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ABSTRACT

To detect weak signals on cluttered backgrounds in high dimensional spaces (such as gaseous plumes in hyper-
spectral imagery) without excessive false alarms requires that the background clutter be effectively characterized.
If the clutter is Gaussian, the well-known linear matched filter optimizes the sensitivity to a given plume signal
while suppressing the effect of the background clutter. In practice, the background clutter is rarely Gaussian.
Here we illustrate non-linear corrections to the matched filter that are optimal for two non-Gaussian clutter
models and we report on parametric and nonparametric characterizations of background clutter.
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1. INTRODUCTION

Imaging spectrometers have been developed and fielded in recent years with high spectral resolution and low
sensor noise. The sensitivity and specificity of these sensors enables them to detect weak signals in cluttered
backgrounds. We are interested in the detection of thin chemical plumes in hyperspectral imagery, and we
in particular seek to improve the detection performance by more carefully characterizing the variability of the
background. We refer to this background as “clutter” to emphasize that it arises not so much from noise in the
sensor, but from the unknown layout of whatever materials happen to be in the scene. In particular, the clutter
is not something that one would particularly expect to be Gaussian in its distribution. Our interest is twofold:
how can we effectively characterize the clutter, and how can we exploit that characterization to better detect
plumes?

We begin with a review of the physical formulation of the plume problem in Section 2 where we identify
the linearization that we use as our starting point. This formulation is approximate and does not cover all
aspects of the problem, but it allows us to concentrate on one of the most important aspects of the problem:
the characterization of the background clutter. In Section 3, we describe a variety of non-Gaussian models
and statistics that can be used to characterize the clutter. We follow in Section 4 with methods of using these
statistics and models to effectively detect weak plumes. In Section 5 we describe statistics of actual images, and
in Section 6 we conclude with an outline of progress to date and areas for future work.

2. A BRIEF FORMULATION OF THE PLUME PROBLEM

Radiative emission, absorption, and transport through the atmosphere are all nonlinear physical processes.1

The hyperspectral sensor itself will introduce further nonlinearities. Nonetheless, a linear signal-in-noise model
can often be adequate for modelling the effect of weak plumes with characteristic spectral signatures. Note,
however, that if the background clutter is non-Gaussian, then a linear signal model does not necessarily imply
that optimal detectors are linear. Physically motivated nonlinear preprocessing steps (e.g., conversion of radiance
to brightness temperature, or compensation of atmospheric distortions) can sometimes improve the quality of
the linear signal-in-noise model.

In each pixel, imaging sensors measure an at-sensor radiance (Lat−sensor). Off-plume contributions to
Lat−sensor include thermal emission from atmosphere (Lpath) and instrument∗ (Lsensor), and radiance from the
ground (Lgnd), attenuated by atmospheric absorption (τ atm). That is

Lat−sensor−off−plume = Lpath + Lsensor + Lgndτ atm (1)

Author contact information: {jt,bfoy,afraser}@lanl.gov
∗This includes both sensor noise and thermal radiation from the sensor itself onto its own focal plane.



where
Lgnd = B(T gnd)εgnd + Ldownwelling(1− εgnd) (2)

and B(T ) is blackbody radiation at temperature T , and εgnd is the ground emissivity. Here, Ldownwelling includes
radiation impinging on the ground, a fraction 1− εgnd of which is then reflected back toward the sensor.1

The on-plume radiance includes two other effects: thermal emission from the plume (Lplume), and absorption
of ground emission by the plume (τ plume). Thus:

Lat−sensor = Lpath + Lsensor + Lplumeτ atm
︸ ︷︷ ︸

+Lgnd τ plume
︸ ︷︷ ︸

τ atm (3)

where the underbraces identify the terms that are due to the presence of a plume. At each wavelength λ, the
weak plume transmissivity depends on column density no and the plume signature bλ with

τplumeλ = e−nobλ ≈ 1− nobλ (4)

The vector emissivity is given by
εplume = 1− τ plume ≈ nob, (5)

and the radiance due to the plume is given by

Lplume = B(T plume)εplume ≈ B(T plume)nob. (6)

So the full at-sensor radiance, due to the background and the plume, is given by

Lat−sensor ≈
[
Lpath + Lsensor + Lgndτ atm

]
+ nobτ

atm
[
B(T plume)− Lgnd

]
(7)

We remark that all quantities vary from pixel to pixel; Lpath and τ atm are usually nearly constant from pixel to
pixel . All but no are wavelength dependent. We can re-express this as

r = εb+ x (8)

where r = Lat−sensor−on is the radiance measured at the sensor, x =
[
Lpath + Lgndτ atm

]
+ Lsensor is the back-

ground plus noise (what we are calling “clutter”), b is the plume signature, and ε = noτ
atm

[
B(T plume)− Lgnd

]

is the plume “strength” which includes as well as column density, factors for atmospheric transmission, and the
thermal contrast between the plume and the ground. The part in square brackets can have a complicated wave-
length dependence, but is often constant across the spectrum of interest.2We remark that although r corresponds
to what we measure, x corresponds to the clutter that we model.

This fairly simple formulation motivates our interest in studying Eq. (8). Alternative physical derivations
appear in Refs. [2–4]. One may reformulate this expression to incorporate some atmospheric compensation;5 to
the extent that the compensation is accurate, this provides a number of advantages, from simplifying the ground
clutter, to reducing the wavelength dependence of the plume strength.

3. CHARACTERIZING CLUTTER

3.1. Gaussian model

A multivariate Gaussian distribution provides a simple model for the clutter, with a number of useful advantages.
It is parameterized by a mean µ ∈ Rd and a symmetric positive semi-definite covariance matrix K ∈ Rd×d:

P (x) = (2π)−d/2 |K|−1/2 exp

[

−
1

2
(x− µ)TK−1(x− µ)

]

(9)

The covariance matrix K = 〈(x − µ)(x − µ)T 〉 expresses the various band-to-band correlations. Given the
covariance matrix, one can identify the directions in Rd in which the clutter has low variance. These low-
variance directions are useful because they are more noticeably influenced by weak signals.



Since µ and K are not known a priori, they are usually estimated from the data using

µ̂ = (1/N)
∑

i

xi (10)

K̂ = (1/N)
∑

i

(xi − µ̂)(xi − µ̂)T (11)

With O(d2) free parameters in the K̂, it is easy to overfit the model, and in particular to underestimate the
variance in the “thin” directions.6

3.2. Non-Gaussian models

3.2.1. Elliptically Contoured (EC) distributions

Manolakis et al.7 proposed using elliptically contoured (EC) distributions to describe hyperspectral data. One
very useful property that EC distributions share with Gaussian distributions is that they are characterized by a
covariance matrix K. In general, an EC distribution is given by a formula

P (x) = (2π)−d/2 |K|−1/2 h(r2) (12)

where r2 = (x− x̂)TK−1(x− µ) is the Mahalanobis distance, and h(r2) is a positive monotonically decreasing
function of r2. The Gaussian is a special case of the EC family, given by h(r2) = exp(−r2/2).

Since the EC distributions are characterized by a covariance matrix K, they also identify the useful “thin”
directions. But by generalizing h(r2), the tails of the distribution can be more faithfully modeled. Marden and
Manolakis8, 9 recommend a multivariate t-distribution, for which (up to normalization)

h(r2) =

[

1 +
1

ν
r2
]−(d+ν)/2

(13)

Here, the parameter ν characterizes the shape of the distribution; as ν → ∞, the distribution approaches a
Gaussian, but for smaller values of ν the distributions have heavier tails.

3.2.2. Mixture models

Mixture models are distributions that can be expressed as positive linear combinations of other distributions;
e.g.,

P (x) = p1P1(x) + p2P2(x) + · · ·+ pKPK(x) (14)

where 0 ≤ pi ≤ 1, and
∑

i pi = 1, and each Pi is a normalized probability distribution. In practice, K is usually
small (to keep a reasonable number of fitted parameters), and each Pi is a relatively simple distribution, such as
a Gaussian or an EC distribution.

Although mixture models are flexible and physically plausible – each mixture component corresponds to a
physically distinct material on the ground – there are costs to using them. Because the likelihood function has
singularities, direct maximum likelihood parameter estimation can fail outright. Even for regularized criterion
functions, there are not closed form expressions for maxima; simultaneous optimization of all the parameters
in all the models can be problematic and iterative procedures such as expectation-maximization are typically
employed, but these are not guaranteed to converge to a global optimum. In general, these models have a lot of
free parameters, and with limited data to fit them, the variance of the estimates can be unduly large.

But despite these pitfalls, mixture models can still be useful. Funk et al.10 used k-means to fit data to a
mixture of Gaussians which were effectively assumed not to overlap and found improved detection performance.
Marden and Manolakis8 used an expectation-maximization (EM) algorithm to fit multiple EC distribution clus-
ters to hyperspectral data. In another paper, Manolakis and Marden11 described a local principal components
approach using vector quantization that reduces Euclidean distance errors.



3.2.3. Parzen window model

The Parzen window12 (see also Ref. [13, pp. 164–171]) model provides a nonparametric estimate of the distribution
P (x) from a sample of N points taken from that distribution:

P̂ (x) = (1/N)
N∑

i=1

σ−dg(
|x− xi|

σ
) (15)

where g(r) is a “kernel” function that decreases monotonically with increasing r and is normalized so that a
d-dimensional radially symmetric distribution has unit volume. A typical choice is

g(r) = (2π)−d/2 exp(−r2/2). (16)

The tail of a Parzen window estimator depends on the kernel g(r), and is Gaussian if the kernels are Gaussian.
Thus, this is not a very good way to model fat-tailed distributions.

Also, all directions are only as thin as the Gaussian kernel g(r). To achieve a large dynamic range in the
variance of the distribution in different directions, a very large number of kernels are necessary.

What the Parzen window does have that is potentially advantageous is that it is very data adaptive; in fact,
with appropriate choice of σ as a function of N , it can in the N → ∞ limit model virtually any continuous
distribution.

3.2.4. Endmembers

Endmembers14 model the data in a way that does not provide an explicit probability distribution function P (x)
for the background clutter. In its simplest form, the endmember model provides a small number k of distinct
material spectra, {e1, . . . , ek}, and then asserts that most of the variance in the clutter can be accounted for in
terms of positive linear combinations of these spectra. That is, each pixel xi is modelled as

xi =

k∑

j=1

pijej + ni (17)

subject to
∑

j pij = 1. Here, 0 ≤ pij ≤ 1 is interpreted as the abundance of the jth material in the ith pixel,
and ni is the residual which is usually modelled as some kind of Gaussian noise process.

The endmembers are sometimes referred to as “interferers” and detection in a scene that is modeled by
endmembers is usually achieved by first “projecting out” the subspace spanned by the endmembers, and then
employing an ordinary matched filter on the lower dimensional (d−k) space that is orthogonal to the endmembers.
See, for instance, Refs. [15, 16].

4. LINEAR AND NONLINEAR PLUME DETECTORS

Usually detector performance is graded probabilistically in terms of a receiver operating characteristic (ROC)
that describes the trade off between detection probability and false alarm rate. Given probabilistic descriptions
of the possible signals, i.e., PH0

and PH1
for measurements of a pixel with and without a plume respectively and

a radiance measurement r, the familiar likelihood ratio test is optimal.13, 17 Here the test is given by

H =







H0 L(r) < γ

H1 L(r) ≥ γ
(18)

where

L =
PH1

(r)

PH0
(r)

(19)

is the likelihood ratio. The threshold γ determines a single point on the ROC curve, and is often specified to
yield a particular false alarm rate.
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Figure 1. Decision boundaries of the GLRT detector. The lines follow level sets of L(r) from Eq. (21). A whitened
distribution in d = 2 dimensional space is centered at the origin; these contours correspond to detection of a plume
with signature b = [0, 1] in the vertical direction. (a) A Gaussian distribution leads to linear contours, corresponding
to constant values of the matched filter q = K−1b. Since this is whitened space, K = I and q = b and the contours
are horizontal lines. (b) A leptokurtic (fat-tailed) distribution is provided by a multivariate t-distribution with ν = 5.0.
Here the detection contours bend away from the origin, relative to how they behave for a Gaussian distribution. (c) A
platykurtic (thin-tailed) distribution is given by P (r) = C exp(−|r|4) where C is just a normalization constant. Here, the
contours bend back toward the origin.

When probabilistic descriptions are unavailable or incomplete, designing optimal or even good detectors is
more challenging. In this section, we will describe and illustrate a variety of detectors and discuss conditions for
which they are optimal or useful.

If the plume strength ε were known, then the likelihood ratio could be applied directly, and the optimal test
for plume versus no-plume would be in terms of the ratio

L(r) =
P (r− εb)

P (r)
. (20)

But since ε is unknown, this approach needs to be modified. Two approaches for doing this follow.

4.1. Generalized Likelihood Ratio Test (GLRT)

To treat the case of unknown signal strength, Kelly18 introduced the generalized likelihood ratio test (GLRT).
The idea behind the GLRT is to replace all nuisance parameters (such as ε) with their maximum likelihood
estimates. Here,

L(r) =
maxε P (r− εb)

P (r)
. (21)

Fig. 1 shows contours of this likelihood ratio for three different distributions P (x): one is Gaussian, one is fat-
tailed, and one is thin-tailed. The GLRT is not known in general to be optimal, but Scharf and Friedlander19

have shown that it does possess optimality properties in some special cases (in particular, when the distribution
is Gaussian).

4.1.1. GLRT for Gaussian

If P (r) is Gaussian, then the formula in Eq. (21) can be used directly. We will for simplicity assume µ = 0 and
that K is known. Then P (r) = C exp(− 1

2r
TK−1r) for constant C = (2π)−d/2|K|−1/2, and the GLRT becomes

L(r) =
maxε C exp

[
− 1
2 (r− εb)TK−1(r− εb)

]

C exp
[
− 1
2r

TK−1r
]

= max
ε
exp

[

−
1

2
(r− εb)TK−1(r− εb) +

1

2
rTK−1r

]

(22)
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Figure 2. Decision boundaries for the local derivative detector. This figure is the same as Fig. 1, except that it uses
the local derivative method instead of the generalized likelihood ratio test. The lines follow solutions of Eq. (28) (a). A
Gaussian distribution leads to linear contours. The contours in this figure (like those in Fig. 1) are not calibrated, so
provide information only on the “shape” of the contours. (b) A leptokurtic (fat-tailed) distribution leads to detection
contours that bend away from the origin. (c) A platykurtic (thin-tailed) distribution leads to contours that bend back
toward the origin.

Taking the logarithm,

`(r) = logL(r) = max
ε

(

− (r− εb)TK−1(r− εb) + rTK−1r

)

= max
ε

(

εbTK−1r+ εrTK−1b− ε2bTK−1b

)

(23)

The maximum occurs at

ε =
bTK−1r

bTK−1b
(24)

which leads to

`(r) =

(
bTK−1r

)2

bTK−1b
. (25)

Recall that this derivation assumed that the Gaussian distribution P (r), and in particular the covariance K,
is known precisely. In practice, K must be estimated from data. The natural choice, advocated by Reed et al.,20

is to use the estimator for K̂ in Eq. (11) in place of the exact K in Eq. (25). In Kelly’s derivation,18 a more
careful approach, in which µ̂, K̂, and ε are simultaneously estimated in the numerator of Eq. (21), leads to a
discriminant function of the form

|bT K̂−1r|2

bT K̂−1b
(

1 + 1
N r

T K̂−1r
) , (26)

although a later publication21 suggested that the simpler matched filter in Eq. (25) was more practical.

Note that Eq. (25) implies that the contours of constant likelihood ratio occur at constant values of qT r where
q = K−1b. These are the contours of the optimal linear matched filter that one can obtain more simply by
maximizing a signal to clutter ratio. Although we can derive the filter without appealing to Gaussian distributions
at all, if the data are not Gaussian, the probabilistic performance of the detector may not be optimal.

4.2. Local derivative method (small ε limit)

Since we do not know the magnitude of ε, we cannot use the likelihood ratio in Eq. (20). In the GLRT, we use
the maximum likelihood estimate of ε, but that can lead to values of ε that might not accord with what is known



about the physics of the plume. We will consider here the situation in which we don’t know the magnitude of ε,
but we do know that it is small. We begin with the likelihood ratio in Eq. (20), and take the small ε limit.

L(r) =
P (r− εb)

P (r)
≈

P (r)− εb · ∇P (r)

P (r)
(27)

Since we are interested in contours of constant L(r), these occur when

b · ∇P (x)

P (x)
= c (28)

for some constant c which depends on p. We remark that the constant c is like the threshold γ in Eq. (18),
and needs to be “calibrated” against, for instance, a desired false alarm rate. Fig. 2 illustrates what contours
specified by Eq. (28) look like for three different distributions P (x).

4.2.1. Gaussian P (r)

Note that for Gaussian P (r) = C exp(− 1
2r

TK−1r), we have

b · ∇P

P
= b · ∇(logP ) = b · ∇

(

logC −
1

2
rTK−1r

)

= bTK−1r (29)

which implies that contours are along lines of constant qT r where q = K−1b.

5. STATISTICS OF HYPERSPECTRAL IMAGERY

It is evident by inspection that background clutter in hyperspectral imagery is non-Gaussian. To illustrate this,
we provide two small 128×128 chips from AVIRIS22, 23 dataset f970620t01p02 r03 sc01; this is a reflectance
image over the Moffett Field area in California. One chip is from a predominantly rural area, and the other
is an urban scene. In both cases, as seen in Fig. 3, scatterplots of the first two principal components of the
hyperspectral image show decidedly non-Gaussian distributions.

But quantitative characterization of multivariate distributions (especially the high-dimensional distributions
in hyperspectral imagery) is difficult – this is the curse of dimensionality problem – so we characterize distribu-
tions of various one-dimensional projections of the data.

5.1. Mahalanobis distances

Given a covariance matrixK, the Mahalanobis distance is Euclidean distance in the whitened space: in particular,
the Mahalanobis distance between two points r1 and r2 is given by

r2 = (r1 − r2)
TK−1(r1 − r2). (30)

If the data were Gaussian, the Mahalanobis distances would have a chi-squared distribution with d degrees of
freedom, where d is the dimension of the space (i.e., the number of channels in the hyperspectral imagery). For
more general EC distributions, the distribution of Mahalanobis distances will be different. For real hyperspectral
images, the distribution of Mahalanobis distances is usually reported to be fat-tailed,7 and we see that as
well in Fig. 4. If the data are distributed according to the multivariate t-distribution in Eqs. (12,13), then the
Mahalanobis distances are distributed with an Fd,ν distribution.

8

5.2. Distribution of matched-filter projections

A more direct alternative to Mahalanobis distances are projections of the data onto one-dimensional axes. This
provides scalars whose distributions can be characterized by statistics, such as the kurtosis, which is defined

κq =
〈(qT r− qT µ̂)4〉

〈(qT r− qT µ̂)2〉2
(31)

Unlike the Mahalanobis distances, direct projections provide statistics which do not depend on estimating the
covariance matrix. The projection provides a different set of scalars for each projection direction b. As well as
providing a statistic that is direction-dependent, this approach provides a statistic that is particularly appropriate
for characterizing the “important” directions of a distribution – these are the directions that a matched filter
would employ in a linear plume detection scenario.



(a) (b) (c)

−2 −1 0 1 2 3

x 10
4

−2

−1

0

1

2
x 10

4

PC 1

P
C

 2

(d) (e) (f)

−10 −8 −6 −4 −2 0 2

x 10
4

−1

−0.5

0

0.5

1

1.5

2
x 10

4

PC 1
P

C
 2

Figure 3. Two small 128×128 chips from an AVIRIS hyperspectral image. The upper panels (a-c) correspond to a chip
from a mountainous part of the scene, while the lower panels (d-f) correspond to an image of the urban area. Here,
(a,d) are images of the first principal component, and (b,e) are images of the second principal component. Scatterplots
of the first and second principal components appear in (c,f). It is evident in these scatterplots that the data are not well
described as Gaussian.

5.2.1. Finite sample effects in estimates of kurtosis and variance

For an EC distribution, the kurtosis will be the same for all projections. We do know that the variance of the
data along a projection does vary with direction; indeed, the variance in direction b is given by bTKb. So one
way to investigate whether the kurtosis varies with direction is to test whether it varies with variance. For a
given data set, we examined both the kurtosis and the variance in a number of random directions. Since we are
particularly interested in directions associated with matched filters, we will for every direction b also consider
the matched-filter direction q = K−1b. If we do this for simulated data from an EC distribution, we should
find that the kurtosis is independent of direction, and therefore, independent of variance. Fig. 5(a) shows what
this plot looks like when the experiment is performed naively, on a dataset with a small number of pixels. It
appears that there is a correlation between variance and kurtosis, with the low-variance directions exhibiting
low kurtosis. That this is a finite-sample effect is evident in Fig. 5(b) which shows that for a data set with a
lot more samples, the effect is much smaller. To alleviate this finite-sample bias, we perform a more careful
computation, in which the hyperspectral image is partitioned into three disjoint regions. The first region is used
to estimate the covariance matrix, the second region is used for estimating variance, and the third region is used
for estimating kurtosis. As Fig. 5(c) shows, this more careful approach does not show a correlation between
variance and kurtosis for simulated EC data.

5.2.2. Kurtosis and variance in real hyperspectral imagery

In investigating whether such a correlation exists in real data, we will henceforth use the more careful approach
with the partition of the image into disjoint regions. In Fig. 6, we compute kurtosis-variance plots for the two
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Figure 4. Cumulative histograms of Mahalanobis distances for points in the two AVIRIS images shown in Fig. 3. Panel
(a) is the rural scene, and panel (b) is the urban scene. The dashed line corresponds to the χ2

d distribution with d = 224,
and the dotted lines correspond to F distributions with d = 224 and ν = 1, 2, . . . , 10. If the data were Gaussian, then
the (dashed) chi-squared curve would characterize the Mahalanobis distances. Although no single F distribution fully
characterizes the Mahalanobis distances, it is evident that these distances are distributed with tails much fatter than that
of the chi-squared distribution. The urban scene in (b) is somewhat fatter-tailed than the rural scene in (a).
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Figure 5. Variance-Kurtosis plots for simulated EC data. Variance and kurtosis associated with random directions are
shown with the plus (+) symbol, and the matched-filter directions are indicated with open circles (◦). (a) Here the
data is a simulated 64×64 image, with d = 100 channels and the multivariate t-distribution is used with ν = 5.0. The
covariance matrix used for the simulated data is the identity matrix: K = I. Here, the same 64×64×100 data is used for
the covariance matrix estimation, for the variance computation, and for the kurtosis computation. Two phenomena are
evident in this plot: kurtosis is positively correlated with variance, and the matched-filter directions have both smaller
variance and smaller kurtosis. (b) The same naive computation is performed in this panel as was done in panel (a),
but the difference is that a much larger sample of data is used: a simulated 256×256 image. The same phenomena that
were observed in (a) are observed in this panel, but with a much larger number of samples, the effects are decidedly less
pronounced. (c) Same data as in panel (a), but the computation is based on a more careful scheme. The data is divided
into three distinct regions. One region (half of the pixels) is used to estimate the covariance matrix K̂ that is used to
generate matched-filter directions q = K̂−1b. The remaining half of the data is divided into two quarters. For each
direction, one quarter is used for the variance estimate, and the other quarter is used for the kurtosis estimate. This plot
shows that this more careful computation yields a scatterplot which does not exhibit either of the anomalous phenomena
seen in the more naive computation in panel (a).
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Figure 6. Kurtosis-variance plots for the (a) rural and (b) urban scenes of the AVIRIS data described in Fig. 3. Variance
and kurtosis associated with random directions are shown with the plus (+) symbol, and the matched-filter directions
are indicated with open circles (◦). It is not surprising that the variance would be much smaller for the matched-
filter directions, indeed many orders of magnitude smaller, since the matched-filter directions are explicitly designed to
minimize the magnitude of the background clutter. But what is striking is that the kurtosis in the low-variance matched-
filter directions is much smaller than the kurtosis in the higher-variance random directions; indeed, the matched-filter
directions exhibit a kurtosis roughly equal to three, the same value exhibited by a Gaussian distribution. Also, as observed
in Fig. 4, the urban scene in (b) exhibits considerably fatter tails (more kurtosis) than does the rural scene in (a).
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Figure 7. (a) Broadband image of the Hyperion image, obtained by adding the signal in all the channels. Some evidence
of striping can be seen even in this broadband image. Particular channels show the effect much more strikingly. (b)
Mahalanobis histogram, like those shown in Fig. 4 indicates a very fat-tailed distribution. (c) Kurtosis-variance plot
exhibits very large kurtosis values for the random directions, although the match-filter directions show, by comparison,
much smaller kurtosis values.

AVIRIS datasets, and find that there is a strong correlation. Even accounting for the finite sample effects, lower
variance directions in these datasets exhibit smaller kurtosis (and are more Gaussian) than random directions
which tend to have higher variance. This suggests that the elliptically contoured models do not adequately
capture this aspect of the tails of the distributions of real data.

5.2.3. Remark on image artifacts

The effect seen in the AVIRIS data has been observed in other hyperspectral datasets as well. We exhibit here
a dataset of the Collembally Irrigation Area in Australia, taken from the spaceborne Hyperion sensor.24

Fig. 7 illustrates this Mahalanobis and Kurtosis-variance analysis of the original Hyperion data. Evidence for
a strongly leptokurtic (heavy-tailed) distribution is seen in both the Mahalanobis histogram and in the kurtosis-
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Figure 8. (a) Broadband image of the cleaned-up Hyperion image. Comparison to Fig. 7(a) shows that this is a sub-image
of the original; the sub-image was chosen to avoid some of the artifacts that were evident in the original. Also, some of
the more problematic bands in the original (specifically, bands 94, 99, 116, 168, 169, 190, and 203) were eliminated in this
image. (b) The Mahalanobis histogram shows that the fat-tail seen in Fig. 7(b) is hardly evident in the cleaned-up image.
(c) Kurtosis-variance plot shows that the kurtosis for random directions (+) in the cleaned-up image is considerably
smaller than for the original image, as seen in Fig. 7(c). In fact, in this data, the kurtosis for the random direction
averages near 3.0, the kurtosis of a Gaussian distribution. The kurtosis for the matched-filter directions are much more
tightly clustered around the Gaussian kurtosis value of 3.0.

variance plot. However, a cursory examination of the data indicates that there are a number of imaging artifacts.
Indeed some of these can be seen in Fig. 7(a) in the form of vertical stripes.

By eliminating some of the problematic spectral bands, and by choosing a chip of the image that avoids
the edges of the data and some of the striping artifacts, a “cleaned-up” dataset was produced. This is a very
unsophisticated approach to data clean-up, but it illustrates the point, evident in Fig. 8, that cleaning up an
image can go a long way to eliminating, or at least reducing, the fat-tailed distribution of the data.

6. CONCLUSION

We observe, as others have (e.g., Ref. [7]), that hyperspectral image data is not always well-modelled as Gaussian,
and usually exhibits heavier tails than Gaussian. In the presence of non-Gaussian clutter, the optimal detectors of
weak signatures were shown to be nonlinear. A local derivative method was introduced as a small ε alternative to
the generalized likelihood ratio test (GLRT). The local derivative method is equivalent to the GLRT for Gaussian
data, and gives results for non-Gaussian distributions that are qualitatively similar to the GLRT.

Our investigation of the non-Gaussian characteristics of hyperspectral imagery emphasized distributions of
projected data, instead of Mahalanobis distances. This enabled us to compare the structure of the hyperspectral
clutter in different directions, and we found that projections on directions with small variance are closer to
Gaussian than projections on directions with larger variance. Since matched-filter directions have low variance
by design, we might expect matched-filter detectors to be more nearly optimal than would be predicted by
fat-tailed models of clutter in hyperspectral imagery.

These results contrast with those of McVey et al.,25 who report that false positives produced by a matched
filter are distributed with fatter-than-Gaussian tails. Similar results are reported by Manolakis et al.7 Perhaps
image artifacts, as depicted in Fig. 7 and Fig. 8, play a role in the discrepancy between these reports and our
observations. It is also possible that actual gaseous plume signatures are not well-modeled as “random” directions
(i.e., there may be systematic correlation between the target and the ground scene signatures).
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