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Objectives
    • To estimate recently proposed models of time-changed Lévy processes using daily stock market excess

returns over 1926 - 2006.

    • To estimate (filter) the realizations of latent state variables
-autocorrelations
-volatility

taking into account the fat-tailed properties of stock market returns.
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Objectives
    • To estimate recently proposed models of time-changed Lévy processes using daily stock market excess

returns over 1926 - 2006.

    • To estimate (filter) the realizations of latent state variables
-autocorrelations
-volatility

taking into account the fat-tailed properties of stock market returns.

Methodological issues
    • Density-based methods (MCMC, particle filters) are difficult with Lévy processes, given density

functions are not typically known.
         -Li, Wells and Yu (2006): rely on special cases, and SV + i.i.d. jumps

    • Approach here is based on characteristic functions, which are known for Lévy processes.
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Model

where   is the daily excess return on the CRSP value-weighted index, and
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Model

where   is the daily excess return on the CRSP value-weighted index, and

Features
     •  is (nonstationary) daily autocorrelation in returns  (time-varying coefficients model)    
     •  is underlying conditional variance 
     • “Leverage effect” via 
     • Day-of-the-week effects & holidays captured by periodic variation in time horizon 
     • Conditional fat tails via compensated Lévy process ( )

-with instantaneous variance , and
-stochastic jump intensity: 
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Focus of paper: alternative specifications of 
In Lévy densities , the functional form of  is substantially unconstrained.
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DEXP: diffusion + jumps from double exponential
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Focus of paper: alternative specifications of 
In Lévy densities , the functional form of  is substantially unconstrained.

Finite-activity jumps (+ diffusion):   (compound Poisson) 

SVJ1: diffusion + finite-activity normal jumps
SVJ2: diffusion + jumps from a mixture of normals

DEXP: diffusion + jumps from double exponential

Infinite-activity jumps
VG: diffusion + infinite-activity variance gamma

Y, YY pure-jump model of CGMY (2003) 
LS pure-jump log-stable model of Carr & Wu (2003), with negative jumps only
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Estimation Methodology: Bates (RFS, 2006)

This is a hidden Markov state space model.
Autocorrelation  and conditional variance  are latent state variables; not directly observed.
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Estimation Methodology: Bates (RFS, 2006)

This is a hidden Markov state space model.
Autocorrelation  and conditional variance  are latent state variables; not directly observed.

Define

as the conditional characteristic function summarizing current knowledge of latent state variables ,
given past data .

Filtration methodology of Bates (RFS, 2006) :
   • Recursively update what is known about , as summarized by , using the latest observation

 and the equivalent of Bayes’ law for characteristic functions.

   • The log-likelihood function used in MLE is a by-product of the filtration.

   • Approach does involve numerical integrations, and approximation issues.
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Bayes’ law for characteristic functions 
If  is the joint characteristic function (CF) of (observed) y and (latent) x, then the
CF of x conditional upon observing y is

where

is the marginal density of y.

(1)

(2)
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Recursive filtration for hidden Markov models
For “semi-affine” processes such as the model above:

    1) The transition CF of  and  conditional on knowing is analytic.

    2) Given a  joint CF  summarizing current knowledge of  given past data ,
 the joint characteristic function  of   conditional on  is also analytic.

   3) Given the latest datum :
-Can numerically compute  from (2) (used in ML);
-Can update  using (1);
-Can compute updated moments of  from .

    4) Implementation (AML):   moment-matching approximate : 
-Start with priors:   ,   and independent
-Compute exact posterior moments given
-Approximate posterior distributions by moment-matching normal & gamma

Generalizes the robust Kalman filtration approach of Masreliez (1975)
Bates (RFS, 2006): numerically stable, and performs well for estimation and filtration
Here: five numerical univariate integrations at each time step
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Data: Daily CRSP value-weighted (cum-dividend) log excess returns, over January
2, 1926 - December 29, 2006.
 October 19, 1987: -20.0% Nov. 6, 1931: +10.2%

  October 29, 1929: -12.6% Sept. 21, 1932: +10.3%
  October 28, 1929: -11.9% Oct. 30, 1929: +11.3%

 Nov. 6, 1929: -10.1%
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Data: Daily CRSP value-weighted (cum-dividend) log excess returns, over January
2, 1926 - December 29, 2006.
 October 19, 1987: -20.0% Nov. 6, 1931: +10.2%

  October 29, 1929: -12.6% Sept. 21, 1932: +10.3%
  October 28, 1929: -11.9% Oct. 30, 1929: +11.3%

 Nov. 6, 1929: -10.1%

Results
• Day-of-the-week effects
• Overall fit of various models
• Tail properties
• Autocorrelation filtration
• Volatility filtration
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Day-of-the-week effects
Effective length of a business day, relative to 1-day Wednesday returns

1926-2006 1957-2006

#days Description NOBS estimat
e

std. error NOBS estimat
e

std. error

1
1
1
1
1

Monday close 6 Tuesday close
Tuesday 6 Wednesday 
Wednesday 6 Thursday 
Thursday 6 Friday 
Friday 6 Saturday (1926-52)

3831
4037
3998
3924
1141

1.02
1

.94

.93

.43

(.04)

(.03)
(.03)
(.02)

2381
2519
2479
2434

1.03
  1
   .95

.90

(.04)

(.04)
(.04)

2
2
2

Saturday 6 Monday (1926-52)
Weekday holiday
Wednesday holiday in 1968

1120
341

22

1.05
1.25

.73

(.05)
(.11)
(.33)

142
 22

1.09
.79

(.13)
(.33)

3
4
5

Weekend and/or holidaya

Holiday weekend
Holiday weekend 

2755
343

      6

1.10
1.58
1.31

(.04)
(.14)

(1.00)

2322
281

     4

1.15
1.61
2.08

(.05)
(.15)

(2.61)

21518  12584
aIncludes one weekday holiday (August 14 - 17, 1945)
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Alternate specifications of jump intensities

SVJ2: ln L = 75,049.07

(SVJ1 if ) ln L = 75,044.60

CGMY (2003):

where  and . 

Special cases: double exponential ln L = 75,047.62
variance gamma ln L = 75,049.48
Brownian motion (Heston (1993))
Log-stable model (Carr-Wu (2003)) ln L = 75,005.53

ln L = 75,050.12
General YY model ln L = 75,052.12
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Figure 1.  Normal probability plots for the
normalized returns ,
for different models.  
    Diagonal line: theoretical quantiles conditional upon

correct specification 
    +: Empirical quantiles
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Unconditional probability density function estimates

871019

   SVJ2

YY

       SVJ1         LS

Data: from a histogram of daily excess returns’ residuals (after autocorrelation correction)
Model-based estimates: mixture of horizon-dependent unconditional PDF’s
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Unconditional tail probability estimates

        LS

Parametric models:
      • Capture extreme tails, and  (2 SD’s)
      • Underestimate frequency of returns of [3%, 7%] in magnitude.
(95% confidence interval based on 1000 simulated sample paths, using YY parameter estimates)
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A power law?
Distribution functions approach unconditional intensity functions  
as ; but only for  > 5% (5 standard deviations).

  

data    

Unconditional tail probabilities and intensity functions versus ; log scales on both axes
Data: Excess returns’ residuals with estimated time horizons of 1 day (20,004 observations).
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Autocorrelation filtration
Given conditional normal approximation, autocorrelation filtration is the robust Kalman filtration of
Masreliez (1975):
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Autocorrelation filtration
Given conditional normal approximation, autocorrelation filtration is the robust Kalman filtration of
Masreliez (1975):

Autocorrelation revision   conditional on observing , and conditional on 
    With     With 
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Daily autocorrelation estimates

      

     

Autocorrelation estimates  from YY model, conditional standard deviations, and autocorrelation
estimates’ divergences from YY estimates for other models
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Volatility filtration

       LS

News impact curves: Revision in volatility estimate  conditional upon observing a standardized return.

-Quite different from standard GARCH news impact curves:

(exception: Maheu & McCurdy, JF 2004)



dbates
Text Box
Hentschel (1995):  News impact curves from various GARCH models
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Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and
deviations from YY estimates for other models

    

         

      YY - LS
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Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and
deviations from YY estimates for other models

    

         

      YY - LS

Graph illustrates longer-term volatility dynamics not captured by the 1-factor SV model

Volatility process:  

HL (mths)
1926-2006 .159 (.008) 2.1 (.2) .362 (.019) -.572 (.031)
1957-2006 .129 (.006) 1.9 (.2) .275 (.014) -.653 (.030)
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Summary and conclusions

    • AML filtration/estimation methodology useful for time-changed Lévy processes

    • Substantial and nonstationary autocorrelation needs to be taken into account in time
series models of stock market returns

    • Alternate fat-tailed models fit about the same
-SVJ2: ‘87 crash as a unique outlier
-CGMY: More parsimonious; but nearly log-stable model of downside risk

     • All of these fat-tailed distributions imply that outliers should be down-weighted, when
updating volatility and autocorrelation estimates

-Not standard practice with GARCH models

     • 1-factor SV model clearly inadequate
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    • AML filtration/estimation methodology useful for time-changed Lévy processes

    • Substantial and nonstationary autocorrelation needs to be taken into account in time
series models of stock market returns

    • Alternate fat-tailed models fit about the same
-SVJ2: ‘87 crash as a unique outlier
-CGMY: More parsimonious; but nearly log-stable model of downside risk

     • All of these fat-tailed distributions imply that outliers should be down-weighted, when
updating volatility and autocorrelation estimates

-Not standard practice with GARCH models

     • 1-factor SV model clearly inadequate

Extensions/work in progress
     • 2-factor SV specifications

     • Spline-based “semi-nonparametric” specifications of Lévy density  

     • Option pricing implications


	Bates08_presentB.pdf
	Bates08_present.pdf
	0.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	Figure1_normplots.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf

	15.pdf
	Hentschel_Fig3.pdf
	17.pdf
	18.pdf

	15.pdf
	Hentschel_Fig3b.pdf
	17.pdf
	18.pdf



