Submicron Separation and Containment - Without the Filter!

SRS ALARA Workshop

Augusta, Georgia May 2 – 4, 2005

Presented By:

Inventure Laboratories, Inc.

Knoxville, TN

Michael K. Carroll Mitch Brooks Thomas B. Shope, Ph.D.

Background

- Involved with cleanup operations within the DOE for more than 15 years
- Y-12 National Security Complex recognized the need to protect the workforce from exposure during cleanup operations

Background (continued)

- Anticipated waste types included:
 - Sanitary waste
 - Industrial waste
 - Hazardous waste
 - Low-Level waste (LLW)
 - Intermediate Level waste (ILW)
 - High-Level waste (HLW)
 - Mixed waste
 - Transuranic waste

How Big is This?...

- Within the Department of Energy alone, there are:
 - Approximately 700 buildings to be fully decommissioned
 - An additional 180,000 metric tons of scrap metal to be remediated

What was the problem?

- Large-scale clean up operations often produced unwanted dust and debris
- An efficient method for removing dust and debris that also provided maximum worker protection

Available Solutions?

- Traditional Drum Canister Style Systems
- Cyclonic Separators

Cyclone Challenges

- Cyclonic separators were not efficient at removing particles less than 10 microns
- Accumulation of particles on the motor and fan blades lead to eventual failure of the motor
- A filter could be used, but often resulted in restricted airflow

Cyclonic Separators

- Two primary orientations
 - Axial
 - Tangential
- Air stream enters a cylinder and is forced to spin in a vortex

Axial Orientation

Tangential Orientation

Cyclonic Separators (continued)

- $F = (mv^2) / r$ Equation 1
- Where
 - F = force required to keep an object moving along a circular path
 - -m = mass
 - -v = velocity
 - -r = radius

A SafeVac M. Carroll, J. Kerns and J. McCracken, US Patent Accepted

- Minimal operator exposure
- Critically safe
- Dry / wet use
- Sealed, rigid waste container
- Reduced filter maintenance
- 3 stages of separation
 - Cyclone separator
 - HEPA Pre-Filter
 - ULPA Exhaust Filter

Materials & Chemistry Laboratory

- Design a test that would simulate "real world" dust from cleanup operations
- Test must challenge the cyclones's ability to remove particles
- Compare cyclonic separator to a traditional vacuum

Sample Mixture

- $10 \text{ kg Fe}_2\text{O}_3$
- 10 kg Talc USP powder
- 1 kg CeO_2

Particle Size

Particle Size (<2 microns)

Relative Size of Contaminants

Vacuum Comparison

Vacuum System

Vacuum System No. 829123

Flow Rate

Recovery Efficiency			
SAFE NUCLEAR & HAZ MAT VACUUM SYSTEMS	Test 1	Test 2	
Cyclone	94.0%	95.0%	
HEPA Filter	3.1%	3.3%	
ULPA Filter	0.3%	0.1%	
Exhaust	Not Detectable	Not Detectable	

Recovery Efficiency

Minuteman °	Test 1	Test 2
Canister	5.7%	2.9%
Collection Bag	87.0%	89.9%
Prefilter	5.7%	5.4%
Cloth Filter	0.03%	0.03%
HEPA Filter	0.01%	0.01%
Exhaust	Not Detectable	Not Detectable

Minuteman cloth filter

Minuteman collection bag

SafeVac ULPA filter

Recovered material containment

CURE! LABORALD H.L. Inc

Minuteman

SafeVac

SafeVac with glovebag containment system

Conclusions

- SafeVac and Minuteman recovery efficiencies are comparable
- SafeVac's cyclone alone removes
 >94% particles down to 0.2 micron smaller than bacteria
- SafeVac's collection vessel provides better containment, thus greater user safety

Thank you!

Questions ?

