

- SEM
 - Electron specimen interactions
 - Probe formation
 - Available signals
 - Limitations
 - Artefacts
 - Charging
 - Contamination
 - Damage
 - Contrast and metrology
- AFM
 - Basics
 - Limitations
 - Metrology

"Image Formation in Low-Voltage Scanning Electron Microscopy", Ludwig Reimer, SPIE, Bellingham (1993)

"Image Sharpness Measurement in the Scanning Electron Microscope - Part III", N.F. Zhang et al., Scanning, 21 p246 (1999)

Electron-Specimen Interactions

Excitation Volumes & Energy Distribution

Schematic of SEM showing different signals that can be detected:

SE - secondary electrons BSE - backscattered electrons SC - specimen current CL - cathodo-luminescence X - X-ray

Magnification is ratio of CRT pixel size to pixel size on specimen

- Axial gun brightness, β , the current density, j_c , per solid angle, $\pi \alpha^2$, is conserved
 - Probe current cannot be changed without corresponding change in α
 - Minimum probe diameter for a given current, I_p , is $d_g^2 = 4I_p / \pi^2 \beta \alpha^2 = C_0 / \alpha^2$
- Minimum probe current is determined by signal to noise considerations
 - Mean number of electrons/pixel dwell time, τ , is $n = I_p / \tau e$
 - Secondary electron yield is δ and noise factor is b
 - RMS shot noise is $I_{RMS} = e\sqrt{n} / \tau = \sqrt{eI_p \tau}$, $I_{SE} = \delta I_p$, Noise in I_{SE} , $I_n = \frac{e\delta}{\tau} \sqrt{n(1+b)}$

$$- S/N = \frac{\Delta I_{SE}}{I_n} = \sqrt{\frac{I_p \tau}{e(1+b)}} \frac{\Delta I_{SE}}{I_{SE}} \ge k$$

- $k \ge 3$ for detectablity of a signal ΔI_{SE}
- Smaller pixels and/or lower noise requires higher beam currents ⇒ brighter sources

Probe Formation in SEM II

• Principal aberrations are spherical and chromatic:

$$- d_s = 0.5 C_s \alpha^3$$

$$- d_c = C_c(\Delta E/E) \alpha$$

• Diffraction is also important:

 $- d_d = 0.6\lambda/\alpha$

• Minimum probe size:

$$- d_p^2 = d_d^2 + d_s^2 + d_c^2 + d_g^2$$

• Probe sizes as small as 1 - 2 nm can be produced in systems with field emission sources

Electron Detectors

- Everhart-Thornley
 - Positively biased grid in front of scintillator collects electrons
 - Small solid angle collection
 - Efficient only for SE's
 - Highly directional detection shadowing
- Semiconductor Detectors
 - Au on n-Si Schottky diode or p-n junction
 - Existence of threshold voltage due to surface layer of detector restricts use to BSE (or transmitted)
 - RC time constants typically large, limiting acquisition rate (see Nanofab SEM)
- MicroChannel Plate
 - Arrays of 10 20 µm diameter glass capillaries with continuous voltage drop (1 kV) along length act as miniature photomultipliers
 - Very efficient
 - Biasing of front surface allows selection of SE+BSE or BSE only
- In-Lens
 - At short working distances, lens magnetic field extends to specimen and SE can follow spiral trajectories up in lens. Electrostatic field inside lens deflects SE to an E-T detector
 - Efficient collection of electrons by magnetic field
 - Relatively small detector shadowing

Backscattered Electron Distribution

m

BERKELEY LAB

Secondary Electron Distribution

- SE Emission
 - Penetration and diffusion of primary electrons
 - Excitation of electrons up to a few hundred eV
 - Transport to surface through a sequence of elastic and inelastic scattering events
 - Exit across surface potential barrier

 $n(s) = \left| dE_m / ds \right| \frac{s}{\varepsilon}$ Number/path length (s)

s = path length

 $\varepsilon = mean \ energy \ loss \ to \ produce \ SE$ $\left| dE_m / ds \right| = Bethe \ stopping \ power$

$$dN_{SE} / dE_{SE} \propto \frac{1}{E} \frac{E_{SE}}{(E_{SE} + \phi)^4}$$
 Energy
distribution
 $\phi = work \ function$
 $\phi/3 = most \ probable \ SE \ energy$

 $p(z) = 0.5 \exp(-z/\Lambda_{SE})$ z = depthof

Probability of escape as fn. of depth (z)

 Λ_{SE} = mean free path or escape depth $\varepsilon = 125 \, eV \quad \Lambda_{GE} = 2.5 \, nm$ for Al

$$-125 eV$$
, $M_{SE} - 2.5 nm$ for At

Secondary Electron Yield

- SE1 are excited by the primary electrons (PE) and SE2 by BSE (yield η) as they exit the sample with yields δ_{PE} and δ_{BSE}
 - For E \geq 5 keV the total yield is $\delta = \delta_{PE} + \delta_{BSE} = \delta_0(1 + \beta \eta)$
 - $3 \ge \beta \ge 2$ and represents how many more SE are produced by BSE than PE as a result of the increased efficiency of the lower energy BSE in losing energy
 - For high energies (E \ge 10 keV) $\delta_{PE} \propto /dE/ds / \Lambda_{SE}$
 - For a tilted sample δ_{PE} is proportional to the path length within the layer of depth Λ_{SE} , which is proportional to sec ϕ , i.e. tilted surfaces look brighter
 - Maximum in yield, δ_m , occurs at an energy, E_m , when primary electron range = Λ_{SE}

$$\delta = \delta_{PE} + \delta_{BSE} = \int_{0}^{R} \frac{\Phi(z)}{2\varepsilon} \exp(-z/\Lambda_{SE}) dz$$

$$R << \Lambda_{SE} \Longrightarrow \delta = \frac{E}{2\varepsilon} (1 - \eta')$$

 $\Phi(z) = depth \ distribution \ of \ ionization \ events$ $R = electron \ range$ $\eta' = fraction \ of \ incident \ energy$ carried away by SE and BSE

$$R >> \Lambda_{SE} \Longrightarrow \delta = \frac{\Phi(0)}{2\varepsilon} \Lambda_{SE} \sec \phi$$

• Insulators can charge dramatically in the SEM resulting in image artefacts that can be especially serious for accurate metrology

Total electron yield

Surface Potential U_s :

$$E_1 \le E \le E_2: \quad \sigma = \eta + \delta_{eff} = 1; \quad \delta_{eff} = \int_{eU_s}^{50eV} \frac{d\delta}{dE} dE$$
$$E \ge E_2: \quad U_s = -(E - E_2)/e$$

Note:

• Charging effects are typically time dependent. Most insulators leak charge so the time constant is an RC-type. Scan speed can have a very large impact on image quality

• Charging effects are also angle dependent through angular dependence of SE and BSE yields

Bright particle and dark surround

- Contrast types
 - Topographic
 - Surface tilt: SE yield depends on surface normal
 - Shadow contrast: SE signal depends on surface normal and surface structure between SE point of origin and detector
 - BSE diffusion: signal of SE2 and SE3 increases when scattered electrons pass through increased surface area at edges etc. Signal also generated when BSE strike other parts of sample
 - SE diffusion: controlled by escape depth and surface topography
 - Material
 - Channeling
 - Voltage/surface potential
 - Capacitative coupling
 - Magnetic

- Organic materials are damaged by e-beam
 - Amino acids
 36 eV/nm3
 - Paraffin 75
 - PMMA 180
 - DNA/Aromatics 3600
 - Phthalocyanine 36000
- Organic materials are damaged/polymerized by the e-beam on the sample surface
 - Organic materials are always present in the atmosphere
 - Molecules diffuse over the sample surface and are pinned in place by irradiation leading to contamination
 - Scanning of large area before high mag can help
 - Free resist!
 - Contamination can lead to changes in contrast, errors in CD measurement and defects in subsequent processing

Signal Generation in CD-SEM

A Simulation Study of Repeatability and Bias in the CD-SEM, J. S. Villarrubia, A. E. Vladár, and M. T. Postek, Proc. SPIE 5038

Resolution

Effect of Voltage on BSE Diffusion BERKELEY LAP

Ш

• Contact mode AFM operates by maintaining constant repulsive force between tip and sample

rrrr

BERKELEY

- Rapid damage of tip
- Crashes into steep sidewalls
- Non-contact mode maintains constant attractive force between tip and sample
 - Can sense lateral forces
 - Tip preserved
 - Measurements repeatable
 - Accuracy dependent on environmental conditions
- Resonating cantilever enables precise measurement of proximity through changes in frequency or Q

- Probe motion typically generated by piezoelectric actuator
 - Hysteresis and creep occur in ferroelectric materials leading to non-linear motion
 - Hysteresis addressed through polynomial scan function
 - Creep difficult to deal with
- Abbe errors in the probe position occur because there is always an offset between where the probe position is measured and the probe tip
- Errors occur due to measurement algorithm and tip shape

"Dimensional Metrology with Scanning Probe Microscopes", J.E. Griffith and D.A. Grigg, *J. Appl. Phys.*, **74** R83 (1993)

- Probe length controls height of features that can be measured
- Probe shape controls ability to measure sidewalls
- Probe diameter/angle controls resolution
 - Aspect ratios > 10 can result in flexing of probe due to sidewall forces

"Dimensional Metrology with Scanning Probe Microscopes", J.E. Griffith and D.A. Grigg, *J. Appl. Phys.*, **74** R83 (1993)

Surface Roughness Measurements

• Surface roughness measurements are affected by tip

 R_h and R_v are horizontal and vertical bounds r_h and r_v are determined by instrument sensitivity S_d is the minimum slope that can be measured

Surface Profile: $y = A \sin(2\pi x / \lambda)$

 $S_{\text{max}} = 2\pi A / \lambda$ $R_{\text{min}} = \lambda^2 / 4\pi^2 A$ $\log A = \log(S_{\text{max}} / 2\pi) + \log \lambda$ $\log A = \log(1/4\pi^2 R_{\text{min}}) + 2\log \lambda$

"Dimensional Metrology with Scanning Probe Microscopes", J.E. Griffith and D.A. Grigg, *J. Appl. Phys.*, **74** R83 (1993)

Probe Size vs Roughness

rrrrr

- Surface height/roughness measurements depend strongly on AFM probe type
- Measured topography *increases* after multilayer coating

Probe Size vs Roughness

