx \frac{4\pi}{3} m_p n_{\text{ext}} R_s^3 \gg M_{\text{ejecta}}$ adiabatic evolution $E \propto M\Gamma_s^2 \approx \text{constant}$ $t_{\text{emit}} \approx \frac{R_s}{c}, \quad (\Gamma_s \gg 1)$ $t_{\text{obs}} \approx \int \left(1 - \frac{V_s}{c}\right) dt_{\text{em}} \propto t_{\text{emit}} / \Gamma_s^2$ $\Rightarrow \Gamma_s \sim \left(\frac{E}{\rho_{\text{ext}}}\right)^{1/8} t_{\text{obs}}^{-3/8} \approx 600 \left(\frac{E_{51}}{n_0}\right)^{1/8} t_{\text{sec}}^{-3/8}.$

Model for Afterglow Emission

Assumptions:

- Adiabatic relativistic blastwave/jet (as above)
- Synchrotron emission
- Fixed fractions $\epsilon_e \& \epsilon_B$ of postshock energy in e^{\pm} & field
- $N_{e^\pm}(\mathcal{E}) \propto \mathcal{E}^{-p}$, $\mathcal{E} \geq \mathcal{E}_{\min}$, $p\gtrsim 2$
- $\mathcal{E}_{\min} \propto \Gamma_s(t)$ in shock frame

Predictions:

$$F_{\nu} \propto \epsilon_{e} \epsilon_{B}^{1/2} n_{0} E_{0} \times \begin{cases} (\nu/\nu_{\min})^{1/3} & \nu < \nu_{\min} \\ (\nu/\nu_{\min})^{-(p-1)/2} & \nu_{cool} > \nu > \nu_{\min} \\ (\nu_{cool}/\nu_{\min})^{1/2} (\nu/\nu_{\min})^{-p/2} & \nu > \nu_{cool} \end{cases}$$

$$\nu_{\min} \propto \Gamma_{s}^{4} n_{0}^{1/2} \epsilon_{B}^{1/2} \propto t^{-3/2}$$

How is *B* made in afterglow shocks?

• Compressed pre-shock field is inadequate

$$\overline{\epsilon}_{B,\mathrm{shock}} \lesssim 3\epsilon_{B,ISM} = 3\left(\frac{V_A}{c}\right)^2 \sim 10^{-8}$$

- Pre-shock inhomogeneity ⇒ Postshock vorticity ⇒ Dynamo
 (?)
- Weibel (1959) instability [Medvedev & Loeb 1999]
 - Magnetic two-stream instability; $t_{\rm growth} \sim \omega_{pe}^{-1}$
 - $\epsilon_B \sim 10^{-3} 10^{-1}$ in simulations*
 - Does B persist $(t \gg \omega_p^{-1})$? [Gruzinov 2000]
 - Why doesn't this operate in supernovae?

*None published with counterstreaming relativistic e & p in 3D

Weibel mechanism

Medvedev 2002

Summary

- Fast $(M_A \gg 1)$ collisionless shocks occur in supernova blast waves, pulsar winds, radio jets, GRBs & afterglows
- Postshock relativistic electrons are seen (via synchrotron), & their energy spectrum is calculable (with assumptions)
- Not much evidence for dynamo action in nonrelativistic shocks, But gamma-ray bursts and afterglows require it
- Collisionless (Weibel? instability is promising, needs work
 - Does field persist, and at what level?
 - Do ions contribute to field growth?
 - Do electrons reach equipartion?
 - Are relativistic effects essential?