Estimation and Filtration of Time-Changed Lévy Processes

David S. Bates University of Iowa and NBER

2nd Risk Mangement Conference Mont Tremblant, Québec March 14, 2008

Objectives

- To estimate recently proposed models of time-changed Lévy processes using daily stock market excess returns over 1926 2006.
- To estimate (filter) the realizations of latent state variables
 - -autocorrelations
 - -volatility

taking into account the fat-tailed properties of stock market returns.

Objectives

- To estimate recently proposed models of time-changed Lévy processes using daily stock market excess returns over 1926 2006.
- To estimate (filter) the realizations of latent state variables
 - -autocorrelations
 - -volatility

taking into account the fat-tailed properties of stock market returns.

Methodological issues

• Density-based methods (MCMC, particle filters) are difficult with Lévy processes, given density functions are not typically known.

-Li, Wells and Yu (2006): rely on special cases, and SV + i.i.d. jumps

• Approach here is based on *characteristic functions*, which *are* known for Lévy processes.

Model

$$y_{t+1} = \rho_t y_t + \int_t^{t+\tau_t} ds_t$$

$$V_{t+1} = V_t + \int_t^{t+\tau_t} dV_t$$

$$\rho_{t+1} = \rho_t + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim N(0, \sigma_{\rho}^2) \text{ and } i.i.d.$$

where y_{t+1} is the daily *excess* return on the CRSP value-weighted index, and

$$ds_{t} = (\mu_{0} + \mu_{1}V_{t})dt + \left(\rho_{sv}\sqrt{V_{t}}dW_{t} - \frac{1}{2}\rho_{sv}^{2}V_{t}dt\right) + (dL_{t} - \omega V_{t}dt)$$
$$dV_{t} = (\alpha - \beta V_{t})dt + \sigma\sqrt{V_{t}}dW_{t}$$

Model

$$y_{t+1} = \rho_t y_t + \int_t^{t+\tau_t} ds_t$$

$$V_{t+1} = V_t + \int_t^{t+\tau_t} dV_t$$

$$\rho_{t+1} = \rho_t + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim N(0, \sigma_{\rho}^2) \text{ and } i.i.d.$$

where y_{t+1} is the daily *excess* return on the CRSP value-weighted index, and

$$ds_{t} = (\mu_{0} + \mu_{1}V_{t})dt + \left(\rho_{sv}\sqrt{V_{t}}dW_{t} - \frac{1}{2}\rho_{sv}^{2}V_{t}dt\right) + (dL_{t} - \omega V_{t}dt)$$
$$dV_{t} = (\alpha - \beta V_{t})dt + \sigma\sqrt{V_{t}}dW_{t}$$

Features

- ρ_t is (nonstationary) daily autocorrelation in returns (time-varying coefficients model)
- V_t is underlying conditional variance
- "Leverage effect" via $Corr_t(ds_t, dV_t) = \rho_{sv} < 0$
- Day-of-the-week effects & holidays captured by periodic variation in time horizon τ_t
- Conditional fat tails via compensated Lévy process $(dL_t \omega V_t dt)$ -with instantaneous variance $(1 - \rho_{sv}^2) V_t dt$, and -stochastic jump intensity: $Prob_t[dL_t = x] \propto k(x) V_t dt$

Focus of paper: alternative specifications of dL_t

In Lévy densities $Prob_t[dL_t = x] \propto k(x)V_t dt$, the functional form of k(x) is substantially unconstrained.

Focus of paper: alternative specifications of dL_t

In Lévy densities $Prob_t[dL_t = x] \propto k(x) V_t dt$, the functional form of k(x) is substantially unconstrained.

Finite-activity jumps (+ diffusion): $\int_{-\infty}^{\infty} k(x) dx < \infty$, $k(x) \propto p(x | jump)$ (compound Poisson)

- SVJ1: diffusion + finite-activity normal jumps
- SVJ2: diffusion + jumps from a mixture of normals
- DEXP: diffusion + jumps from double exponential

Focus of paper: alternative specifications of dL_t

In Lévy densities $Prob_t[dL_t = x] \propto k(x) V_t dt$, the functional form of k(x) is substantially unconstrained.

Finite-activity jumps (+ diffusion): $\int_{-\infty}^{\infty} k(x) dx < \infty$, $k(x) \propto p(x | jump)$ (compound Poisson)

- SVJ1:diffusion + finite-activity normal jumpsSVJ2:diffusion + jumps from a mixture of normals
- DEXP: diffusion + jumps from double exponential

Infinite-activity jumps

- VG: diffusion + infinite-activity variance gamma
- Y, YY pure-jump model of CGMY (2003)
- LS pure-jump log-stable model of Carr & Wu (2003), with negative jumps only

Estimation Methodology: Bates (*RFS***, 2006)**

This is a *hidden Markov* state space model.

Autocorrelation ρ_t and conditional variance V_t are *latent* state variables; not directly observed.

Estimation Methodology: Bates (*RFS***, 2006)**

This is a *hidden Markov* state space model.

Autocorrelation ρ_t and conditional variance V_t are *latent* state variables; not directly observed.

Define

$$G_{t|t}(i\xi, i\psi) \equiv E\left[e^{i\xi\rho_t + i\psi V_t} | Y_t\right]$$

as the conditional characteristic function summarizing current knowledge of latent state variables (ρ_t, V_t) , given past data $\mathbf{Y}_t = (y_1, \dots, y_t)$.

Estimation Methodology: Bates (*RFS***, 2006)**

This is a *hidden Markov* state space model.

Autocorrelation ρ_t and conditional variance V_t are *latent* state variables; not directly observed.

Define

$$G_{t|t}(i\xi, i\psi) \equiv E\left[e^{i\xi\rho_t + i\psi V_t} | Y_t\right]$$

as the conditional characteristic function summarizing current knowledge of latent state variables (ρ_t, V_t) , given past data $Y_t = (y_1, \dots, y_t)$.

Filtration methodology of Bates (RFS, 2006) :

- Recursively update what is known about (ρ_t, V_t) , as summarized by $G_{t|t}(\cdot)$, using the latest observation y_{t+1} and the equivalent of Bayes' law for characteristic functions.
- The log-likelihood function used in MLE is a by-product of the filtration.
- Approach does involve numerical integrations, and approximation issues.

Bayes' law for characteristic functions

If $F(i\Phi, i\Psi) = E[e^{i\Phi y + i\Psi x}]$ is the joint characteristic function (CF) of (observed) y and (latent) x, then the CF of x conditional upon observing y is

$$G_{x|y}(i\Psi) = \frac{1}{2\pi p(y)} \int F(i\Phi, i\Psi) e^{-i\Phi y} d\Phi$$
(1)

where

$$p(y) = \frac{1}{2\pi} \int F(i\Phi, 0) e^{-i\Phi y} d\Phi$$
(2)

is the marginal density of *y*.

Recursive filtration for hidden Markov models

For "semi-affine" processes such as the model above:

- 1) The transition CF of y_{t+1} and $x_{t+1} \equiv (\rho_{t+1}, V_{t+1})$ conditional on knowing (ρ_t, V_t) is analytic.
- 2) Given a joint CF $G_{t|t}(\cdot)$ summarizing current knowledge of (ρ_t, V_t) given past data Y_t , the joint characteristic function $F(i\Phi, i\Psi | Y_t)$ of (y_{t+1}, x_{t+1}) conditional on Y_t is also analytic.
- 3) Given the latest datum y_{t+1} :

-Can numerically compute $p(y_{t+1} | Y_t)$ from (2) (used in ML); -Can update $G_{t|t}(\bullet) \rightarrow G_{t+1|t+1}(\bullet)$ using (1); -Can compute updated moments of (ρ_{t+1}, V_{t+1}) from $G_{t+1|t+1}(\bullet)$.

4) Implementation (AML): moment-matching approximate G
_{t+1|t+1}(•):
Start with priors: ρ_t | Y_t ~ N(p
{t|t}, W{t|t}), V_t | Y_t ~ Γ(V
{t|t}, P{t|t}) and independent
Compute exact posterior moments given y_{t+1}

-Approximate posterior distributions by moment-matching normal & gamma

Generalizes the *robust Kalman filtration* approach of Masreliez (1975) Bates (*RFS*, 2006): numerically stable, and performs well for estimation and filtration Here: five numerical univariate integrations at each time step **Data**: Daily CRSP value-weighted (cum-dividend) log *excess* returns, over January 2, 1926 - December 29, 2006.

October 19, 1987:	-20.0%	Nov. 6, 1931: +	10.2%
October 29, 1929:	-12.6%	Sept. 21, 1932: +	10.3%
October 28, 1929:	-11.9%	Oct. 30, 1929: +	11.3%
Nov. 6, 1929:	-10.1%		

Data: Daily CRSP value-weighted (cum-dividend) log *excess* returns, over January 2, 1926 - December 29, 2006.

October 19, 1987:	-20.0%	Nov. 6, 1931: +10.2%	
October 29, 1929:	-12.6%	Sept. 21, 1932: +10.3%	
October 28, 1929:	-11.9%	Oct. 30, 1929: +11.3%	
Nov. 6, 1929:	-10.1%		

Results

- Day-of-the-week effects
- Overall fit of various models
- Tail properties
- Autocorrelation filtration
- Volatility filtration

Day-of-the-week effects

Effective length of a business day, *relative* to 1-day Wednesday returns

		1926-2006		1957-2006			
#days	Description	NOBS	estimat	std. error	NOBS	estimat	std. error
			e			e	
1	Monday close → Tuesday close	3831	1.02	(.04)	2381	1.03	(.04)
1	Tuesday → Wednesday	4037	1		2519	1	
1	Wednesday → Thursday	3998	.94	(.03)	2479	.95	(.04)
1	Thursday → Friday	3924	.93	(.03)	2434	.90	(.04)
1	Friday → Saturday (1926-52)	1141	.43	(.02)			
2	Saturday → Monday (1926-52)	1120	1.05	(.05)			
2	Weekday holiday	341	1.25	(.11)	142	1.09	(.13)
2	Wednesday holiday in 1968	22	.73	(.33)	22	.79	(.33)
3	Weekend and/or holiday ^a	2755	1.10	(.04)	2322	1.15	(.05)
4	Holiday weekend	343	1.58	(.14)	281	1.61	(.15)
5	Holiday weekend	<u> </u>	1.31	(1.00)	4	2.08	(2.61)
		21518			12584		

^aIncludes one weekday holiday (August 14 - 17, 1945)

Alternate specifications of jump intensities

 $Prob_{1}[dL_{1} = x] \propto k(x) V_{1} dt$ $k(x) \propto \sum_{i=1}^{2} \frac{\lambda_{i}}{\sqrt{2\pi\delta_{i}^{2}}} \exp \left|-\frac{(x-\overline{\gamma}_{i})^{2}}{2\delta_{i}^{2}}\right|$ SVJ2: $\ln L = 75,049.07$ (SVJ1 if $\lambda_2 = 0$) $\ln L = 75,044.60$ $k(x) = \begin{cases} C_n e^{-G|x|} |x|^{-1-Y_n} \text{ for } x < 0 \\ C_n e^{-M|x|} |x|^{-1-Y_p} \text{ for } x > 0 \end{cases}$ CGMY (2003): where $C_n, C_n, G, M \ge 0$ and $Y_n, Y_n \le 2$. $Y_n = Y_p = -1$ double exponential Special cases: $\ln L = 75,047.62$ $Y_n = Y_p = 0$ variance gamma $\ln L = 75.049.48$ $Y_n = Y_p = 2$ Brownian motion (Heston (1993)) $G = 0 = C_p$ Log-stable model (Carr-Wu (2003)) $\ln L = 75,005.53$ $Y_n = Y_p$ $\ln L = 75,050.12$

General YY model $\ln L = 75,052.12$

0.25

0.10 0.05 0.02 0.01 0.003 0.001

-3

-2

-1

0

Data

2

- Diagonal line: theoretical quantiles conditional upon correct specification
- +: Empirical quantiles

Data: from a histogram of daily excess returns' residuals (after autocorrelation correction) **Model-based estimates**: mixture of horizon-dependent unconditional PDF's

Parametric models:

- Capture extreme tails, and |y| < 2% (2 SD's)
- Underestimate frequency of returns of [3%, 7%] in magnitude.

(95% confidence interval based on 1000 simulated sample paths, using YY parameter estimates)

A power law?

Distribution functions approach *unconditional* intensity functions $K(y) \equiv (1 - \rho_{sv}^2) \frac{\alpha}{\beta} \tau \int_{-\infty}^{y} k(x) dx$ as $y \to -\infty$; but only for |y| > 5% (5 standard deviations).

Unconditional tail probabilities and intensity functions versus |y|; log scales on both axes Data: Excess returns' residuals with estimated time horizons of ≈ 1 day (20,004 observations).

Autocorrelation filtration

Given conditional normal approximation, autocorrelation filtration is the *robust Kalman filtration* of Masreliez (1975):

$$\hat{\boldsymbol{\rho}}_{t+1|t+1} = \hat{\boldsymbol{\rho}}_{t|t} - y_t W_{t|t} \frac{\partial \ln p(y_{t+1} | \boldsymbol{Y}_t)}{\partial y_{t+1}}$$

$$W_{t+1|t+1} = \sigma_{\rho}^{2} + (y_{t}W_{t|t})^{2} \frac{\partial^{2}\ln p(y_{t+1}|Y_{t})}{\partial y_{t+1}^{2}}$$

Autocorrelation filtration

Given conditional normal approximation, autocorrelation filtration is the *robust Kalman filtration* of Masreliez (1975):

$$\hat{\boldsymbol{\rho}}_{t+1|t+1} = \hat{\boldsymbol{\rho}}_{t|t} - y_t W_{t|t} \frac{\partial \ln p(y_{t+1} | \boldsymbol{Y}_t)}{\partial y_{t+1}}$$

$$W_{t+1|t+1} = \sigma_{\rho}^{2} + (y_{t}W_{t|t})^{2} \frac{\partial^{2}\ln p(y_{t+1}|Y_{t})}{\partial y_{t+1}^{2}}$$

Autocorrelation revision $\hat{\rho}_{t+1|t+1} - \hat{\rho}_{t|t}$ conditional on observing y_{t+1} , and conditional on $y_t = \pm 1\%$ With $y_t = \pm 1\%$ With $y_t = -1\%$

Daily autocorrelation estimates

estimates' divergences from YY estimates for other models

Asset return, in standard deviations

News impact curves: Revision in volatility estimate *conditional* upon observing a standardized return.

-Quite different from standard GARCH news impact curves:

(exception: Maheu & McCurdy, JF 2004)

Fig. 3. News impact curves.

Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and deviations from YY estimates for other models

Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and deviations from YY estimates for other models

Graph illustrates longer-term volatility dynamics not captured by the 1-factor SV model

Volatility process: $dV_t = (\alpha - \beta V_t)dt + \sigma \sqrt{V_t} dW_t$

 $\sqrt{\alpha/\beta}$ HL (mths) σ ρ_{sv} 1926-2006.159 (.008)2.1 (.2).362 (.019)-.572 (.031)1957-2006.129 (.006)1.9 (.2).275 (.014)-.653 (.030)

Summary and conclusions

- AML filtration/estimation methodology useful for time-changed Lévy processes
- Substantial and nonstationary autocorrelation needs to be taken into account in time series models of stock market returns
- Alternate fat-tailed models fit about the same
 - -SVJ2: '87 crash as a unique outlier
 - -CGMY: More parsimonious; but nearly log-stable model of downside risk
- All of these fat-tailed distributions imply that outliers should be down-weighted, when updating volatility and autocorrelation estimates

 Not standard practice with GARCH models
- 1-factor SV model clearly inadequate

Summary and conclusions

- AML filtration/estimation methodology useful for time-changed Lévy processes
- Substantial and nonstationary autocorrelation needs to be taken into account in time series models of stock market returns
- Alternate fat-tailed models fit about the same
 - -SVJ2: '87 crash as a unique outlier
 - -CGMY: More parsimonious; but nearly log-stable model of downside risk
- All of these fat-tailed distributions imply that outliers should be down-weighted, when updating volatility and autocorrelation estimates

 Not standard practice with GARCH models
- 1-factor SV model clearly inadequate

Extensions/work in progress

- 2-factor SV specifications
- Spline-based "semi-nonparametric" specifications of Lévy density $k(x) V_t$
- Option pricing implications