

Implementation of the Pleim-Xiu Land Surface Model and Asymmetric Convective Model in WRF

Robert Gilliam¹, Jonathan Pleim¹, and Aijun Xiu²

¹Atmospheric Sciences Modeling Division, NOAA, Research Triangle Park, NC (In partnership with the U.S. EPA) ²Carolina Environmental Program, University of North Carolina, Chapel Hill, NC

Motivation

- Consistent mixing between the meteorological and chemical transport models
- Indirect soil moisture nudging can improve near-surface meteorology in retrospective simulations for air quality applications
- New LSM and PBL options in WRF
- PX LSM fields used to improve dry deposition estimates in AQM

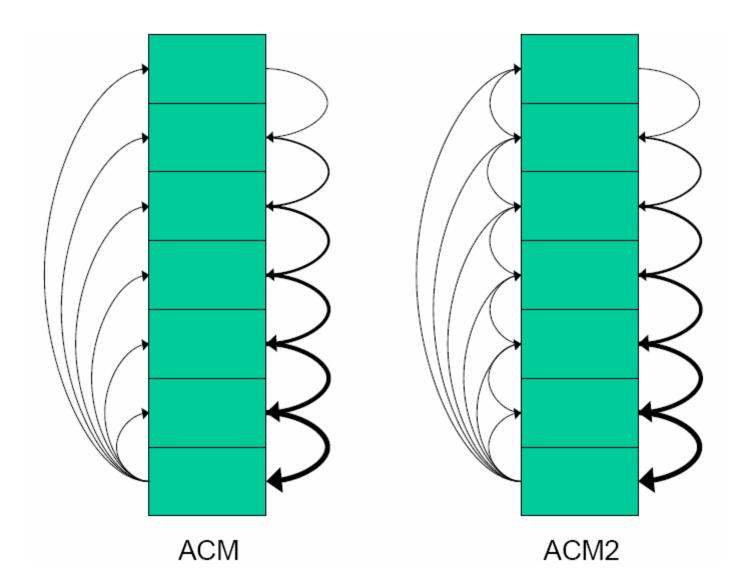
RESEARCH & DEVELOPMENT

Pleim-Xiu LSM

(Xiu and Pleim, 2001; Pleim and Xiu, 2003)

- Based on ISBA (Noilhan and Planton, 1989)
- 2-layer prognostic soil moisture and temperature
 - surface (1 cm), root zone (1 m)
- Grid cell aggregated surface parameters from fractional landuse and soil type
 - Leverage NLCD
- Indirect soil moisture nudging

RESEARCH & DEVELOPMENT


(Pleim, 2006; Pleim, 2007a,b)

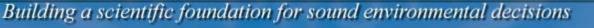
- Non-local closure scheme (Stull, 1984; Blackadar, 1976; Pleim and Chang, 1992)
- Simple transilient model for unstable PBL, eddy diffusion for stable PBL.
- Rapid upward transport by buoyant plumes and gradual downward transport by compensatory subsidence
 - asymmetric (ACM) vs. symmetric (e.g., Blackadar)
- ACM2
 - Allows some local mixing at all levels
 - Leads to more continuous profiles in lower layers
 - Smooth transition from stable to unstable

RESEARCH & DEVELOPMENT

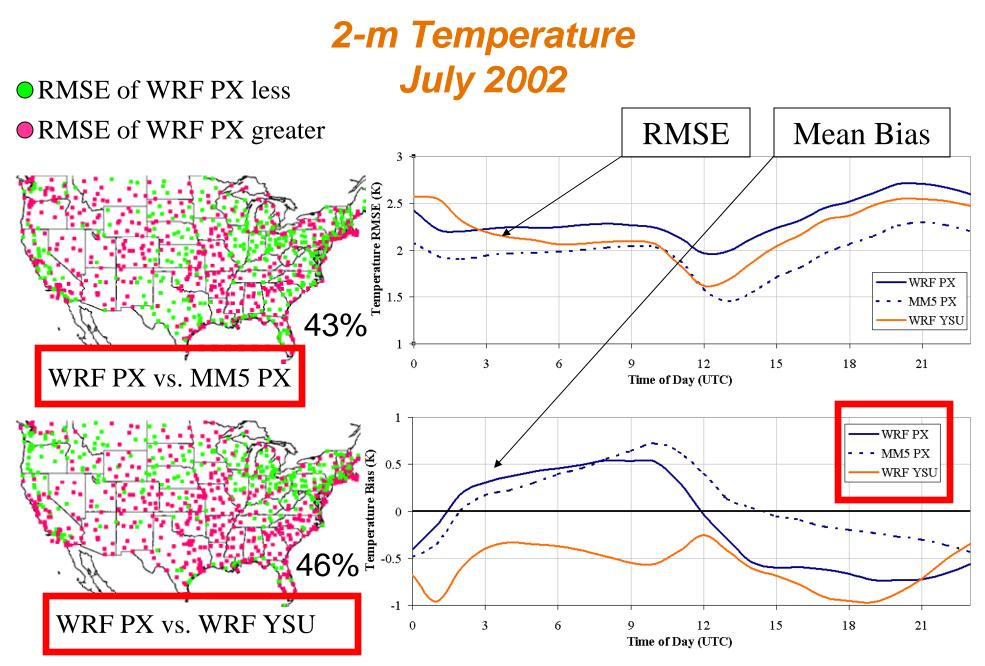
Implementation

- Parsed into three separate models for WRF
- Options 7 in WRF namelist (as in MM5)
- RA, RS and LAI added to Registry
- 2-m temp, 2-m mixing ratio, and snow water were added to Registry for SM nudging (wrffdda_d01 file)
- Solve, PBL driver, and surface driver modified for new physics calls
- Real.exe modified
 - Initialize PX LSM
 - New analysis nudging file

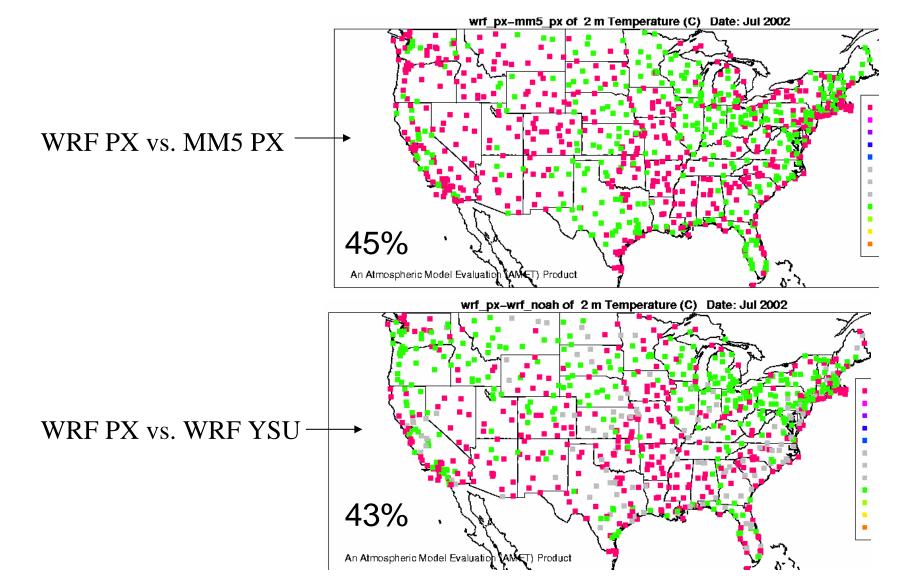
RESEARCH & DEVELOPMENT

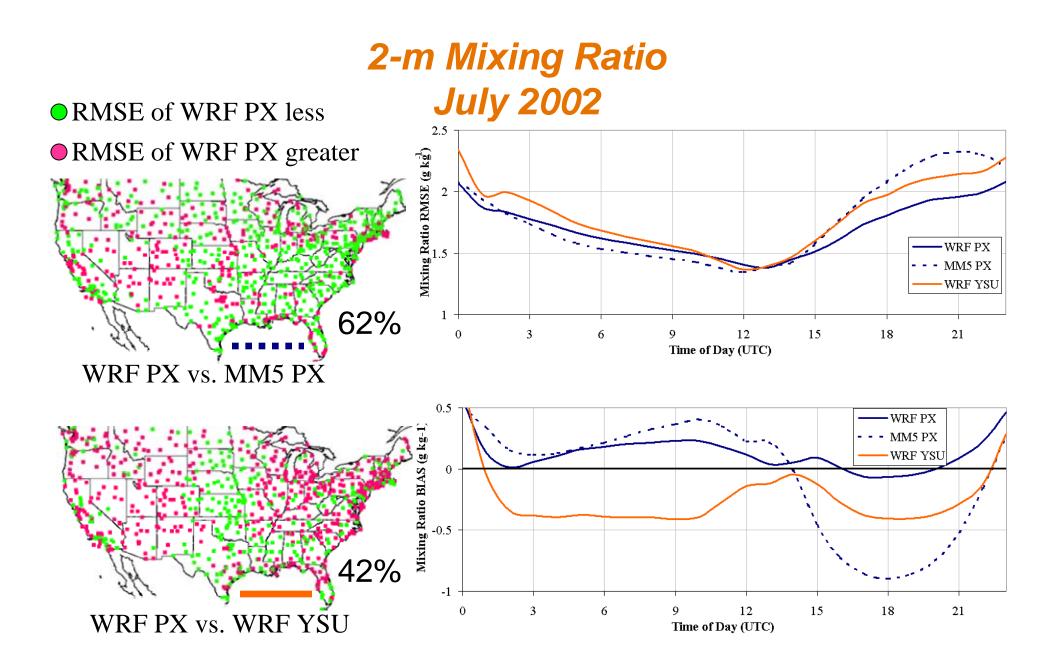


Initial Evaluation

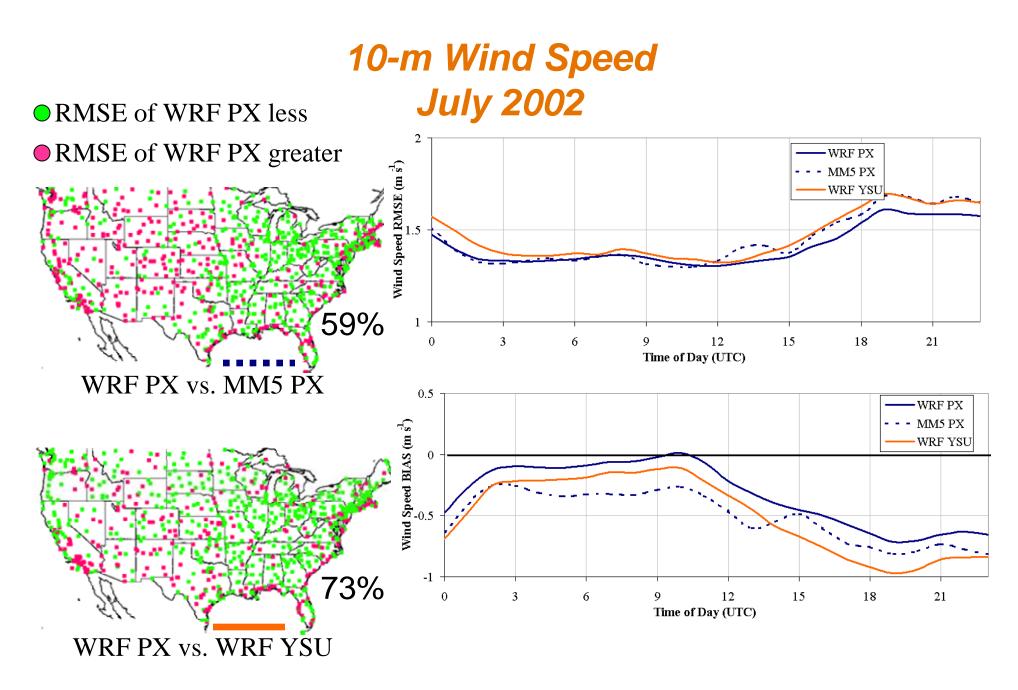

- CONUS domain (36 km), July 2002
 - WRF PX-ACM2-Pleim sfc. lay.
 - MM5 PX-ACM-Pleim sfc. lay.
 - WRF NOAH-YSU-MO sfc. lay.
- All WRF used RRTM, WSM-5, KF2 convective (nearly the same as MM5)
- Analysis nudging (only wind in PBL)
- Simulations compared to NWS hourly surface obs from MADIS

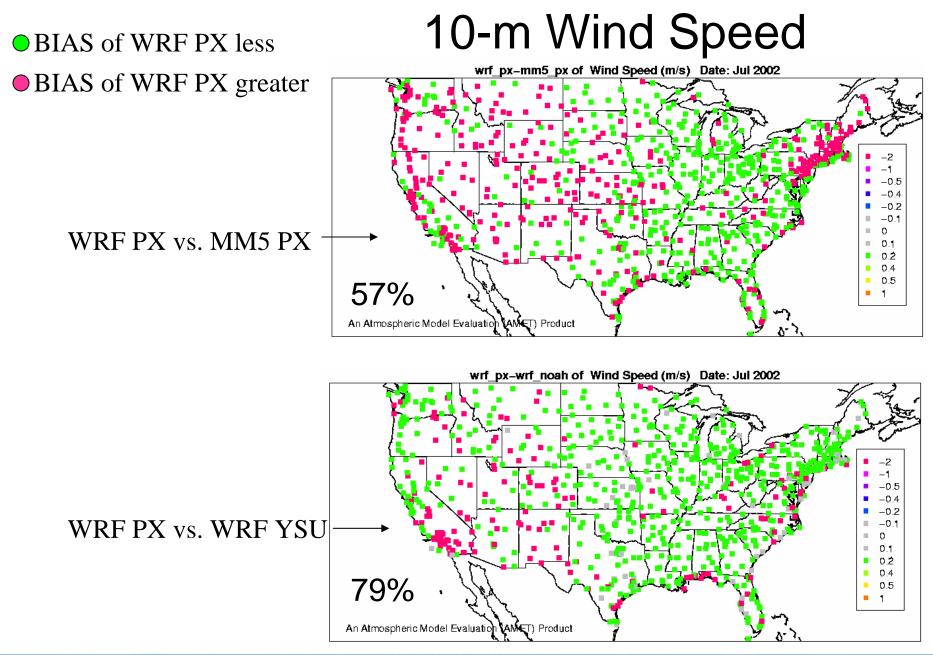
RESEARCH & DEVELOPMENT

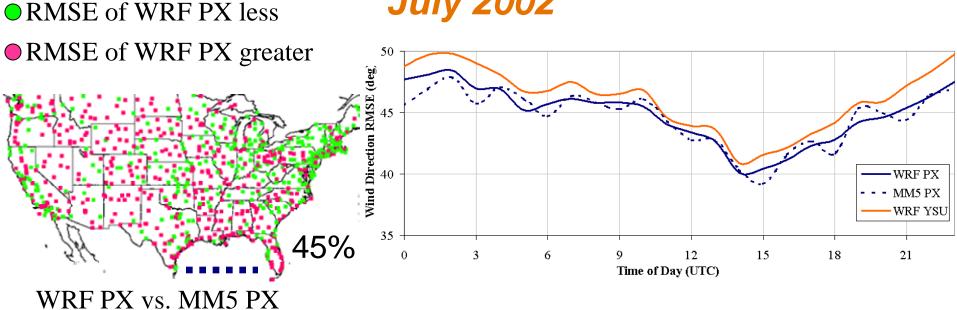


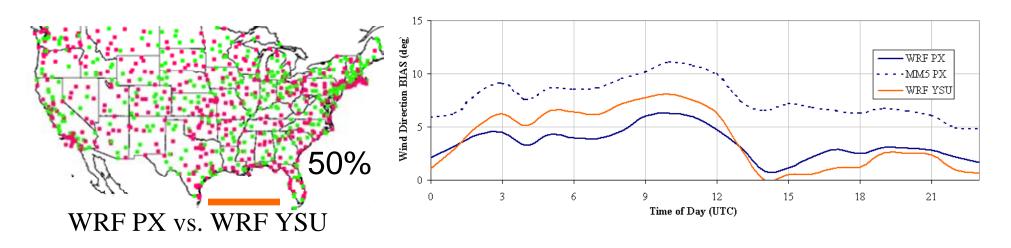


BIAS of WRF PX less BIAS of WRF PX greater 2-m Temperature

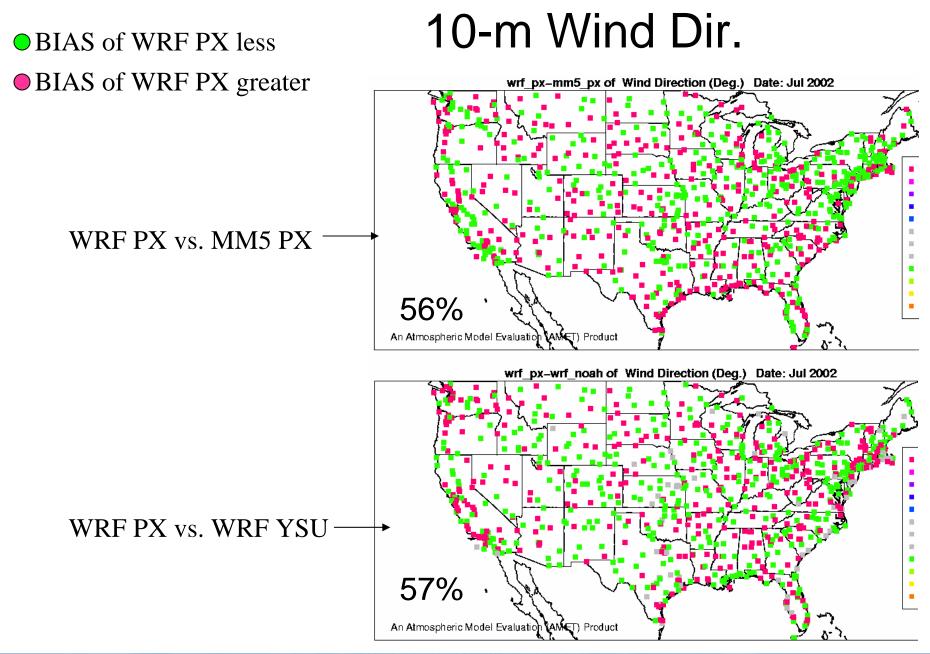








10-m Wind Direction July 2002



RESEARCH & DEVELOPMENT

Initial Assessment

- Reasonable overall performance
- 2-m temperature error greater
 Further investigation needed
- 2-m mixing ratio error comparable
- 10-m WS error and bias lower
- 10-m WD comparable

RESEARCH & DEVELOPMENT

Future Efforts

- More evaluation (precip, PBL, etc.)
- Test linkage with other physics options (e.g., ACM2-NOAH, PX LSM-MYJ PBL)
- Refine snow treatment
- Impact on AQM (e.g., CMAQ)
- Work toward release in WRFv3

Disclaimer - The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW 13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.

RESEARCH & DEVELOPMENT

Extended Results

Variable	Jul. 2002 Simulation	RMSE	MB	IOA	
2-m Temp	MM5 PX	43	45	42	
-	WRF YSU	46	49	48	
2-m Mixing	MM5 PX	62	37	48	
Ratio	WRF YSU	42	40	40	
10-m Wind	MM5 PX	59	57	48	
10 77 1	WRF YSU	73	79	62	
10-m Wind	MM5 PX	45	56	N/A	
Dir.	WRF YSU	50	55	N/A	
Variable	Jul. 2002	RMSE	MB	IOA	
2-m Temp	WRF PX		-0.13 / -2.19	0.89 / 0.84	
	MM5 PX		0.08 / -1.28	0.92 / 0.88	
	WRF YSU	2.19 / 3.96	-0.52 / -2.18	0.91 / 0.85	
2-m Mixing Ratio	WRF PX	1.72 / 2.22	0.13 / 0.50	0.84 / 0.63	
	MM5 PX	1.80 / 2.15	-0.05 / -0.16	0.85 / 0.71	
	WRF YSU	1.85 / 1.84	-0.30 / -0.37	0.82 / 0.70	
10-m Wind Speed	WRF PX	1.42 / 2.19	-0.35 / -1.19	0.62 / 0.41	
	MM5 PX	1.46 / 2.10	-0.52 / -0.92	0.61 / 0.46	
	WRF YSU	1.49 / 2.19	-0.48 / -1.19	0.59 / 0.42	
10-m Wind Dir.	WRF PX	45 / 67	03 / 05	N/A	
	MM5 PX	45 / 64	08 / 01	N/A	
	WRF YSU	45 / 66	04 / 06	N/A	

	Jul. 2002					Variable	Jul. 2002 Simulation	MAE	RMSE	MB
Variable	Simulation	MAE	RMSE	MB	IOA		WRF PX	1.86	2.54	-0.23
		50		10	(0)	2-m Temp	MM5 PX	1.88	2.57	-0.36
2-m Temp	MM5 PX	59	57	48	69		WRF YSU	1.86	2.55	-0.56
	WRF YSU	48	47	47	45		WRF MYJ	1.79	2.45	-0.26
	WRF MYJ	42	40	41	43		WRF PX	1.38	1.91	-0.16
2-m Mixing Ratio	MM5 PX	65	66	38	44	2-m Mixing Ratio	MM5 PX	1.45	1.92	-0.08
	WRF YSU	67	68	58	61	Kauo	WRF YSU WRF MYJ	1.47 1.43	1.94 1.89	-0.49 -0.32
	WRF MYJ	66	67	50	67		WRF PX	1.31	1.74	-0.09
10-m Wind Speed	MM5 PX	47	44	79	42	10-m Wind	MM5 PX	1.29	1.71	-0.66
						Speed	WRF YSU	1.35	1.75	-0.09
	WRF YSU	53	48	51	69		WRF MYJ	1.49	1.93	0.47
	WRF MYJ	75	73	31	37		WRF PX	40	57	8
10-m Wind Dir.	MM5 PX	22	21	42	N/A	10-m Wind	MM5PX	36	52	5
	WRF YSU	36	37	46	N/A	Dir.	WRF YSU	38	55	5
	WRF MYJ	51	52	53	N/A		WRF MYJ	40	57	7
						J	Jan. 2002			
Variable	Jan. 2002	MAE	RMSE	MB	IOA	Variable	Simulation	MAE	RMSE	MB
	Simulation						WRF PX	2.37	3.09	-0.86
2-m Temp						2-m Temp	MM5 PX	2.80	3.63	-1.59
	MM5 PX	82	84	77	78	2-m remp	WRF YSU	1.98	2.62	-0.31
	WRF YSU	13	13	20	13		WRF MYJ	1.96	2.62	0.05
	WRF MYJ	18	18	26	19		WRF PX	0.62	0.91	0.18
2-m Mixing Ratio	MM5 PX	50	49	37	47	2-m Mixing	MM5 PX	0.60	0.88	-0.30
	WRF YSU	37	32	60	31	Ratio	WRF YSU WRF MYJ	0.59 0.61	0.85 0.87	0.27 0.27
	WRF MYJ	46	43	62	39		WRF PX	1.46	1.97	-0.13
10 -m Wind Speed	MM5 PX	35	35	56	49	10-m Wind	MM5 PX	1.39	1.84	-0.47
						Speed	WRF YSU	1.44	1.92	0.00
	WRF YSU	43	39	41	45		WRF MYJ	1.72	2.30	0.86
	WRF MYJ	68	66	38	34		WRF PX	33	49	8
10-m Wind Dir.	MM5 PX	22	22	43	N/A	10-m Wind	MM5PX	30	46	5
	WRF YSU	30	30	39	N/A	Dir.	WRF YSU	31	47	5
	WRF MYJ	47	47	48	N/A		WRF MYJ	33	50	9

IOA 0.91 0.90 0.910.910.86 0.86 0.84 0.85 0.53 0.55 0.50 0.53 N/A N/A N/A N/A

IOA 0.94 0.91 0.95 0.95 0.90 0.910.910.90 0.59 0.610.59 0.57 N/A N/A N/A N/A

Pleim Surface Layer (Pleim 2006, JAMC)

- Accurate and economical estimation of the flux-profile relationships
- For stable, linear functions of Webb (1970) and Dyer (1974) w/ coefficients recommended by Hogstrom (1988)
- For very stable a reduced slope is adopted to avoid decoupling with surface
- Difference between momentum and scalar fluxes by inclusion of quasi-laminar sublayer of resistance for scalar fluxes that is a function of molecular diffusivity

RESEARCH & DEVELOPMENT

