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Objectives
* Toestimate recently proposed models of time-changed Lévy processes using daily stock market excess
returns over 1926 - 2006.

» To estimate (filter) the realizations of latent state variables
-autocorrelations
-volatility
taking into account the fat-tailed properties of stock market returns.
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Methodological issues
» Density-based methods (MCMC, particle filters) are difficult with Lévy processes, given density
functions are not typically known.
-Li, Wells and Yu (2006): rely on special cases, and SV + i.i.d. jumps

« Approach here is based on characteristic functions, which are known for Lévy processes.
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Features
* p, is (nonstationary) daily autocorrelation in returns (time-varying coefficients model)

V. is underlying conditional variance
“Leverage effect” via Corr(ds,,dV,) = p,, <0
Day-of-the-week effects & holidays captured by periodic variation in time horizon t,
Conditional fat tails via compensated Lévy process (dL, - oV, dt)

-with instantaneous variance (1 - pfv) V.dt, and

-stochastic jump intensity: Prob,[dL, =x] = k(x)V, dt
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Focus of paper: alternative specifications of dL,
In Lévy densities Prob,[dL, = x] < kix)V,dt, the functional form of (x) is substantially unconstrained.

Finite-activity jumps (+ diffusion): f “k(x)dx < o, k(x) = p(x|jump) (compound Poisson)

SYVANS diffusion + finite-activity normal jumps
SVJ2: diffusion + jumps from a mixture of normals

DEXP:  diffusion + jumps from double exponential

Infinite-activity jumps
VG: diffusion + infinite-activity variance gamma

Y,YY pure-jump model of CGMY (2003)
LS pure-jump log-stable model of Carr & Wu (2003), with negative jumps only
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This is a hidden Markov state space model.
Autocorrelation p, and conditional variance V, are latent state variables; not directly observed.

Define
s iEp, +iYv,
tht(zE, iy) = Ele”™P v | Y,

as the conditional characteristic function summarizing current knowledge of latent state variables (p,, V),
givenpastdata ¥, = (y, ... , ¥,).

Filtration methodology of Bates (RFS, 2006) :
* Recursively update what is known about (p,, V), as summarized by G
.., and the equivalent of Bayes’ law for characteristic functions.

nor using the latest observation

* The log-likelihood function used in MLE is a by-product of the filtration.

» Approach does involve numerical integrations, and approximation issues.



Bayes’ law for characteristic functions
If F(i®, i) = E[e’® *™*] is the joint characteristic function (CF) of (observed) y and (latent) X, then the

CF of x conditional upon observing vy is

Gy (1) = 5= [FU®, if)e "dD (1)
where
p(3) = 5= [F®,0)e dd (2)

Is the marginal density of y.
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Recursive filtration for hidden Markov models
For “semi-affine” processes such as the model above:

1) The transition CFof y.., and x,,, = (p,,,, V,,;) conditional on knowing (p,, V,)is analytic.
(*) summarizing current knowledge of (p,, V,) given past data ¥,

2) Givena joint CF Gt|t
the joint characteristic function F(i®, iy |Y,) of (y,,,, x,,,) conditional on ¥, is also analytic.

3) Given the latest datum y, ,:
-Can numerically compute p(y,,, | ¥,) from (2) (used in ML);
-Can update Gt|t(-) ~ Gm'm(-) using (1);
-Can compute updated moments of (p,.,, V,,,) from Gt+1|t+1(-).

4) Implementation (AML): moment-matching approximate Gt+1|t+1(-):
-Start with priors:  p, | Y, ~ N@ps Wy V, Y, ~ I‘(I7t|t, P,,) and independent
-Compute exact posterior moments given y,
-Approximate posterior distributions by moment-matching normal & gamma

Generalizes the robust Kalman filtration approach of Masreliez (1975)
Bates (RFS, 2006): numerically stable, and performs well for estimation and filtration
Here: five numerical univariate integrations at each time step
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Data: Daily CRSP value-weighted (cum-dividend) log excess returns, over January
2, 1926 - December 29, 2006.

October 19, 1987: -20.0% Nov. 6, 1931: +10.2%
October 29, 1929: -12.6% Sept. 21, 1932: +10.3%
October 28, 1929: -11.9% Oct. 30, 1929: +11.3%

Nov. 6, 1929: -10.1%
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Data: Daily CRSP value-weighted (cum-dividend) log excess returns, over January
2, 1926 - December 29, 2006.

October 19, 1987:  -20.0% Nov. 6, 1931: +10.2%
October 29, 1929: -12.6% Sept. 21, 1932: +10.3%
October 28, 1929: -11.9% Oct. 30, 1929: +11.3%
Nov. 6, 1929: -10.1%

Results
. Day-of-the-week effects
. Overall fit of various models
. Tail properties
. Autocorrelation filtration
. Volatility filtration
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Day-of-the-week effects
Effective length of a business day, relative to 1-day Wednesday returns

1926-2006 1957-2006
#days Description NOBS estimat std.error NOBS estimat std. error
e e
1 Monday close - Tuesday close 3831  1.02 (.04) 2381 1.03 (.04)
1 Tuesday -~ Wednesday 4037 1 2519 1
1  Wednesday - Thursday 3998 94 (.03) 2479 .95 (.04)
1 Thursday - Friday 3924 .93 (.03) 2434 .90 (.04)
1 Friday - Saturday (1926-52) 1141 43 (.02)
2 Saturday - Monday (1926-52) 1120 1.05 (.05)
2  Weekday holiday 341  1.25 (.11) 142 1.09 (.13)
2  Wednesday holiday in 1968 22 73 (.33) 22 .79 (.33)
3  Weekend and/or holiday? 2755  1.10 (.04) 2322 1.15 (.05)
4 Holiday weekend 343 1.58 (.14) 281 1.61 (.15)
5 Holiday weekend _ 6 131 (1.00) _ 4 208 (2.61)
21518 12584

#Includes one weekday holiday (August 14 - 17, 1945)
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Alternate specifications of jump intensities

Prob [dL, =x] =< kix) V. dt

A, .
SVJ2: k(x) < Y ——exp|-——— In L = 75,049.07

(SVILif A, = 0) In L = 75,044.60

C e ¥ x| for x <0
CGMY (2003): k(x) =
Cpe'M|x| x| 7" for x > 0

where C,, Cp, G, M>0and Yp, Y <2

Special cases: -1 double exponential In L =75,047.62
0  variance gamma In L =75,049.48
2 Brownian motion (Heston (1993))

C Log-stable model (Carr-Wu (2003)) InL =75,005.53
In L = 75,050.12

General YY model In L =75,052.12

=h< Q =h< =h< =h<
I
O
*u% I *u% *u% *u%
I
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Unconditional probability density function estimates

1.E+02
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——SVI1
1.E+00 4R —SVJ2
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871019t NG ey v
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vy / \ ; + data
< //'
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-20% -15% -10% -5% 0% 5% 10% 15%
Data: from a histogram of daily excess returns’ residuals (after autocorrelation correction)
Model-based estimates: mixture of horizon-dependent unconditional PDF’s
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Unconditional tail probability estimates

0.1

0.01

0.001

0.0001

LS
l

0.00001 x 5 x
20% -15% -10% 5% 0% 5% 10% 15%

l I

Parametric models:
« Capture extreme tails, and | y| < 2% (2 SD’s)
» Underestimate frequency of returns of [3%, 7%] in magnitude.

—SVIl
—SVJ2
—— DEXP

(95% confidence interval based on 1000 simulated sample paths, using Y'Y parameter estimates)
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A power law?
Distribution functions approach unconditional intensity functions K(y) = (1 - pfv)ﬁr fyk(x)dx
as y - —o; but only for | y| >5% (5 standard deviations). b=

0.01

B 0.001

- 0.0001

‘ 0.00001 ‘ |
100.0% 10.0% 1.0% 0.1¢ 0.1% 1.0% 10.0% 100.0%

y<0 y>0

Unconditional tail probabilities and intensity functions versus | y| ; log scales on both axes
Data: Excess returns’ residuals with estimated time horizons of = 1 day (20,004 observations).
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Autocorrelation filtration
Given conditional normal approximation, autocorrelation filtration is the robust Kalman filtration of
Masreliez (1975):
olnp(y,,, |Y,)

ayt+1

Pratjes1 = Pys ~ th;‘|t

o’ Inp(y,,,|Y,)
8y2

t+1

/4

t+1|t+1

2
= Op + (thvt|t)2
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Autocorrelation filtration
Given conditional normal approximation, autocorrelation filtration is the robust Kalman filtration of
Masreliez (1975):
olnp(y,,, |Y,)

ayt+1

Pratjes1 = Pys ~ th;‘|t

o’ Inp(y,,,|Y,)

2
ayt+1

/4

t+1|t+1

2
= Op + (ytVVt|t)2

Autocorrelation revision Prerjrrr = Prye conditional on observing y,,,, and conditional on y, = 1%

- — 0 - — _ 0
With y, = +1% With y, 1%
0-8% 0:8%
——————————————— 0.4% - W\ 4% - —SVil
——SVJ2
——DEXP
—VG
0.0% w 0:0% \ ‘ v
-3% -1% 1% 3% 5% -5% -3% -1% 1% 3% Ny
—1LS
4% - -0.4% - ——Kalman
0:8% 0:8%
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Daily autocorrelation estimates

40%

E[p,| YY]

30%

20%

10% - | | ¥
IWs SD,[p,| YY ] qh

TR I
0% 7#‘:"”"—_-&—‘—» it e — — —— e = - B —;:—W
Prs ~ Pyr
-10% T T T T T T T T T
26 34 42 50 58 66 74 82 90 98

Autocorrelation estimates f’t| . from Y'Y model, conditional standard deviations, and autocorrelation
estimates’ divergences from Y'Y estimates for other models
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Volatility filtration
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20/
70

Asset return, in standard deviations
News impact curves: Revision in volatility estimate conditional upon observing a standardized return.

-Quite different from standard GARCH news impact curves:
(exception: Maheu & McCurdy, JF 2004)
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Hentschel (1995): News impact curves from various GARCHmModels
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Fig. 3. News impact curves.


dbates
Text Box
Hentschel (1995):  News impact curves from various GARCH models
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Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and
deviations from Y'Y estimates for other models
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Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and
deviations from Y'Y estimates for other models
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Graph illustrates longer-term volatility dynamics not captured by the 1-factor SV model

Volatility process: dV, = (« - BV,)dt + o,/V,dW,

Ve /P HL (mths) o P,
1926-2006 1159 (.008) 2.1 (.2) 362 (.019) -572 (.031)

1957-2006 129 (.006) 1.9 (.2) 275 (.014) -.653 (.030)
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Summary and conclusions

» AML filtration/estimation methodology useful for time-changed Lévy processes

 Substantial and nonstationary autocorrelation needs to be taken into account in time
series models of stock market returns

 Alternate fat-tailed models fit about the same
-SVJ2: ‘87 crash as a unique outlier
-CGMY:: More parsimonious; but nearly log-stable model of downside risk

o All of these fat-tailed distributions imply that outliers should be down-weighted, when
updating volatility and autocorrelation estimates
-Not standard practice with GARCH models

 1-factor SV model clearly inadequate
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Summary and conclusions

» AML filtration/estimation methodology useful for time-changed Lévy processes

 Substantial and nonstationary autocorrelation needs to be taken into account in time
series models of stock market returns

 Alternate fat-tailed models fit about the same
-SVJ2: ‘87 crash as a unique outlier
-CGMY:: More parsimonious; but nearly log-stable model of downside risk

o All of these fat-tailed distributions imply that outliers should be down-weighted, when
updating volatility and autocorrelation estimates
-Not standard practice with GARCH models

 1-factor SV model clearly inadequate
Extensions/work in progress
« 2-factor SV specifications
* Spline-based “semi-nonparametric” specifications of Lévy density (x)7,

 Option pricing implications
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