Spectrum Commons: Unlicensed, Short-term, Dynamic, and Shared-Use...

William Lehr

Communications Futures Program (<u>http://cfp.mit.edu</u>) *Massachusetts Institute of Technology*

National Academy of Sciences/Computer Science and Telecommunications Board

Improving Spectrum Mgmt through Market-based Incentive Mechanisms

Washington DC

February 28-March 1, 2006

Email: wlehr@mit.edu

©Lehr, 2006

Commons: unlicensed, dynamic, shared-use (aka infrastructure owner not exclusive licensee)

- □ Commons are market-based too!
- Business models for "commons" are real important
- □ Lessons for how to manage commons access

decou	Future is shared spectrum: decoupling spectrum frequencies from infrastructure investment & applications		
Technology (Capabilities)	Smart radio systems, spread spectrum, transition to broadband platform architectures \rightarrow frequency agility, expanded capacity for sharing		
Revenue (Customer experience)	Heterogeneous networks (3G/WiFi, wireless/wired, global roaming) \rightarrow 24/7 availability, simplicity of use, seemless mobility		
Costs (Network provisioning)	Bursty traffic, multimedia services, fat-tailed usage profiles \rightarrow lower costs, take advantage intermodal competition		
Policy (Spectrum reform)	Transition to expanded flexible market-based licensing and unlicensed spectrum mgmt regimes \rightarrow reduced <i>artificial scarcity</i> due to legacy regulations		

Managing Access	s to Shared Spectrum
GOAL: Market-based ince Incentives for effic	ntives to share efficiently eient radio system design
LICENSES	COMMONS
 market in exclusive spectrum licenses 	 marketplace for technologies and uses
Different MARKET mechanisms	for pricing/allocating costs
Interference Externalities?	
Internalize (strong)	 Shadow price for congestion (weaker?)
Transaction costs?	
Secondary market costs	 Protocol compliance costs (equipment design)

Spectrum scarcity is matter of perspective

User/Use ...

Interference Protection Needed

Transaction
CostsHigh(relative to value)Low

HighUnlicensedC&C, subsidized licensedLowLic /sed/Unlicensed ??Licensed		Weak	Strong
Low Licensed/Unlicensed ?? Licensed	High	Un licensed	C&C, subsidized licensed
	Low	Lic used/Unlicensed ??	Licensed

Smart radio systems: Greater interference robustness More sharing options Market success: More congestion Fast innovation

Off-diagonal cases more common? Weak/low or Strong/high

- Dynamic shared spectrum options
- Multiple, complementary regulatory options

Spectrum Commons : Business Models

Public Commons

- WiFi : Viral deployment by edge-users of wireless devices
 - 802.11x, Bluetooth, WiMax, ???..
- Community networking: Municipal wireless
 - Hot spots, WISPs, City-wide wireless (Philly, SF)

(Semi-) Private Commons

• Mobile provider sharing 3G spectrum:

- Lower infrastructure costs for managing (a) interoperability (seemless connectivity across multiple platforms) and (b) bursty traffic, when (c) spectrum control no longer provides market power.
- Software radio architectures for base stations (and handsets)

Public or (Semi-) Private Commons

- Mesh networking: Ad hoc and semi-fixed networks
 - Sharing public safety broadband networks
 - Ad hoc emergency networks

Ecosystem for Unlicensed Devices

□ Technical (protocols/etiquettes)

- Sharing protocols for decentralized management of resource sharing
- Game theory (incentive compatible coordination/cooperation)
- Cognitive radios (smart/adaptive agents)

Market mechanisms

- Business models
- Transaction/market infrastructure \rightarrow "property rights"
 - Commons (right to use) vs. Licensed (right to exclude)

□ Regulatory regime

- Minimalist (light-handed, technology neutral)
- Cognitive radio \rightarrow certification \rightarrow liability rules/enforcement
- Enhanced "Part 15" rules

Thank you!

WLEHR@MIT.EDU

See:

Lehr, William and Jon Crowcroft (2005), "Managing a Spectrum Commons," IEEE DySPAN2005, Baltimore, November 2005. (see <u>http://cfp.mit.edu/resources/papers/Lehr_Crowcroft_SCD.pdf</u>)

©Lehr, 2006

Goals for a Successful Commons Mgmt Protocol

Promote Innovation	A A	Devices, services, & business models Complement C&C and Flexible Licensed
Minimize spectrum access costs	A	Min entry barriers for new nodes to access spectrum, new technologies to be deployed No real-time usage fees for access
Manage Congestion	۶	Distributed/decentralized congestion management and coordinating usage (aka TCP-like)
Manage etiquette/protocol rules	A A	Lack tradable licenses to allow market mediation of changing technical protocol Need structured process (industry standardization) to mediate change
Promote fair, non- discriminatory access	A A	Promote open access Distributed/decentralized is inherently fair
Minimalist regulation		Decentralize to market forces As minimal regulation as necessary to provide structure Technology & business model neutral

Rules for Mgmt of a Spectrum Commons (part 1)

No Tx only, No protection for Rx only	 Tx need feedback loop to respond to environment Rx need ability to signal presence to gain protection
• Power	 Should anticipate multihop use, Limits on individual Tx (dynamic), but also "Interference Temp" (aggregate flux)
Signaling	 Common channel signaling capability Share global information & make pre-emptible Will aid in supporting cooperation and enforcement
Contention	 Manners, not protocol "TCP-friendly" fair queuing

	Rules for Mgn	nt of a Spectrum Commons (part 2)
	Enforcement	 Protocol should support incentive compatible cooperation, which includes enforcement mechanism Legal sanctions and other institutional frameworks needed to complement protocol. Software radio cert & liability rules will be key.
	Reversibility	 Mechanism needed to de-allocate commons spectrum in short and long term. Pre-emptibility capability will aid short-term deallocation Term limits or regular regulatory review may be required for long-term
	Security/privacy	 Privacy/security protection will be critical Need secure out-of-band control channel? Minimal sharing of information to protect privacy Decentralized privacy mechanisms needed
©	Lehr, 2006	11