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ABSTRACT

In this study, a global three-dimensional variational analysis system is formulated in model grid space. This
formulation allows greater flexibility (e.g., inhomogeneity and anisotropy) for background error statistics. A
simpler formulation, inhomogeneous only in the latitude direction, was chosen for these initial tests. The back-
ground error statistics are defined as functions of the latitudinal grid and are estimated with the National
Meteorological Center (NMC) method. The horizontal scales of the variables are obtained through the variances
of the variables and of their Laplacian. The vertical scales are estimated through the statistics of the vertical
correlation of each variable and are applied locally using recursive filters. For the multivariate correlation between
wind and mass fields, a statistical linear relationship between the streamfunction and the balanced part of
temperature and surface pressure is assumed. A localized correlation between the velocity potential and the
streamfunction is also used to account for the positive correlation between the vorticity and divergence in the
planetary boundary layer.

Horizontally, the global domain is divided into three pieces so that efficient spatial recursive filters can be
used to spread out the information from the observation locations. This analysis system is tested against the
operational Spectral Statistical-Interpolation analysis system used at the National Centers for Environmental
Prediction. The results indicate that 3DVAR in physical space is as effective as 3DVAR in spectral space in
the extratropics and yields superior results in the Tropics as a result of the latitude dependence of the background
error statistics.

1. Introduction

Current implementations of three-dimensional vari-
ational analysis (3DVAR) at many operational centers
are constructed in spectral space, which has the advan-
tage that the statistics of background error, both structure
and amplitude, can be easily obtained and applied in
the analysis procedure. It is simpler to apply a diagonal
background error covariance in spectral space than to
convolve the corresponding smoothing kernel with the
innovations in physical space. However, with only a
diagonal covariance in spectral space, the structure func-
tion is limited to being geographically homogeneous and
isotropic about its center (Parrish and Derber 1992;
Courtier et al. 1998). One has little control over the
spatial variation of the error statistics when a simplified
diagonal background error covariance in spectral space
is used. With some computational cost associated with
extra transforms in and out of the physical space in each
iteration of the optimization solver, spatially inhomo-
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geneous, for example, latitude-dependent, variances can
be applied. But, it is not as easy to construct inhomo-
geneous and/or anisotropic shapes for the covariance
profiles in spectral space. Other methods have been test-
ed for inhomogeneous and/or anisotropic covariance, for
example, Derber and Rosati (1989), Desrozier (1997),
Riishojgaard (1998), Weaver and Courtier (2001).

Hayden and Purser (1995), extending the work of
Purser and McQuigg (1982), showed how a very simple
and computationally inexpensive family of recursive fil-
ters can be combined to yield empirical smoothers,
which are locally isotropic but retain the freedom of
spatial inhomogeneity. Recent developments with spa-
tially recursive filters (Purser et al. 2002a, manuscript
submitted to Mon. Wea. Rev., hereafter referred to as
PWP02a) enable the construction of a variational anal-
ysis in physical space, which allows more degrees of
freedom in defining the error statistics adaptively. The
final goal is to have an analysis system with inhomo-
geneous and generally anisotropic three-dimensional
background error covariances.

In this paper we test and illustrate the first step toward
this goal; a global 3DVAR in physical space that is as
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FIG. 1. Global-mean fraction of explained covariance of the bal-
anced part of temperature (open circles) and velocity potential (closed
circles).

effective as 3DVAR in spectral space. Using recursive
filters, we construct an analysis system in physical space
with latitude-dependent structure functions and other
error statistics. The background error covariances are
still isotropic and homogenous in the zonal direction.
The basic structure of the 3DVAR is described in section
2 and aspects of the application of the recursive filters
to the global domain in section 3. In section 4 we discuss
the method used to estimate the background error sta-
tistics. The results and conclusions are presented in sec-
tions 5 and 6.

2. Global analysis on grid space

In order to incorporate as much as possible of the
existing formulation of the global analysis system at the
National Centers for Environmental Prediction (NCEP),
the version in physical space is formulated to be similar
to the current NCEP spectral version: the Spectral Sta-
tistical-Interpolation (SSI) analysis system. Notation
used here loosely conforms with that of Ide et al. (1997).
The functional to be minimized is

T 21 T 21J 5 1/2 [x B x 1 (Hx 2 y) R (Hx 2 y)] (2.1)

where

x is a vector of analysis increment,
B is the background error covariance matrix,
y is a vector of the observational residuals, y 5

yobs 2 Hxguess

R is the observational and representativeness error
covariance matrix,

H is a transformation operator from the analysis
variable to the form of the observation vector.

The analysis variables, defined on the grid instead of in
spectral coefficients, are: streamfunction (c); unbal-
anced part of velocity potential (x); the unbalanced part
of temperature (T); unbalanced part of surface pressure
(P); and pseudo–relative humidity (q) [water vapor mix-
ing ratio divided by the saturated value from the guess
field, Dee and Da Silva (2002). Calculation of HTR21

(Hx 2 y) involves the following steps:

• Calculate Tb, xb, and Pb from the analysis variables
c and add them to the unbalanced parts.

• Convert c and x to U and V.
• Apply observational forward model on the variables
• Calculate the residual, multiply by R21.
• Apply the adjoint of the first three steps in the reversed

order.

The background error B can be written as
B z(V1 V1 1 V2 V 2)Bz where V11 1 1 1 2 2 2 2B B B B B B B Bx y y x x y y x

and V2 are the standard deviations of the error. Here,
Bx, By, and Bz are applications of recursive filters in
the x, y, and z directions. The values B1 and B2 are the
filters with different scales (see section 4). The precon-
ditioned conjugate-gradient algorithm (Gill et al. 1981;
Navon and Legler 1987; Derber and Rosati 1989) was

chosen because the multiple filters in the horizontal di-
rection are easier to implement in this solution algo-
rithm. The amplitudes and scales of the background
error are defined as functions of latitude and height.

An initial condition with an appropriate balance be-
tween the mass and wind fields minimizes the adjust-
ment and decreases the spinup so that more information
from the data can be preserved. The balance also pro-
jects information from one analysis variable to the other.
For example, over the Southern Ocean where conven-
tional observations are scarce, the mass information
from satellite observations is projected in part to the
wind field and hence corrects the flow pattern. For
3DVAR in physical space, the multivariate coupling be-
tween the analysis variables of mass and wind is a chal-
lenge. Since the variables are defined in physical space,
it is not easy to apply a linear balance operator (Parrish
and Derber 1992) that includes the inverse of the La-
placian operator. However, the relation between the
mass field and the streamfunction is linear, so that sta-
tistical regression between the two is possible.

The balanced (slow) part of the temperature increment
is defined as Tb 5 Gc, where matrix G projects stream-
function increments to a vertical profile of the balanced
part of temperature increments. Linear regression is used
to calculated the G matrix. Since the variables are de-
fined on the grid, this matrix can be latitude-dependent.
The resulting global means of the fraction of the total
temperature and velocity potential explained by the bal-
ance relations are shown in Fig. 1. The balanced part
of the temperature increments explains from 50% to
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FIG. 2. The results on the Cartesian grid of (a) four applications of first-order recursive filter, (b) one
application of fourth-order recursive filter, and (c) the analytical Gaussian.

70% of the variance in the troposphere and decreases
to about 20% above 50 mb. The balanced part of the
surface pressure increment is defined as Pb 5 Wc, where
matrix W integrates the appropriate contribution of the
streamfunction from each level. The balanced part ac-
counts for 86% of the variance of surface pressure in-
crements. A similar balance treatment was also reported
in Gustafsson et al. (1999). We find that the balance
design is crucial; the assimilation degrades quickly with-
out it. For example, without mass–wind balance the fit
of the guess field to the surface pressure observations
worsens with time and is doubled in magnitude within
2 days (eight cycles) of the assimilation when compared
with the results from the SSI. However, with the statis-
tical linear balance defined in the analysis variables, the
quality of the first guess field is maintained.

A localized correlation between the velocity potential
and the streamfunction is also implemented to take into
account the positive correlation between divergence and
vorticity in the planetary boundary layer. The balanced
part of the velocity potential is defined as xb 5 cc,
where coefficient c is a function of latitude and height.
Shown in Fig. 1, the balanced part explains about 27%
of the variance of velocity potential increments near the
surface, decreases to a negligible fraction above the
boundary layer, and increases again near the tropopause.

3. Application of recursive filters to a global
domain

An efficient self-adjoint version of numerical recur-
sive filters can be applied to the task of convolving a
spatial distribution of innovations with a smoothing ker-
nel, which is interpreted to be a covariance function of
background error. The basic recursive filter involves re-
petitive smoothing in one direction. Here, we provide
a brief summary of the general ideas behind recursive
filters, illustrated with the simplest first-order form of
this class of filters. For a more technical discussion that
includes a description of higher-order forms of the re-
cursive filters, the reader is referred to PWP02a. The
simplest first-order smoothing operation consists of an
‘‘advancing’’ sweep

F 5 (1 2 a)D 1 aFi i i21 (3.1)

for increasing index i, where D is the input forcing and
F is the result of the sweep, followed by a ‘‘backing’’
sweep

R 5 (1 2 a)F 1 aRi i i11 (3.2)

for decreasing i, where F now represents the input and
R the output of the filter. The smoothing parameter a,
which lies between 0 and 1, is related to the correlation
length of the smoothing response function. The com-
putational advantage of recursive filters over nonrecur-
sive ones can be illustrated by the following example.
Assume that i 5 1, N in (3.1) and the initial forcing is
at i 5 1. Since each Fi depends on the filter result of
the previous point Fi21, the result of FN of the advancing
sweep depends on D1 in just one sweep. On the other
hand, it takes N 2 1 sweeps for the first-order, nonre-
cursive filters to spread the information from one end
of the domain to the other.

Repetitions of this filter produce a quasi-Gaussian
response to an initial impulse. The results on the Car-
tesian grid of (i) four applications of first-order recursive
filter, (ii) one application of fourth-order recursive filter,
and (iii) the analytical Gaussian, are shown in Figs.
2a,b,c, respectively. The fidelity to a Gaussian form is
improved, for a given expenditure of effort, by adopting
fewer, but higher-order forms of the filter. The fourth-
order recursive filters were used in the experiments re-
ported in this paper. The significance of the Gaussian
form of response profile is that, in two dimensions, an
isotropic response is obtained by sequentially applying
two such filters, once in ‘‘x’’ and once in ‘‘y;’’ no other
profile shape possesses this simplifying property. The
computational cost of filtering in two dimensions is sim-
ply twice the cost of a one-dimensional application;
three-dimensional filters cost only three times as much.
In practice, the restriction that covariances should pos-
sess only Gaussian profiles is often too severe. However,
by linearly superposing two or more Gaussian contri-
butions of different scales and amplitudes, a broader
repertoire of isotropic covariance profiles becomes
available. The cost increases in proportion to the number
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FIG. 3. Results of recursive filter on some randomly located im-
pulses in (a) the polar patches, (b) the zonal band, and (c) merged
from the subdomains without blending. The contour levels are 0.1,
0.3, 0.5, 0.7, and 0.9.

of such contributions, of course. We take up this topic
again in section 4.

To use recursive filters in a global variational analysis,
there are some basic requirements on the filters. The
filters have to be self-adjoint and have the ability to
accommodate geographically adaptive horizontal scales.
This latter requirement is important not only for gen-
erating inhomogeneous structure functions but also for
accommodating a nonuniform grid. The recursive filters
are also required to have good amplitude control so that
the estimated background error variances can be applied
precisely. It is also desirable that the filters have bound-
ary treatments that avoid any serious numerical artifacts
so that they can be applied to many subdomains in a
way that allows the constituent parts to be merged con-
sistently back together. This is particularly important for
applications to the global domain because it is difficult
to apply recursive filters near the polar areas of the
Gaussian grid where the curvature of the grid cannot
be properly accounted for. However, by dividing the
global domain into subregions furnished with their own
grid, free of singularities, the recursive filter technique
can be applied without difficulty to each subdomain.

In our implementation the globe is divided into three
pieces: two Cartesian polar patches and a zonal band in
between, and the recursive filters are applied to each
subdomain. For the zonal band, both the inhomogeneity
of the Gaussian grid and the shrinking of the zonal grid
increments toward polar areas are treated as an equiv-
alent-scale variation. The scale factor in the zonal di-
rection varies as cosf where f is the latitude. In the
meridional direction, the scale factor is

(f 2 f )NLON/4p,j11 j21 (3.3)

where NLON is the number of grid points in the lon-
gitudinal direction. For the Cartesian polar patches the
scale factor is

21/(1 1 r ), (3.4)

where r is the distance from the pole in units of zonal
grid increments at the equator.

For polar patches, the transform routine between the
Cartesian grid and the lat–lon grid, and its adjoint are
needed. The stereographic projection is used to project
the Gaussian grid onto a plane. In the analysis proce-
dure, the observational residual field is converted with
the adjoint of the transform from the Gaussian grid to
the Cartesian grid, recursive filters are applied, and the
forward grid-to-grid transform is used to bring the field
back to the lat–lon grid. Two blending zones between
the polar patches and the zonal band allow a smooth
transition when the three parts are merged back to the
global Gaussian grid. Figures 3a, 3b, and 3c show, re-
spectively, the recursive response of some randomly lo-
cated impulses in two polar patches, the zonal patch,
and the global field on the Gaussian grid built from the
three patches without blending. The response-amplitude
control is validated in the amplitudes at the center of

each impulse after the filters. The response scale of the
filters is designed here to be uniform on the sphere,
which can be achieved by counteracting the mapping
factors of the grid with scale variation on each subdo-
main. These counteracting factors are necessary to im-
plement accurately the estimated scales for each vari-
able. As shown in Fig. 3c, the contours on the bound-
aries of the subdomains match smoothly even without
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blending, which indicates that the definition of the coun-
teracting scales in each patch is consistent, and that the
boundary treatment of the recursive filters is free of
numerical artifacts. If we assume that the grid is Car-
tesian instead of Gaussian, then the plots in Fig. 3 can
be interpreted as filter results with spatially varying
scales. The fact that the reconstructed global fields are
almost identical with (not shown) or without blending
indicates that the recursive filters meet the basic re-
quirements.

We have observed that when the scales become very
large compared to the subdomain, for example, in the
stratosphere, the solutions in the buffer zone are very
different for each subdomain. The resulting global field
would merge from one solution to the other gradually.
This is not a problem for temperature and humidity
fields since the solution is constrained by the obser-
vations. But for the streamfunction and velocity poten-
tial, the forcing (wind components) of the analysis prob-
lem is the gradient of the analysis variables and the
Laplacian of the variable is used as the initial condition
for the forecast model. Merging the domains produces
arbitrary gradients and unrealistic analysis results. The
problem with large length scales is general. The reason
that it is not significant elsewhere may be because the
contribution from these very large scales is small in the
lower levels. We solved this problem by defining the
horizontal background error in spectral space for the
streamfunction and the unbalanced part of velocity po-
tential for sigma levels (pressure divided by surface
pressure, as defined by Phillips 1957) above 0.15, where
the characteristic spatial scales are very large. Dot prod-
ucts of the forcing field and diagonal background error
in spectral space account for the variance and the hor-
izontal correlation at these levels. The vertical corre-
lation is done with recursive filters over whole fields.

4. Estimation of background error covariance

The error variance is estimated in grid space by what
has become known as the NMC method (Parrish and
Derber 1992; Rabier et al. 1998). The error statistics are
estimated with the differences of 24- and 48-h forecasts
valid at the same time for 49 cases distributed over a
period of 1 yr. Both the amplitudes and the scales of
the background error were tuned to represent the 6-h
forecast error. The statistics that project multivariate re-
lations among variables are used in the data assimilation
as derived from the NMC method. The standard devi-
ations of the background error for the analysis variables
as functions of latitude and height are shown in Fig. 4.
The amplitudes are larger in midlatitudes than in the
Tropics, and larger in the Southern Hemisphere than in
the Northern Hemisphere for the streamfunction, the
unbalanced temperature, the unbalanced surface pres-
sure, and the pseudo–relative humidity. The standard
deviation of the streamfunction increases with height
and peaks between 200 and 300 mb in most areas. The

unbalanced part of the temperature has three local max-
ima: near the surface, around 200 to 300 mb, and near
the top of the model domain. The standard deviation of
the unbalanced part of velocity potential has its maxi-
mum in the Tropics and the amplitude increases with
height to 150 mb, then decreases. The amplitude of the
error of pseudo–relative humidity peaks around 500 mb
in the midlatitudes and around 200 mb near the equator.
The standard deviation of the unbalanced surface pres-
sure has local maxima in the midlatitudes in both hemi-
spheres.

We test two different ways of estimating the corre-
lation length scales. The diagonal background error co-
variance in spectral space, estimated from the differ-
ences of 24- and 48-h forecasts, is used to retrieve the
scale information. The dot product of the square root
of the two-dimensional error covariance and the spec-
trum of a delta impulse at a given latitude was taken
and the result was transferred back to the grid space.
The field is then fitted with results of the recursive filters
to find the scale. A range of scales that cover those
found in the error statistics is divided into equally
spaced small increments. The result of recursive filters
for each incremental scale is used to build a table. This
table is then used to find the corresponding scales of
each isotropic structure in the background error statis-
tics. The structure is fitted locally in the horizontal di-
rections. The procedure is repeated for each variable at
each latitude and height to find the horizontal scales of
the structure function.

For the streamfunction, the horizontal scales can also
be estimated from the variance of the vorticity and
streamfunction. The formula

1/48Vc
L 5 1 2Vz

(see appendix) is used to find the scale of the stream-
function, where Vc is the variance of the streamfunction
and Vz is the variance of the vorticity. Similarly, the
variance of each variable and the variance of its second
derivative are used to estimate its horizontal scales. The
second derivatives are calculated in spectral space. All
the variances are calculated on the grid so that the local
scale information can be estimated. We find that this
method produces better results than those of the pre-
vious method. Figure 5 shows the estimates of hori-
zontal scales of the analysis variables. The horizontal
scales of the streamfunction and unbalanced part of ve-
locity potential are largest in the Tropics and the scales
increase with height. The horizontal scales of temper-
ature, surface pressure and pseudo–relative humidity are
larger in the Southern than in the Northern Hemisphere
but are everywhere much smaller than those of the
streamfunction and velocity potential. It is found that
the horizontal scales decrease when the resolution of
the forecast model is increased.

The vertical scales are estimated with the vertical
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FIG. 4. The standard deviation of the background error variances
of (a) the streamfunction (106 m2 s21), (b) the unbalanced velocity
potential (106 m2 s21), (c) the unbalanced temperature (K), (d) the
pseudo–relative humidity, and (e) the unbalanced surface pres-
sure[ln(kPa)].

correlation of each variable. A second table that contains
the corresponding scales and the recursive results, is
built to cover the range of vertical scales. The table is
used to find the scales in vertical grid units for the
corresponding structures in the vertical correlation. The

correlation is fitted locally in the vertical direction. The
scale of the best fit from the table is assigned as the
scale of the variable at that vertical level for each lat-
itude. Note that the vertical scales are also locally de-
fined so that the negative correlation further away in the
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FIG. 5. The horizontal scales (in units of 100 km) of the error
structure function as functions of latitude and height for (a) the
streamfunction, (b) the unbalanced velocity potential, (c) the unbal-
anced temperature, (d) the pseudo–relative humidity, and (e) the un-
balanced surface pressure.

vertical direction is not included. For unbalanced tem-
perature, the localized vertical correlation might intro-
duce a hydrostatic imbalance. However, we find no sig-
nificant evidence of imbalance when compared with the
analysis results that allow negative correlations, for ex-

ample, with the analysis variables defined via coeffi-
cients of empirical orthogonal functions (EOF). For fu-
ture three-dimensional anisotropic application, the lo-
calized correlation with recursive filters is chosen. Fig-
ure 6 shows the vertical scales of the error structure of
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FIG. 6. The vertical scales (in units of the vertical grid) of the error structure function for (a) the streamfunction, (b) the unbalanced
velocity potential, (c) the unbalanced temperature, and (d) the pseudo–relative humidity.

the analysis variables. The scales are largest near the
surface boundary layer partly because of finer grid spac-
ing. The vertical scales of the streamfunction are the
largest out of all the analysis variables, followed by the
unbalanced temperature. In general, the vertical scales
are smaller near the Tropics than in the midlatitudes.
These results are consistent with what is reported by
Rabier et al. (1998) and by Ingleby (2001).

It has been recognized that objective analysis using
the Gaussian shape to model the covariance severely
hampers the ability of the analysis to assimilate the
smallest scales. The power spectrum of a Gaussian-
shaped covariance, itself being of Gaussian form, drops
off faster than the spectral decay of the real atmosphere.
If we assume that for small scales the background has

little skill, then its error should have similar structure
to the field itself (A. Lorenc 2001, personal commu-
nication). Consequently, the tails of the power spectra
of the background error should be fatter (energy de-
creases slower) than those of any purely Gaussian spec-
trum. The ‘‘fat-tailed’’ feature in the spectra of error
covariances is also observed when the error covariance
is defined in spectral space, as in the current operational
SSI. It is straightforward to apply a background error
covariance with a fat-tailed spectrum in a 3DVAR that
is defined in spectral space. To achieve a fat-tailed spec-
trum when using the recursive filters in physical space
for the correlation part of the background error, a linear
combination of multiple recursive filters is needed.

In our procedure, two sets of horizontal scales are
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FIG. 7. The wind analysis increments in vectors superimposed on
contours of U-component increments at sigma level 0.267, of a 1 m
s21 westerly wind observational residual at 508N and 308W at 250
mb.

FIG. 8. Same as in Fig. 7 but the vertical cross section of the U-
component analysis increments.

FIG. 9. Same as in Fig. 7 but the vertical cross section of the
temperature analysis increments.

applied. The second set of the horizontal scale is set to
be a half the first and the scales estimated from the NMC
method fall between the scales applied. The energy of
the analysis increments is projected among the scales.
For use with a massively parallel processor (MPP) ma-
chine, the horizontal smoothing is done when the do-
main is divided into horizontal slices and the vertical
smoothing is done when the domain is in vertical col-
umns. For computational efficiency, a single recursive
filter is used in the vertical direction for each variable.
Nonseparability of the statistics was highlighted in the
papers describing the ECMWF 3DVAR system (Cour-
tier et al. 1998; Rabier et al. 1998; Andersson et al.
1998) with different horizontal correlations at different
levels, and different vertical correlations for different
horizontal wavenumbers. Our configuration only allows
the specification of different horizontal scales at differ-
ent levels, but not different vertical correlations for dif-
ferent horizontal wavenumbers. With extra sets of anal-
ysis variables, one for each of the multiple Gaussian
scales (two in our setup), both scale-dependent multi-
variate relations and nonseparability (different vertical
scale for each horizontal scale) are possible.

5. Analysis and assimilation results

The structure functions and the multivariate corre-
lations can be visualized through the analysis increment
produced by a single wind observation. Figure 7 shows,
at sigma level 0.267, the wind analysis increments in
vectors superimposed on contours of u increments, of
a 1 m s21 westerly wind observational residual at 508N

and 308W at 250 mb. The uneven spacing in the incre-
ment contours shows the results of the multiscaled back-
ground error. The characteristics of the fat-tailed error
covariance are shown in physical space, which allows
the contour gradient to be tight when necessary, for
example, dense observations, and to be loose where
there is no other forcing. The vertical cross section of
the analysis increment of u-component and projected
temperature increments are shown in Figs. 8 and 9.
North–south temperature gradients are induced through
the multivariate correlation in the definition of the bal-
anced part of the temperature. The changes in the mass
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FIG. 10. Anomaly correlations in the extratropics for (a) the North-
ern Hemisphere and (b) the Southern Hemisphere. Solid lines are
from the experiment and dashed lines are the control.

FIG. 11. Day-3 rms vector wind errors in the Tropics at (a) 200
and (b) 850 mb. Solid lines are from the experiment and dashed lines
are the control.

field are stronger in amplitude and shorter in vertical
scale above the forcing than below.

The analysis system is tested against the operational
SSI at NCEP. Two low-resolution T62 data assimilation
experiments are cycled for 19 days to produce 2 weeks
of verifiable 5-day forecasts. Figure 10 shows the anom-
aly correlations in the extratropics (latitude 208–808
north and south) for 500-mb height. Each experiment
is verified against its own analysis. The 14-case mean
for the Northern Hemisphere is 0.750 for the experiment
and 0.751 for the control, and for the Southern Hemi-
sphere the corresponding values are 0.728 and 0.716.
The experimental analysis system produces neutral im-
pact in the Northern Hemisphere and slight (1.7%) pos-
itive in the Southern Hemisphere over the 2-week pe-
riod. The impact in the Tropics, however, is more con-
sistent and positive. The day-3 root-mean-square (rms)
vector wind error at 200 and 850 mb is shown in Fig.
11. The rms vector wind errors for the 200-mb wind
are 8.04 m s21 for the experiment and 8.50 m s21 for
the control, and are 3.95 and 4.55 m s21 for experiment

and control at 850 mb. The improvement over the period
is 5.4% and 13.2% at 200 and 850 mb, respectively.

Smoother solutions have an unfair advantage when
rms is used as a forecast verification statistic. The anal-
ysis increments of the u-component wind at 850 mb in
the Tropics for the experiment and control are shown
in Fig. 12. The increments in the experiment are neither
smoother nor weaker than those in the control.

There are several differences between this grid space
filter approach and the SSI approach. For example, the
experiment employs more localized vertical correla-
tions, thereby dropping negative correlations farther
away in the vertical, and uses a mixture of the spectral
approach and the model grid space filter approach. To
address whether these differences lead to increased
noise during the initial integration of the model, the level
of initial gravity wave noise is checked through the rms
divergence of the analysis and the forecast after the first
time step. The results of the first and last cycles are
shown in Table 1. The global rms divergence (s21) after
the first time step of the forecast decreases slightly from
that of the initial condition for the experiment in both
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FIG. 12. Analysis increments of U-component wind at 850 mb in
the Tropics for (a) (c) the experiment and (b) (d) the control. (a) (b)
Eastern Hemisphere and (c) (d) Western Hemisphere. Contour inter-
val is 2 m s21.

TABLE 2. Global-mean convective precipitation (kg m22) averaged
over the assimilation period.

0–3 h 3–6 h 6–9 h

Experiment
Control

0.2443
0.2449

0.2331
0.2363

0.2459
0.2449

TABLE 1. Global rms divergence (s21) of the analysis and the
forecast after the first time step.

Analysisp1 Forecastp1 Analysisp2 Forecastp2

Experiment
Control

8.593e-6
8.082e-6

8.361e-6
7.962e-6

8.763e-6
7.644e-6

8.583e-6
7.966e-6

cycles, while that of the control decreases in the first
cycle and increases in the last cycle. The global-mean
amounts of the convective precipitation (kg m22) of the
0–3-, 3–6-, and 6–9-h forecasts averaged over the as-
similation period are shown in Table 2. The two systems
produce similar amounts of precipitation globally in the
first 9 h of the forecasts. No evidence of excessive grav-
ity wave adjustment and spinup in the experiment sys-
tem is found.

6. Conclusions

We propose an alternative way of defining back-
ground error covariances in 3DVAR. By using recursive

filters in physical space, the covariance can be made
inhomogeneous. This degree of freedom comes with a
price: a relatively limited freedom to specify the profile
shape of the error statistics in wavenumber space. This
limitation is partially overcome by applying multiple
recursive filters for the structure functions.

In the experiments the error structures are kept similar
to those in NCEP’s SSI since the scales of the back-
ground error structures are estimated by the NMC meth-
od and are assumed to be homogeneous, at least in the
zonal direction. The small impact in the extratropics
indicates that 3DVAR formulated in physical space can
be as effective as in spectral space. The consistent pos-
itive impact in the Tropics indicates that the newly
gained freedom in the background error’s spatial vari-
ation (latitude dependence in the current setup) is ben-
eficial to forecasts compared with the greater freedom
in wavenumber space (as in the SSI) in which the sta-
tistics represent the global characteristics lacking any
spatial modulation.

Cutting up the global domain for recursive filters has
limitations. The problem is more severe in stratospheric
layers where the scales of the structure function are
about as large as the subdomain dimensions. The current
solution is to apply the horizontal background error of
the streamfunction and velocity potential in spectral
space at those vertical levels where this problem arises.

It is straightforward to apply this physical-space 3D
variational analysis to a regional domain. The system
is planned to be tested for operational implementation
in NCEP. For future work we plan to develop a fully
inhomogeneous and anisotropic background error co-
variance in the system using a new extension of the
recursive filtering technique, which is briefly described
in Purser et al. (2002b, manuscript submitted to Mon.
Wea. Rev.).
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APPENDIX

Derivation of Horizontal Correlation Length

The following is a derivation of the formula used to
obtain horizontal correlation length estimates using the
ratio of variance of a field with variance of the Laplacian
of the field. Using streamfunction as an example, let the
streamfunction error covariance be defined as

C 5 V XYc c c1 2

where

1 1
2 2X 5 exp 2 ad ; Y 5 exp 2 a« , and1 2 1 22 2

22a 5 L ; d 5 x 2 x ; « 5 y 2 y .1 2 1 2

The variance Vc is assumed to be constant. Here, (x1,
y1) and (x2, y2) are the coordinates of the two points
being correlated.

Then the vorticity covariance is given by
2 2C 5 ¹ ¹ Cz z c c 91 21 2 1 2

which yields upon completing the differential operators,

2a
2 2 2 2 2 2C 5 8a V XY 1 2 a(d 1 « ) 1 (d 1 « ) .z z c1 2 [ ]8

The vorticity variance Vz 5 C for d 5 « 5 0 is givenz z1 2

by
2V 5 8a Vz c9

and finally, using a 5 L22 we have for the correlation
length estimate, given the vorticity and streamfunction
variances,

1/48Vc
L 5 .1 2Vz
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