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Introduction

Reconnection in nature is often not steady.
Impulsive behavior is found in a wide variety of systems, e.g.

• sawtooth oscillations in tokamaks

• magnetotail substorms

• solar flares

Resistive MHD alone cannot explain those processes, we examine
the effects of an extended Ohm’s law including Hall term, electron
inertia and electron pressure gradient effects.
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Adaptive mesh refinement

Example: 2D ideal MHD

Efficiency of AMR

Level # grids # grid points
0 0 0
1 0 0
2 0 0
3 0 0
4 134 34304
5 295 75520
6 554 141824
7 872 223232
8 1492 382208

Grid points in adaptive simulation: 857088
Grid points in non-adaptive simulation: 16777216
Ratio 0.05



Load balancing

Domain 2π × 2π,
subdivided into 8 × 8
grids with 8 × 8 grid
points each.



Load balancing

Hilbert–Peano space
filling curve

Domain 2π × 2π,
subdivided into 8 × 8
grids with 8 × 8 grid
points each.



Load balancing

Hilbert–Peano space
filling curve, distributed
to 4 processors

Domain 2π × 2π,
subdivided into 8 × 8
grids with 8 × 8 grid
points each.



Load balancing

Distribution to 4 pro-
cessors

Domain 2π × 2π,
subdivided into 8 × 8
grids with 8 × 8 grid
points each.



Load balancing

Four levels of refine-
ment

Domain 2π × 2π,
subdivided into 8 × 8
grids with 8 × 8 grid
points each.



Load balancing

Four levels of refine-
ment, corresponding
Hilbert-Peano curve

Domain 2π × 2π,
subdivided into 8 × 8
grids with 8 × 8 grid
points each.



Discretizing Poisson’s equation on an AMR hierarchy

Poisson’s equation:

∇2~x = ~b

Remember ∇2~x = ∇ · ∇~x
=⇒ treat conservatively!



Solve iteratively with multigrid / multilevel method

• scales like O(N logN) / O(N), where N is the total number of grid points.

Solve()

{

Calculate residual on level l_fine;

MG(l_fine)

}

MG(l)

{

if (l == 0)

correction[l] = SolveCoarse(residual[l])

else

correction[l] = 0

Smooth(correction[l])

Restrict remaining residual to level l-1

Calculate residual on unconvered grids on level l-1

MG(l-1)

correction[l] += Prolong(correction[l-1])

Smooth(correction[l])

solution[l] += correction[l]

}



Multilevel Poisson solver



Multilevel Poisson solver – zoom



2D extended MHD

(Ottaviani/Porcelli 1993)
(Grasso/Pegoraro/Porcelli/Califano 1999)

Model equations

∂tF + [φ, F ] = ρ2
s[U, ψ]

∂tU + [φ, U ] = [J, ψ]

F = ψ + d2
eJ

J = −∇2ψ B = B0ẑ +∇ψ × ẑ

U = ∇2φ v = ẑ×∇φ

with [A,B] = ẑ · ∇A×∇B.

Equilibrium

φeq = Ueq = 0

ψeq = Jeq = cos(x) , Feq = (1 + d2
e) cos(x)



Resolving the current sheet
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Nonlinear evolution of the tearing mode

flux ψ current J



Analytical model:
Analytically, an island equation
for the nonlinear evolution is de-
rived:

d2ŵ

dt̂2
≈ 1

4
(ŵ + cJŵ

4)

The plot shows the Island half-width ŵ as a function of time from
numerical simulation (solid curve) and from the analytic equation
with cJ = 0.1 (dashed curve), for the case ρs = 0.2, de = 0.1,
k = 0.5, γL = 0.0024.



Scaling with ρs

Island width time evolution for different values of ρs for de = 0.25,
ε = 0.5, time rescaled with linear growth rate (left), linear and
nonlinear growth rates (right).



Scaling with wavenumber k

Island width time evolution for different values of ε (= k) for ρs =
0.75, de = 0.25, time rescaled with linear growth rate (left), linear
and nonlinear growth rates (right).



Four-Field Model

(Aydemir 1992)
Model equations

∂U

∂t
+ [φ, U ] +∇‖J = diτ∇⊥ · [p,∇⊥φ],

∂ψ

∂t
+∇‖[φ− (1 + τ)dip] = ηJ + d2

e

(
∂J

∂t
+ [φ− diτp, J ]

)
,

∂p

∂t
+ [φ, p] + β∇‖(v + 2diJ) = 0,

∂v

∂t
+

1

2
(1 + τ)∇‖p+ [φ− diτp, v] = 0

J = ∇2
⊥, U = ∇2

⊥φ, τ = Ti/Te

β =
nkTe

B2
T /2µ0

, di =
c/2ωpi

a
, de =

c/ωpe

a



Nonlinear evolution
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We do indeed reproduce Aydemir’s results and observe an explosive
growth phase in the nonlinear phase, until the finite volume inside
the q = 1 surface of the island quenches furth growth.



J − J0 J ψ
Parameters: di = 0.11, de = 0.005, η = 10−6, β = .005



J − J0 J ψ
Parameters: di = 0.11, de = 0.005, η = 10−6, β = .005



3D Hall-MHD
A non-staggered, conservative, ∇ · ~B = 0 finite volume scheme for 3-D extended MHD in
curvilinear coordinates (L. Chacon 2004)

Model equations

∂ρ

∂t
= −∇ · (ρ~v)

∂(ρ~v)

∂t
= −∇ ·

[
ρ~v~v − ~B ~B +

←→
I (p+

B2

2
)− ρν∇~v

]
∂ ~B

∂t
= −∇× ~E ; ~E = −~v × ~B +

di

ρ
( ~J × ~B −∇pe) + η ~J ; ~J = ∇× ~B

∂T

∂t
= −~v · ∇T − (γ − 1)T∇ · ~v



3D Hall-MHD
Given an arbitrary mapping ~x = ~x(~ξ), define contra- and convariant bases:

~i = ∇ξi , i−→ =
1

J

∂~x

∂ξi

(and metric tensors gik = J~i · ~k, gik = J i−→ · k−→, Christoffel symbols Γi
jk, where J is the

Jacobian of the transformation) Normal vectors are irrotational (∇ × ~i = ~0), tangential
vectors are solenoidal (∇ · i−→ = 0).

∂t(Jρ) = −∂i(ρv
i)

∂t(ρv
i) = −∂n(J−1Tni) + J−1TnkΓi

nk

∂tB
i = −εink∂nEk

∂t(JT ) = −vi∂iT − (γ − 1)T∂iv
i

where ∂i = ∂/∂ξi, A
i, Ai contra-/covariant vector components and

T ki = ρvkvi −BkBi + gki(Jp+BnB
n/2)− ρν[∇~v]ki

Ei = J−1εinkv
nBk − ηji



3D Hall-MHD – Spatial discretization
Finite volume discretization of terms in divergence form:

∂x(ρv)i =
(ρv)i+1/2 − (ρv)i−1/2

h

where the underlying quantities are given on a cell-centered grid.
Need to interpolate the flux to faces:

• (ρv)i+1/2 = 1
2 [(ρv)i+1 + (ρv)i] (flux average)

• (ρv)i+1/2 = 1
2 [ρivi+1 + ρi+1vi] (ZIP)

Both schemes are 2nd order and conservative, but ZIP additionally satisfies a numerical chain
rule property and is nonlinearly stable.

Faraday’s Law

Using the divergence as defined above and simple finite differences for the partial derivatives
in the curl operator, this scheme preserves div B to round-off.



3D Hall-MHD – Tearing test

Cartesian grid
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Sinusoidally distorted grid
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Implicit time integration

Whister waves, kinetic Alfven waves are dispersives waves, ω ∼ k2

=⇒ ∆tcfl ∼ (∆x)2

Solution: Implicit timestepping (Crank-Nicholson)

∂t~x = RHS(~x) −→ ~xn+1 − ~xn

∆t
=

1

2
(RHS(~xn+1) +RHS(~xn))

Need to solve nonlinear equation F (~xn+1; ~xn, t) = 0.
Newton’s method:

xi+1 = xi − F (xi)/F
′(xi)

generalizes straight-forward to multi-dimensions, but need to solve linear problem to invert
Jacobian.
Use Krylov accelerator for the linear problem, then we only need directional derivatives which
can be approximated by

F ′(~x)~v ≈ F (~x+ h~v)− F (~x)

h

(matrix-free Newton-Krylov-Schwarz)
Implemented in PETSc library.



Implicit time integration – Direct solvers

Unfortunately, matrices are ill-conditioned for large timesteps and preconditioning is a hard
problem.

Solution: Use a direct solver (SuperLU). Only re-factorize if necessary. Works well for up to
medium sized problems (e.g, matrix size 2 ·106 squared, number of nonzero elements 3 ·109).

Need to actually build the sparse matrix.

Code generator

Example ∂tρ = − 1
J ∂i(ρu

i):

v_rU = vector_zip(zBASE2(_RHO, _U));

t[RHO] = NEG(MUL(REC(_JAC(0,0,0)), vDIV(v_rU, 0,0,0)));

FLD3(r,jx,jy,jz,RHO) =
(

-((0.5*(RHO(x,jx+0,jy+0,jz+0)*
(P0(x,jx+1,jy+0,jz+0) / RHO(x,jx+1,jy+0,jz+0)) +
RHO(x,jx+1,jy+0,jz+0) *
(P0(x,jx+0,jy+0,jz+0) / RHO(x,jx+0,jy+0,jz+0))) -

0.5*(RHO(x,jx-1,jy+0,jz+0) *
(P0(x,jx+0,jy+0,jz+0) / RHO(x,jx+0,jy+0,jz+0)) +
RHO(x,jx+0,jy+0,jz+0) *
(P0(x,jx-1,jy+0,jz+0) / RHO(x,jx-1,jy+0,jz+0)))) /

(CRD0f(jx+1) - CRD0f(jx+0))
+

...



Code generation

Code generator advantages:

• Calculates derivatives symbolically.

• Generates optimal code for a given coordinate transformation, non-uniform grid, set of
parameters, number of dimensions, ...

• Algorithms easier to maintain / change.

• Can easily be adapted to generate code in a different programming language.

Disadvantages:

• Good simplification of symbolic expressions is difficult to implement.

• Generated code (with back-substituted boundary conditions) gets very long and com-
plex.



Implicit time integration
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3D Hall-MHD

Model equations

∂ρ

∂t
= −∇ · (ρ~v)

∂(ρ~v)

∂t
= −∇ ·

[
ρ~v~v − ~B ~B +

←→
I (p+

B2

2
)− ρν∇~v

]
∂ ~B

∂t
= −∇× ~E ; ~E = −~v × ~B +

di

ρ
( ~J × ~B −∇pe) + η ~J ; ~J = ∇× ~B

∂T

∂t
= −~v · ∇T − (γ − 1)T∇ · ~v

Equilibrium

Jz0(r) =
J0

[1 + (r/rch)2]2
,

Bz0 = 1/ε

The q = 1 surface is located at r = 0.2 for our choice of Jz, rch.



Verification: Linear resistive tearing mode

To the left, we show a plot of the poloidal magnetic field (colored) and streamlines of the in-
plane plasma flows. The three-dimensional plot visualizes the m=1 cylindrical tearing mode
after the island has grown to macroscopic size.



Nonlinear resistive evolution
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Jpert, ψ at t = 500 Jpert, ψ at t = 550 J, ψ at t = 600



J, ψ at t = 620 J, ψ at t = 630 J, ψ at t = 650



Put in Hall effects: di = 0.05, η = 10−6,
and vary aspect ratio ε:

aspect ratio ε nonlinear behavior γr γi

.3 slightly accelerated .00850 -.00188

.2 accelerated .00929 -.00093

.1 strongly accelerated .00835 -.00015
(four-field) strongly accelerated .0106 0

Jpert at t = 0 J at t = 450 J at t = 500



Nonlinear Hall-MHD accelerated growth
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Nonlinear Hall-MHD stabilization

parallel current J|| parallel vorticity J|| overlaid with flow



Nonlinear Hall-MHD stabilization
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Resistive MHD: Compressible vs. Incompressible models
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Compressible vs. incompressible evolution, linear phase:



Compressible vs. incompressible evolution, nonlinear phase:



Resistive MHD: Flux pile-up
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Conclusion

• Numerically exploring near-singular processes needs very high spatial and temporal res-
olution close to the singular time =⇒ AMR methods are an ideal tool.

• Implicit methods are powerful to integrate systems where the time scale of interest is
much slower than that of the fastest waves.

• In 2D MHD, we clearly observed exponential growth.

• In 2D extended MHD models (Porcelli, Aydemir) we reproduced an explosive growth
phase in the nonlinear evolution.

• In 3D compressible Hall-MHD, the explosive growth found in reduced models has been
reproduced for certain parameters, however we also observe nonlinear stabilization in
other regimes. We also find accelerated growth in compressible MHD even without
two-fluid effects, whereas incompressible MHD does not show this behavior.

• More work needs to be done to gain a better understanding of the underlying recon-
nection physics.


