
Journal of Artificial Intelligence Research 28 (2007) 453-515 Submitted 08/06; published 4/07

Abstract Reasoning for Planning and Coordination

Bradley J. Clement BRAD.CLEMENT@JPL.NASA.GOV

Jet Propulsion Laboratory, Mail Stop: 126-347,
Pasadena, CA 91109 USA

Edmund H. Durfee DURFEE@UMICH .EDU

University of Michigan, EECS Department,Ann Arbor, MI 48109 USA

Anthony C. Barrett TONY.BARRETT@JPL.NASA.GOV

Jet Propulsion Laboratory, Mail Stop: 126-347,
Pasadena, CA 91109 USA

Abstract
The judicious use of abstraction can help planning agents to identify key interactions between

actions, and resolve them, without getting bogged down in details. However, ignoring the wrong
details can lead agents into building plans that do not work, or into costly backtracking and replan-
ning once overlooked interdependencies come to light. We claim that associating systematically-
generated summary information with plans’ abstract operators can ensure plan correctness, even for
asynchronously-executed plans that must be coordinated across multiple agents, while still achiev-
ing valuable efficiency gains. In this paper, we formally characterize hierarchical plans whose
actions have temporal extent, and describe a principled method for deriving summarized state and
metric resource information for such actions. We provide sound and complete algorithms, along
with heuristics, to exploit summary information during hierarchical refinement planning and plan
coordination. Our analyses and experiments show that, under clearcut and reasonable conditions,
using summary information can speed planning as much as doubly exponentially even for plans
involving interacting subproblems.

1. Introduction

Abstraction is a powerful tool for solving large-scale planning and scheduling problems. By ab-
stracting away less critical details when looking at a large problem, an agent can find an overall so-
lution to the problem more easily. Then, with the skeleton of the overall solution in place, the agent
can work additional details into the solution (Sacerdoti, 1974; Tsuneto, Hendler, & Nau, 1998).
Further, when interdependencies are fully resolved at abstract levels, then one or more agents can
flesh out sub-pieces of the abstract solution into their full details independently (even in parallel) in
a “divide-and-conquer” approach (Korf, 1987; Lansky, 1990; Knoblock, 1991).

Unfortunately, it is not always obvious how best to abstract large, complex problems to achieve
these efficiency improvements. An agent solving a complicated, many-step planning problem, for
example, might not be able to identify which of the details in earlier parts will be critical for later
ones until after it has tried to generate plans or schedules and seen what interdependencies end up
arising. Even worse, if multiple agents are trying to plan or schedule their activities in a shared
environment, then unless they have a lot of prior knowledge about each other, it can be extremely
difficult for one agent to anticipate which aspects of its own planned activities are likely to affect,
and be affected by, other agents.

c©2007 AI Access Foundation. All rights reserved.

CLEMENT, DURFEE, & BARRETT

In this paper, we describe a strategy that balances the benefits and risks of abstraction in large-
scale single-agent and multi-agent planning problems. Our approach avoids the danger of ignoring
important details that can lead to incorrect plans (whose execution will fail due to overlooked inter-
dependencies) or to substantial backtracking when abstract decisions cannot be consistently refined.
Meanwhile, our approach still achieves many of the computational benefits of abstraction so long
as one or more of a number of reasonable conditions (listed later) holds.

The key idea behind our strategy is to annotate each abstract operator in a plan hierarchy with
summary informationaboutall of its potential needs and effects under all of its potential refine-
ments. While this might sound contrary to the purpose of abstraction as reducing the number of
details, in fact we show that it strikes a good balance. Specifically, because all of the possibly
relevant conditions and effects are modeled, the agent or agents that are reasoning with abstract
operators can be absolutely sure that important details cannot be overlooked. However, because
the summary information abstracts away details about under which refinement choices conditions
and effects will or will not be manifested, and information about the relative timing of when condi-
tions are needed and effects achieved, it still often results in an exponential reduction in information
compared to a flat representation.

Based on the concept of summary information, this paper extends the prior work summarized
below and in Section 8 to make the following contributions:

A formal model of hierarchical plans with temporal extent, and of their execution. While
many planning systems have sophisticated temporal models (e.g., Laborie & Ghallab, 1995; Muscet-
tola, 1994) and some additionally use hierarchical representations of alternative courses of action
(Allen, Kautz, Pelavin, & Tenenberg, 1991; Currie & Tate, 1991; Chien, Knight, Stechert, Sher-
wood, & Rabideau, 2000a; Castillo, Fdez-Olivares, Garcı́a-Ṕerez, & Palao, 2006), we know of no
other work that extends the hierarchical task network (HTN) formalization (Erol, Hendler, & Nau,
1994a; Erol, Nau, & Hendler, 1994b) to include temporal extent. We need such a formalism in order
to clarify the semantics of summary information and concurrently executing agents.

Algorithms for deriving summary information about propositional and metric resource con-
ditions and effects, and for using such information to determine potential and definite inter-
actions between abstract tasks. We prove that our summarization techniques are guaranteed to
correctly capture all of the conditions and effects associated with an abstract operator appropri-
ately, augmented with modal information about whether conditions must or may hold and whether
they hold during the entire operation or only for some of the time. Because summary information
capturesall conditions and effects, our algorithms can reason with operators at different levels of
abstraction to predict and often resolve operator interactions without fully detailing task hierarchies,
even for operators that are executing asynchronously at different agents.

Sound and complete algorithms for hierarchical refinement planning and centralized plan co-
ordination for actions with temporal extent, supporting flexible plan execution systems. An
agent can reduce backtracking during planning by selectively interleaving the refinement of its plan
with predicting and resolving potential interdependencies between its evolving plan and the plans
that will be asynchronously executed by other agents. Other research has also found benefit in
guiding refinement with conditions specified at higher levels in the plan hierarchy to guide refine-
ment (Sacerdoti, 1974; Young, Pollack, & Moore, 1994; Tsuneto et al., 1998). We show that our
algorithms improve on these capabilities by exploiting the hierarchical structure using summary

454

ABSTRACT REASONING FORPLANNING AND COORDINATION

information to more efficiently converge on coordinated plans, which can then be further refined
individually and in parallel by the participating agents.

This ability to coordinate at abstract levels rather than over detailed plans allows each of the
agents to retain some local flexibility to refine its operators as best suits its current or expected
circumstances without jeopardizing coordination or triggering new rounds of renegotiation. In this
way, summary information supports robust execution systems such asPRS (Georgeff & Lansky,
1986),UMPRS (Lee, Huber, Durfee, & Kenny, 1994),RAPS (Firby, 1989),JAM (Huber, 1999), etc.
that interleave the refinement of abstract plan operators with execution.

Our approach also extends plan coordination (plan merging) techniques (Georgeff, 1983; Lan-
sky, 1990; Ephrati & Rosenschein, 1994) by utilizing plan hierarchies and a more expressive tempo-
ral model. Prior techniques assume that actions are atomic, meaning that an action either executes
before, after, or at exactly the same time as another. In contrast, we use interval point algebra (Vi-
lain & Kautz, 1986) to represent the possibility of several actions of one agent executing during
the execution of one action of another agent. Because our algorithms can choose from alternative
refinements in theHTN dynamically in the midst of plan coordination, they support interleaved local
planning, multiagent coordination, and concurrent execution.

Search techniques and heuristics, includingchoose-fewest-threats-first(CFTF) and expand-
most-threats-first(EMTF), that take advantage of summary information to prune the search
space. When interdependencies run more deeply in agents’ plans, resolving them at abstract lev-
els, if possible at all, can lead to unacceptable losses in parallel activity. Fortunately, even when
agents need to delve into the details of their plans to tease out interdependencies, summary infor-
mation can still enable exponential speedups by guiding decomposition and by pruning refinement
choices. The search efficiency of using summary information comes from ignoring irrelevant infor-
mation, which in a distributed planning system also reduces communication overhead exponentially.

Complexity analyses and experiments showing potential doubly-exponential speedups in re-
finement and local search planning/scheduling using summary information. Our algorithms
demonstrate that exploiting summary information to guide hierarchical planning and scheduling can
achieve exponential speedups, and resolving interdependencies at abstract levels can improve the
performance of plan coordination algorithms doubly exponentially. While others have shown that
abstraction can exponentially reduce search space size (Korf, 1987; Knoblock, 1991) when subprob-
lem independence properties hold, we show that our techniques lead to exponential improvements
if anyof these broader conditions hold for the problem:

• solutions can be found at abstract levels;

• the amount of summary information is less at higher levels than at lower levels; or

• choices of decompositions lead to varying numbers of plan threats.

When none of these conditions hold, we show that generating and using summary information
provides no benefit and can increase computation and communication overhead. Thus, care must be
taken when deciding to use summary information, though it has proven to be extremely worthwhile
in the types of problem domains we have examined, an example of which we next describe.

455

CLEMENT, DURFEE, & BARRETT

bin2 bin3 bin4bin1

M1 M2

B C

dock

A tool

D

E

transport2
transport1

Figure 1: A simple example of a manufacturing domain

produce G

produce Gproduce G
on M1 on M2

build Gmove A&B
to M2

move A to M2 move B to M2

move G
to M2 build H

move H
to bin1

produce H

produce H from G

Figure 2: The production manager’s hierarchical plan

1.1 Manufacturing Example

As a running example to motivate this work, consider a manufacturing plant where a production
manager, a facilities manager, and an inventory manager each have their own goals with separately
constructed hierarchical plans to achieve them. However, they still need to coordinate over the use
of equipment, the availability of parts used in the manufacturing of other parts, storage for the parts,
and the use of transports for moving parts around. The state of the factory is shown in Figure 1. In
this domain, agents can produce parts using machines M1 and M2, service the machines with a tool,
and move parts to and from the shipping dock and storage bins on the shop floor using transports.
Initially, machines M1 and M2 are free for use, and the transports (transport1 and transport2), the
tool, and all of the parts (A through E) shown in their storage locations are available.

The production manager is responsible for creating a part H using machines M1 and M2. Ei-
ther M1 and M2 can consume parts A and B to produce G, and M2 can produce H from G. The
production manager’s hierarchical plan for manufacturing H involves using the transports to move
the needed parts from storage to the input trays of the machines, manufacturing G and H, and trans-
porting H back to storage. This plan is shown in Figure 2. Arcs through subplan branches mean
that all subplans must be executed. Branches without arcs denote alternative choices to achieving
the parent’s goal. The decomposition ofproduceG on M1 is similar to that ofproduceG on M2.

The facilities manager services each machine by equipping it with a tool and then calibrating it.
The machines are unavailable for production while being serviced. The facilities manager’s hierar-
chical plan branches into choices of servicing the machines in different orders and uses the transports

456

ABSTRACT REASONING FORPLANNING AND COORDINATION

maintenance

service M1 M2 service M2 M1

calibrate M1equip M1 tool
to M1

move tool

service M1 service M2
to dock

move tool

Figure 3: The facilities manager’s hierarchical plan

move D&Emove C to dock

move E to bin4move D to bin3

move_parts

Figure 4: The inventory manager’s hierarchical plan

for getting the tool from storage to the machines (Figure 3). The decomposition ofserviceM2M1
is similar to that ofserviceM1M2.

The parts must be “available” on the space-limited shop floor in order for an agent to use them.
Whenever an agent moves or uses a part, it becomes unavailable. The inventory manager’s goal is
just to move part C to the dock and move D and E into bins on the shop floor (shown in Figure 4).

To accelerate the coordination of their plans, each factory manager can analyze his hierarchical
plan to derive summary information on how each abstract plan operator can affect the world. This
information includes the summary pre-, post-, and in-conditions that intuitively correspond to the
externally required preconditions, externally effective postconditions, and the internally required
conditions, respectively, of the plan based on its potential refinements. Summary conditions aug-
ment state conditions with modal information about whether the conditions must or may hold and
when they are in effect. Examples are given at the end of Section 3.2.

Once summary information is computed, the production and inventory managers each could
send this information for their top-level plan to the facilities manager. The facilities manager could
then reason about the top-level summary information for each of their plans to determine that if
the facilities manager serviced all of the machines before the production manager started producing
parts, and the production manager finished before the inventory manager began moving parts on and
off the dock, then all of their planscanbe executed (refined) inany way, orCanAnyWay. Then the
facilities manager could instruct the others to add communication actions to their plans so that they
synchronize their actions appropriately.

This top-level solution maximizes robustness in that the choices in the production and facil-
ities managers’ plans are preserved, but the solution is inefficient because there is no concurrent
activity—only one manager is executing its plan at any time. The production manager might not
want to wait for the facilities manager to finish maintenance and could negotiate for a solution with
more concurrency. In that case, the facilities manager could determine that they could not overlap

457

CLEMENT, DURFEE, & BARRETT

their plans in any way without risking conflict (¬CanAnyWay). However, the summary information
could tell them that there might be some way to overlap their plans (MightSomeWay), suggesting
that a search for a solution with more concurrency (at the cost of perhaps committing to specific
refinement choices) has hope of success. In this case, the facilities manager could request the pro-
duction manager for the summary information of each ofproduceH ’s subplans, reason about the
interactions of lower level actions in the same way, and find a way to synchronize the subplans for
a more fine-grained solution where the plans are executed more concurrently. We give an algorithm
for finding such solutions in Section 5.

1.2 Overview

We first formally define a model of a concurrent hierarchical plan, its execution, and its interactions
(Section 2). Next, we describe summary information for propositional states and metric resources,
mechanisms determining whether particular interactions must or may hold based on this informa-
tion, and algorithms for deriving the information (Section 3). Built upon these algorithms are others
for using summary information to determine whether a set ofCHiPsmustor mightexecute success-
fully under a set of ordering constraints (Section 4). These in turn are used within a sound and
complete multilevel planning/coordination algorithm that employs search techniques and heuristics
to efficiently navigate and prune the search space during refinement (Section 5). We then show how
planning, scheduling, or coordinating at abstract levels can exponentially improve the performance
of search and execution (Section 6). We provide experimental results demonstrating that the search
techniques also greatly reduce the search for optimal solutions (Section 7). Finally, in Section 8 we
differentiate our approach from related work that we did not mention elsewhere and conclude.

2. A Model of Hierarchical Plans and their Concurrent Execution

A representation of temporal extent in anHTN is important not only for modeling concurrently
executing agents but also for performing abstract reasoning with summary information. If an agent
is scheduling abstract actions and can only sequentially order them, it will be severely restricted
in the kinds of solutions it can find. For example, the agent may prefer solutions with shorter
makespans, and should seek plans with subthreads that can be carried out concurrently.

In this section we defineconcurrent hierarchical plans(CHiPs), how the state changes over time
based on theirexecutions, and concepts of success and failure of executions in a possible world, or
history. Because we later define summary information and abstract plan interactions in terms of the
definitions and semantics given in this section, the treatment here is fairly detailed (though for an
even more comprehensive treatment, see Clement, 2002). However, we begin by summarizing the
main concepts and notation introduced, to give the reader the basic gist.

2.1 Overview

A CHiP (or planp) is mainly differentiated from anHTN by including in its definition inconditions,
in(p), (sometimes called “during conditions”) that affect (orasserta condition on) the state just after
the start time ofp (ts(p)) and must hold throughout the duration ofp. Preconditions (pre(p)) must
hold at the start, and postconditions (post(p)) are asserted at the finish time ofp (t f (p)). Metric
resource (res) consumption (usage(p, res)) is instantaneous at the start time and, if the resource is
defined as non-consumable, is instantaneously restored at the end. The decompositions ofp (d(p))

458

ABSTRACT REASONING FORPLANNING AND COORDINATION

is in the style ofand/or tree, having either a partial ordering (order(p)) or a choice of child tasks
that each can have their own conditions.

An executioneof p is an instantiation of its start time, end time, and decomposition. That is, an
execution nails down exactly what is done and when. In order to reason about plan interactions, we
can quantify over possible histories, where eachhistory corresponds to a combination of possible
executions of the concurrently-executingCHiPs for a partial ordering over their activities and in the
context of an initial state. Arun (r(h, t)) specifies the state at timet for historyh.

Achieve, clobber, andundo interactions are defined in terms of when the executions of some
plans assert a positive literal` or negative literal¬` relative to wheǹ is required by another plan’s
execution for a history. By looking at the literals achieved, clobbered, and undone in the set of
executions in a history, we can identify the conditions that must hold prior to the executions in the
history asexternal preconditionsand those that must hold after all of the executions in the history
asexternal postconditions.

The value of a metric resource at timet (r(res,h, t)) is calculated by subtracting from the prior
state value the usage of all plans that start executing att and (if non-consumable) adding back usages
of all that end att. An executioneof p fails if a condition that is required or asserted at timet is not
in the stater(h, t) at t, or if the value of a resource (r(res,h, t)) used by the plan is over or under its
limits during the execution.

In the remainder of this section, we give more careful, detailed descriptions of the concepts
above, to ground these definitions in firm semantics; the more casual reader can skim over these
details if desired. It is also important to note that, rather than starting from scratch, our formalization
weaves together, and when necessary augments, appropriate aspects of other theories, including
Allen’s temporal plans (1983), Georgeff’s theory for multiagent plans (1984), and Fagin et al.’s
theory for multiagent reasoning about knowledge (1995).

2.2 CHiPs

A concurrent hierarchical planp is a tuple〈pre, in, post, usage, type, subplans, order〉. pre(p),
in(p), andpost(p) are sets of literals (v or ¬v for some propositional variablev) representing the
preconditions, inconditions, and postconditions defined for planp.1

We borrow an existing model of metric resources (Chien, Rabideu, Knight, Sherwood, Engel-
hardt, Mutz, Estlin, Smith, Fisher, Barrett, Stebbins, & Tran, 2000b; Laborie & Ghallab, 1995).
A plan’s usageis a function mapping from resource variables to an amount used. We write
usage(p, res) to indicate the amountp uses of resourceresand sometimes treatusage(p) as a set
of pairs (res,amount). A metric resourceres is a tuple〈min value, max value, type〉. The min
and max values can be integer or real values representing bounds on the capacity or amount avail-
able. Thetypeof the resource is either consumable or non-consumable. For example, fuel and
battery energy are consumable resources because, after use, they are depleted by some amount. A
non-consumable resource is available after use (e.g. vehicles, computers, power).

Domain modelers typically only specify state conditions and resource usage for primitive ac-
tions in a hierarchy. Thus, the conditions and usage of aCHiP are used to derive summary conditions,
as we describe in Section 3.4, so that algorithms can reason about any action in the hierarchy. In
order to reason about plan hierarchies as and/or trees of actions, thetypeof plan p, or type(p), is

1. Functions such aspre(p) are used for referential convenience throughout this paper. Here,pre and pre(p) are the
same, andpre(p) is read as “the preconditions ofp.”

459

CLEMENT, DURFEE, & BARRETT

given a value of eitherprimitive, and, or or. An and plan is a non-primitive plan that is accom-
plished by carrying out all of its subplans. Anor plan is a non-primitive plan that is accomplished
by carrying out exactly one of its subplans. So,subplansis a set of plans, and aprimitive plan’s
subplansis the empty set.order(p) is only defined for anand plan p and is a consistent set of
temporal relations (Allen, 1983) over pairs of subplans. Plans left unordered with respect to each
other are interpreted to potentially execute concurrently.

The decomposition of aCHiP is in the same style as that of anHTN as described by Erol et al.
(1994a). Anandplan is a task network, and anor plan is an extra construct representing a set of all
methods that accomplish the same goal or compound task. A network of tasks corresponds to the
subplans of a plan.

For the example in Figure 2, the production manager’s highest level planproduceH (Figure 2)
is the tuple

〈{},{},{},{},and,{produceG, produceH f rom G},{be f ore(0,1)}〉.

In be f ore(0,1), 0 and 1 are indices of the subplans in the decomposition referring toproduceG and
produceH f rom G respectively. There are no conditions defined becauseproduceH can rely on
the conditions defined for the primitive plans in its refinement. The plan for moving part A from
bin1 to the first input tray of M1 using transport1 is the tuple

〈{},{},{},{},and,{start move, f inish move},{meets(0,1)}〉.

This plan decomposes into two half moves which help capture important intermediate effects. The
parent orders its children with themeetsrelation to bind them together into a single move. The
start moveplan is

〈{at(A,bin1),available(A), f ree(transport1),¬ f ull(M1 tray1)},
{¬at(A,bin1),¬available(A),¬ f ull(bin1),¬ f ull(M1 tray1), f ree(transport1)},
{¬at(A,bin1),¬available(A),¬ f ree(transport1),¬ f ull(bin1),¬ f ull(M1 tray1)},
{}, primitive,{},{}〉.

The f inish moveplan is

〈{¬at(A,bin1),¬available(A),¬ f ree(transport1),¬ f ull(bin1),¬ f ull(M1 tray1)},
{¬at(A,bin1),¬available(A),¬ f ree(transport1),¬ f ull(bin1), f ull(M1 tray1)},
{¬at(A,bin1),at(A,M1 tray1),available(A), f ree(transport1),¬ f ull(bin1), f ull(M1 tray1)},
{}, primitive,{},{}〉.

We split the move plan into these two parts in order to ensure that no other action that executes
concurrently with this one can use transport1, part A, or the input tray to M1. It would be incorrect
to instead specify¬ f ree(transport1) as an incondition to a single plan because another agent could,
for instance, use transport1 at the same time because its¬ f ree(transport1) incondition would agree
with the¬ f ree(transport1) incondition of this move action. However, the specification here is still
insufficient since two pairs of (start move, f inish move) actions could start and end at the same
time without conflict. We can get around this by only allowing the planner to reason about the
moveplan and its parent plans, in effect, hiding the transition between the start and finish actions.
So, by representing the transition fromf ree to ¬ f ree without knowing when that transition will

460

ABSTRACT REASONING FORPLANNING AND COORDINATION

take place the modeler ensures that another move plan that tries to use transport1 concurrently with
this one will cause a conflict.2

A postcondition is required for each incondition to specify whether the incondition changes.
This clarifies the semantics of inconditions as conditions that hold onlyduring plan execution
whether because they arecausedby the action or because they arenecessary conditionsfor suc-
cessful execution.

2.3 Executions

Informally, anexecutionof a CHiP is recursively defined as an instance of a decomposition and an
ordering of its subplans’ executions. Intuitively, when executing a plan, an agent chooses the plan’s
start time and how it is refined, determining at what points in time its conditions must hold, and
then witnesses a finish time. The formalism helps us reason about the outcomes of different ways
to execute a group of plans, describe state transitions, and define summary information.

An execution eof CHiP p is a tuple〈d, ts, t f 〉. ts(e) andt f (e) are positive, non-zero real numbers
representing the start and finish times of executione, andts < t f . Thus, instantaneous actions are not
explicitly represented.d(e) is a set of subplan executions representing the decomposition of planp
under this executione. Specifically, ifp is anandplan, then it contains exactly one execution from
each of the subplans; if it is anor plan, then it contains only one execution of one of the subplans;
and it is empty if it isprimitive. In addition, for all subplan executions,e′ ∈ d, ts(e′) andt f (e′) must
be consistent with the relations specified inorder(p). Also, the first subplan(s) to start must start
at the same time asp, ts(e′) = ts(e), and the last subplan(s) to finish must finish at the same time
as p, t f (e′) = t f (e). The possible executions of a planp is the setE(p) that includes all possible
instantiations of an execution ofp, meaning all possible values of the tuple〈d, ts, t f 〉, obeying the
rules just stated.

For the example in Section 1.1, an execution for the production manager’s top-level plan
produceH would be somee ∈ E(produceH). e might be 〈{e1, e2}, 2.0, 9.0〉 where e1 ∈
E(produceG), ande2 ∈ E(produceH f rom G). This means that the execution ofproduceH
begins at time 2.0 and ends at time 9.0.

For convenience, thesubexecutionsof an executione, or subex(e), is defined recursively as the
set of subplan executions ine’s decomposition unioned with their subexecutions.

2.4 Histories and Runs

An agent reasoning about summary information to make planning decisions at abstract levels needs
to first be able to reason aboutCHiPs. In this section we complete the semantics ofCHiPs by
describing how they affect the state over time. Because an agent can execute a plan in many different
ways and in different contexts, we need to be able to quantify over possible worlds (orhistories)
where agents fulfill their plans in different ways. After defining a history, we define arun as the
transformation of state over time as a result of the history of executions. The formalization of
histories and runs follows closely to that of Fagin et al. (1995) in describing multiagent execution.

A state of a world,s, is a truth assignment to a set of propositions, each representing an aspect
of the environment. We will refer to the state as the set of true propositional variables. Ahistory,

2. Using universal quantification (Weld, 1994) a single plan could have a∀agent,agent 6= productionManager→
¬using(transport1,agent) condition that would exclude concurrent access to the transport. We could have also
simply specified transport1 as a non-consumable resource with maximum capacity of one.

461

CLEMENT, DURFEE, & BARRETT

h, is a tuple〈E,sI 〉. E is the set of all plan executions of all agents occurring inh, andsI is the
initial state ofh before any plan begins executing. So, a historyh is a hypothetical world that begins
with sI as the initial state and where only executions inE(h) occur. In particular, a history for the
manufacturing domain might have an initial state as shown in Figure 1 where all parts and machines
are available, and both transports are free. The set of executionsE would contain the execution of
produceH, maintenance, moveparts, and their subexecutions.

A run, r, is a function mapping a history and time point to states. It gives a complete description
of how the state of the world evolves over time, where time ranges over the positive real numbers.

Axiom 1
r(h,0) = sI

Axiom 2

v∈ r(h, t > 0)⇔(v∈ r(h, t− ε)∨
∃p,ep ∈ E(h),(v∈ in(p)∧ ts(ep) = t− ε)∨ (v∈ post(p)∧ t f (ep) = t))∧

(6 ∃p′,ep′ ∈ E(h),(¬v∈ in(p′)∧ ts(ep′) = t− ε)∨ (¬v∈ post(p′)∧ t f (ep′) = t))

Axiom 1 states that the world is in the initial state at time zero. Axiom 2 states that a predicate
v is true at timet if it was already true beforehand, or a plan assertsv with an incondition or
postcondition att, but (in either case) no plan asserts¬v att. If a plan starts att, then its inconditions
are asserted right after the start,t +ε, whereε is a small positive real number. Axiom 2 also indicates
that both inconditions and postconditions are effects.

The state of a resource is a level value (integer or real). For consumable resource usage, a task
that depletes a resource is modeled to instantaneously deplete the resource (subtractusagefrom the
current state) at the start of the task by the full amount. For non-consumable resource usage, a task
also depletes the usage amount at the start of the task, but the usage is restored (added back to the
resource state) at the end of execution. A task can replenish a resource by having a negativeusage.
We will refer to the level of a resourceres at timet in a historyh asr(res,h, t). Axioms 3 and 4
describe these calculations for consumable and non-consumable resources, respectively.

Axiom 3

r(consumableres,h, t) = r(consumableres,h, t− ε)−∑ep∈E(h),ts(ep)=t usage(p,consumableres)

Axiom 4

r(nonconsumableres,h, t) =r(nonconsumableres,h, t− ε)−
∑ep∈E(h),ts(ep)=t usage(p,nonconsumableres)+
∑ep∈E(h),t f (ep)=t usage(p,nonconsumableres)

Now that we have described howCHiPs change the state, we can specify the conditions under
which an execution succeeds or fails. As stated formally in Definition 1, an execution succeeds if:
the plan’s preconditions are met at the start; the postconditions are met at the end; the inconditions
are met throughout the duration (not including the start or end); all used resources stay within their
value limits throughout the duration; and all executions in the decomposition succeed. Otherwise,
the executionfails.

462

ABSTRACT REASONING FORPLANNING AND COORDINATION

Definition 1

succeeds(ep,h)≡pre(p)⊆ r(h, ts(ep))∧
post(p)⊆ r(h, t f (ep))∧
∀t, res,ts(ep) < t < t f (ep)∧usage(p, res) 6= 0→

in(p)⊆ r(h, t)∧
min value(res) <= r(res,h, t) <= max value(res)∧

∀e∈ d(ep),succeeds(e,h)

2.5 Asserting, Clobbering, Achieving, and Undoing

Conventional planning literature often speaks ofclobberingandachievingpreconditions of plans
(Weld, 1994). InCHiPs, these notions are slightly different since inconditions can clobber and
be clobbered, as seen in the previous section. Formalizing these concepts and another,undoing
postconditions, helps us define summary conditions (in Section 3.2). However, it will be convenient
to define first what it means toasserta condition. Figure 5 gives examples of executions involved
in these interactions, and we define these terms as follows:

Definition 2
asserts(ep, `, t,h)≡(ep ∈ E(h))∧

(` ∈ in(p)∧ t = ts(ep)+ ε∨
` ∈ post(p)∧ t = t f (ep))∧

(r(t,h) ` `)

Definition 2 states that an executionep in a historyh asserts a literal at timet if that literal is an
effect ofp that holds in the state att. Note that that from this point on, beginning in Definition 3, we
use brackets [] as a shorthand when defining similar terms and procedures. For example, saying “[a,
b] implies [c, d]” meansa impliesc, andb impliesd. This shorthand will help us avoid repetition,
at the cost of slightly more difficult parsing.

Definition 3

[achieves,clobbers] precondition(ep, `,ep′ , t,h)≡
ep,ep′ ∈ E(h)∧
asserts(ep, [`,¬`], t,h)∧ ` ∈ pre(p′)∧ t < ts(ep′)∧
6 ∃ep′′ , t ′′,(asserts(ep′′ , `, t ′′,h)∨asserts(ep′′ ,¬`, t ′′,h))∧ t < t ′′ ≤ ts(ep′)

Definition 4

clobbers[in, post]condition(ep, `,ep′ , t,h)≡
ep,ep′ ∈ E(h)∧
asserts(ep,¬`, t,h)∧ ` ∈ [in(p′), post(p′)]∧ [ts(ep′) < t < ts(ep′), t = t f (ep′)]

Definition 5

undoes(ep, `,ep′ , t,h)≡
ep,ep′ ∈ E(h)∧
asserts(ep,¬`, t,h)∧ ` ∈ post(p′)∧ t f (ep′) > t∧
6 ∃ep′′ , t ′′,(asserts(ep′′ , `, t ′′,h)∨asserts(ep′′ ,¬`, t ′′,h))∧ t f (ep′)≤ t ′′ < t

463

CLEMENT, DURFEE, & BARRETT

Figure 5: Interval interactions of plan steps

So, an execution achieves or clobbers a precondition if it is the last (or one of the last) to assert
the condition or its negation (respectively) before it is required. Likewise, an execution undoes a
postcondition if it is the first (or one of the first) to assert the negation of the condition after the
condition is asserted. An executione clobbers an incondition or postcondition ofe′ if e asserts the
negation of the condition during or at the end (respectively) ofe′. Achieving effects (inconditions
and postconditions) does not make sense for this formalism, so it is not defined. Figure 5 shows
different ways an executione achieves, clobbers, and undoes an executione′. ` and¬` point to
where they are asserted or required to be met.

2.6 External Conditions

As recognized by Tsuneto et al. (1998), external conditions are important for reasoning about po-
tential refinements of abstract plans. Although the basic idea is the same, we define them a little
differently and call themexternal preconditionsto differentiate them from other conditions that we
call external postconditions. Intuitively, an external precondition of a group of partially ordered
plans is a precondition of one of the plans that is not achieved by another in the group and must
be met external to the group. External postconditions, similarly, are those that are not undone by
plans in the group and are net effects of the group. Definition 6 states that` is an external [pre,
post]condition of anexecution ep if ` is a [pre, post]condition of a subplan for which it is not
[achieved, undone] by some other subplan.

Definition 6

external [pre, post]condition(`,ep)≡
∃h,E(h) = {ep}∪subex(ep)→
(∃ep′ ∈ E(h), ` ∈ [pre(p′), post(p′)]∧
6 ∃ep′′ ∈ E(h), t,[achievespre,undoespost]condition(ep′′ , `,ep′ , t,h))

464

ABSTRACT REASONING FORPLANNING AND COORDINATION

For the example in Figure 2,available(G) is not an external precondition because, although G
must exist to produce H, G is supplied by the execution of theproduceG plan. Thus,available(G)
is met internally, makingavailable(G) an internal condition.available(M1) is an external pre-
condition, an internal condition, and an external postcondition because it is needed externally and
internally; it is an effect ofproduceG on M1 which releases M1 when it is finished; and no other
plan in the decomposition undoes this effect.

3. Plan Summary Information

Summary information can be used to find abstract solutions that are guaranteed to succeed no matter
how they are refined because the information describes all potential conditions of the underlying
decomposition. Thus, some commitments to particular plan choices, whether for a single agent or
between agents, can be made based on summary information without worrying that deeper details
lurk beneath that will doom the commitments. WhileHTN planners have used abstract conditions
to guide search (e.g., Sacerdoti, 1974; Tsuneto et al., 1998), they rely on a user-defined subset of
constraints that can only help detect some potential conflicts. In contrast, summary information can
be used to identify all potential conflicts.

Having the formalisms of the previous section, we can now define summary information and
describe a method for computing it for non-primitive plans (in Section 3.4). Because there are
many detailed definitions and algorithms in this section, we follow the same structure here as in the
previous section, where we first give a more informal overview of the key concepts and notation,
into which we then subsequently delve more systematically.

3.1 Overview

The summary information of planp consists of summary pre-, in-, and postconditions (presum(p),
insum(p), postsum(p)), summary resource usage (usagesum(p, res)) for each resourceres, and whether
the plan can be executed in any way successfully (consistent).

A summary condition (whether pre, post, or in) specifies not only a positive or negated literal,
but additional modal information. Each summary condition has an associatedexistence, whose
value is eithermustor maydepending on whether it must hold for all possible decompositions of
the abstract operator or just may hold depending on which decomposition is chosen. Thetiming of
a summary condition is eitherf irst, last, always, orsometimes, specifying when the condition must
hold in the plan’s interval of execution. A planp1 must[achieve, clobber] summary precondition
c2 of p2 if the execution ofp1 (or that of any plan with the same summary information) would
[achieve, clobber] a condition summarized byc2 (or any plan with the same summary information
asp2).

The algorithm for deriving summary conditions for planp takes as input the summary condi-
tions of the immediate subplans ofp and the conditions defined for theCHiP p. The pre-, in-, and
postconditions ofp become must first, must always, and must last summary conditions, respec-
tively. The algorithm retains the existence and timing of subplan summary conditions in the parent
depending on whether the conditions are achieved, clobbered, or undone by siblings, whether the
decomposition isand or or, whether the subplan is ordered first or last, and whether all subplans
share the same condition. Subplan first, always, and last conditions can become sometimes con-
ditions in the parent. The parent is computed asconsistentas long as all subplans areconsistent,

465

CLEMENT, DURFEE, & BARRETT

no subplan may clobber a summary condition of another, and summarized resources do not violate
limits.

We represent summary resource usage as three value ranges,〈local min, local max, persist〉,
where the resource’s local usage occurs within the task’s execution, and the persistent usage rep-
resents the usage that lasts after the task terminates for depletable resources. The summarization
algorithm for an abstract task takes the summary resource usages of its subtasks, considers all le-
gal orderings of the subtasks, and all possible usages for all subintervals within the interval of the
abstract task, to build multiple usage profiles. These profiles are combined with algorithms for
computing parallel, sequential, and disjunctive usages to give the summary usage of the parent task.

3.2 Summary Conditions

Thesummary informationfor a planp, psum, is a tuple〈presum, insum, postsum, usagesum, consistent〉,
whose members are sets ofsummary conditions, summarized resource usage, and aconsistentflag
indicating whether the plan will execute consistently internally.presum(p) andpostsum(p) aresum-
mary pre- and postconditions, which are the external pre- and postconditions ofp, respectively. The
summary inconditionsof p, insum(p), contain all conditions that must hold within some execution
of p for it to be successful. A conditionc in one of these sets is a tuple〈`,existence, timing〉. `(c)
is the literal ofc. Theexistenceof c can bemustor may. If existence(c) = must, thenc is called a
mustcondition becausèmusthold for every successful plan execution. For convenience we usually
write must(c). c is amaycondition (may(c) is true) if `(c) must hold for some successful execution.

Thetiming of a summary conditionc can either bealways, sometimes, f irst, or last. timing(c)
is alwaysfor c∈ insumif `(c) is an incondition that must hold throughout all potential executions ofp
(` holdsalways); otherwise,timing(c) = sometimesmeaning̀ (c) holds at one point, at least, within
an execution ofp. So, analwayscondition ismust, and we do not definemay alwaysinconditions
because whether it ismaybecause of existence or timing, it is not significantly different frommay
sometimesin how a planner reasons about it. Whether a condition ismay always(however defined)
or may sometimes, another plan can only have amay clobberrelationship with the condition (as
defined in Section 3.3). Note also that the incondition of aCHiP has the restricted meaning of a
must alwayssummary incondition. Thetiming is f irst for c∈ presum if `(c) holds at the beginning
of an execution ofp; otherwise,timing= sometimes. Similarly, timing is last for c∈ postsum if `(c)
is asserted at the end of a successful execution ofp; otherwise, it issometimes. Althoughexistence
and timing syntactically only take one value, semanticallymust(c) ⇒ may(c), andalways(c) ⇒
sometimes(c).

We considered using modal logic operators to describe these concepts. While a mix of existing
temporal logic and dynamic logic (Pratt, 1976) notation could be forced to work, we found that
using our own terminology made definitions much simpler. We discuss this more at the end of
Section 8.

Definitions 7, 8, and 9 give the formal semantics ofexistenceandtiming for a few representative
condition types. Summary conditions of a plan are defined recursively in that they depend on the
summary conditions of the plan’s immediate subplans instead of its complete decomposition. Be-
cause a single description of summary information could represent many different plan hierarchies,
we quantify over plansp′, whose subplans have the same summary information as those of the
plan p being summarized. We could have defined the existence and timing properties of conditions
based on the entire hierarchy, but in doing so, deriving summary conditions would be as expensive

466

ABSTRACT REASONING FORPLANNING AND COORDINATION

as solving the planning problem, and one of the main purposes of summary information is to reduce
the computation of the planning problem. The reason why it would be so expensive is that in the
worst case all legal orderings of all plan steps must be explored to determine whether a condition is
mustor may. We will discuss an example of this at the end of this subsection.

Definition 7

[must,may] f irst precondition(`, p)≡
∀p′ = 〈pre(p), in(p), post(p),{}, type(p),subplans(p′),order(p)〉∧
summary in f ormation o f subplans(p′) = summary in f ormation f or subplans(p) →
∀h,ep′ ,E(h) = {ep′}∪subex(ep′)∧ [true,external precondition(`,ep′)]→

∃ep′′ ∈ E(h), ts(ep′′) = ts(ep′)∧ ` ∈ pre(p′′)

Definition 8

must alwaysincondition(`, p)≡
∀p′ = 〈pre(p), in(p), post(p),{}, type(p),subplans(p′),order(p)〉∧
summary in f ormation o f subplans(p′) = summary in f ormation f or subplans(p) →

∀h,ep′ ,E(h) = {ep′}∪subex(ep′), t, ts(ep′) < t < t f (ep′)→
∃ep′′ ∈ E(h), ts(ep′′) < t < t f (ep′′)∧ ` ∈ in(p′′)

Definition 9

[must,may] sometimesincondition(`, p)≡
[∀,∃]p′ = 〈pre(p), in(p), post(p),{}, type(p),subplans(p′),order(p)〉∧
summary in f ormation o f subplans(p′) = summary in f ormation f or subplans(p) [→,∧]

[∀,∃]h,ep′ ,E(h) = {ep′}∪subex(ep′),∃t, ts(ep′) < t < t f (ep′)[→,∧]
∃ep′′ ∈ E(h), t = ts(ep′′)∧ ` ∈ pre(p′′)∨

ts(ep′′) < t < t f (ep′′)∧ ` ∈ in(p′′)∨
t = t f (ep′′)∧ ` ∈ post(p′′)

Definition 7 states that af irst precondition ofp is an external precondition that is always re-
quired at the beginning of the execution of anyp′ that has the same conditions asp and the same
summary information and ordering for its subplans asp. A last postconditionis always asserted at
the end of the execution (substitute “pre” with “post” andts with t f in the last two lines of Defini-
tion 7). A [must,may]sometimes preconditionis a [must,may] external precondition that is not a
f irst precondition. Asometimes postconditionis defined similarly. Definition 8 states that a literal
` is a must, alwaysincondition of a planp if at any time during any isolated execution of anyp′

with the same summary information asp, some executing planp′′ has inconditioǹ . Definition 9
states that a [must, may]sometimes inconditionof plan p is a condition that is required during [any,
some] execution of [any, some] planp′ that has the same summary information and ordering for its
subplans asp.

The consistentflag is a boolean indicating whether the plan (or any plan with the same sum-
mary information and ordering for subplans) would execute successfully no matter how it was de-
composed and no matter when its subplans were executed. Definition 10 says that all possible

467

CLEMENT, DURFEE, & BARRETT

executions will succeed for a consistent plan. This is very similar to theCanAnyWayrelation that
will be defined in Section 4. We do not include whether the plan will definitely not succeed in the
summary information because it requires an exponential computation to see whether all conflicts in
the subplans can be resolved. This computation can wait to be done during planning after summary
information is fully derived.

Definition 10

consistent(p)≡
∀p′ = 〈pre(p), in(p), post(p),usage(p), type(p),subplans(p′),order(p)〉∧
summary in f ormation o f subplans(p′) = summary in f ormation f or subplans(p) →

∀h,ep′ ∈ E(p′),ep′succeeds

We show a subset of the summary conditions for the production manager’s top-level plan (of
Figure 2) below. Following each literal are modal tags forexistenceandtiming information. “Mu”
is must; “Ma” is may; “F” is f irst; “L” is last; “S” is sometimes; and “A” is always.

Production manager’s produceH plan:
Summary preconditions:
available(A)MuF, available(M1)MaS, available(M2)MaS

Summary inconditions:
¬available(A)MuS, available(M1)MaS, available(M2)MuS, available(G)MuS,

available(A)MuS, ¬available(M1)MaS, ¬available(M2)MuS, ¬available(G)MuS,
available(H)MuS, ¬available(H)MuS
Summary postconditions:
¬available(A)MuS, available(M1)MaS, available(M2)MuS, ¬available(G)MuS,
available(H)MuL

Theavailable(M1) summary precondition is amaycondition because the production manager
may end up not using M1 if it chooses to use M2 instead to produce G.available(A) is a f irst sum-
mary precondition because part A must be used at the beginning of execution when it is transported
to one of the machines. Because the machines are needed sometime after the parts are transported,
they are sometimes (and not first) conditions: they are needed at some point in time after the begin-
ning of execution.

Because the production manager may use M1 to produce G,¬available(M1) is a summary
incondition of produceH. Having bothavailable(M1) and¬available(M1) as inconditions is
consistent because they aresometimesconditions, implying that they hold at different times during
the plan’s execution. In contrast, these conditions would conflict if they were bothmustandalways
(meaning that they must always hold throughout every possible execution of the plan).

The summary condition¬available(A) is amustpostcondition of the top-level plan because A
will definitely be consumed bymakeG and is not produced by some other plan in the decomposition
of produceH f rom G. Even thoughavailable(G) is an effect ofproduceG, it is not an external
postcondition ofproduceH because it is undone byproduceH f rom G, which consumes G to
make H.available(H) is a last summary postcondition because the production manager releases
H at the very end of execution.available(M2) is not last because the manager finishes using M2
before moving H into storage.

Notice thatavailable(M2) is a maysummary precondition. However, no matter how the hi-
erarchy is decomposed, M2 must be used to produce H, soavailable(M2) must be established

468

ABSTRACT REASONING FORPLANNING AND COORDINATION

externally to the production manager’s plan. Because summary information is defined in terms of
the summary information of the immediate subplans, in the subplans ofproduceH, we only see
that produceG has anavailable(M2)MaSprecondition and anavailable(M2)MaSpostcondition
that would achieve theavailable(M2)MuF precondition ofproduceH f rom G. This summary
information does not tell us that the precondition ofproduceG exists only when the postcondition
exists, a necessary condition to determine that the derived precondition ofproduceH is a must
condition. Thus, it ismay. If we augmented summary information with which subsets of conditions
existed together, hunting through combinations and temporal orderings of condition subsets among
subplans to derive summary conditions would basically be an adaptation of anHTN planning algo-
rithm, which summary information is intended to improve. Instead, we derive summary information
in polynomial time and then use it to improveHTN planning exponentially as we explain in Sec-
tion 6. This is the tradeoff we made at the beginning of this section in defining summary conditions
in terms of just the immediate subplans instead of the entire hierarchy. Abstraction involves loss of
information, and this loss enables computational gains.

3.3 Summary condition relationships and algorithms

In order to derive summary conditions according to their definitions, we need to be able to recognize
achieve, clobber, and undo relationships based on summary conditions as we did for basicCHiP
conditions. We give definitions and algorithms for these, which build on constructs and algorithms
for reasoning about temporal relationships, described in Appendix A.

Achieving and clobbering are very similar, so we define them together. Definition 11 states that
plan p1 must [achieve, clobber] summary preconditionc2 of p2 if and only if for all executions of
any two plans,p′1 and p′2, with the same summary information and ordering constraints asp1 and
p2, the execution ofp′1 or one of its subexecutions would [achieve, clobber] an external precondition
`(c2) of p′2.

Definition 11

must [achieve,clobber] precondition(p1,c2, p2,Psum,order)≡
∀h∈H(Psum,order), p′1, p′2,ep′1

,ep′2
,

(p′1 and p′2 have same summary and ordering in f ormation as p1 and p2) →
∃t,ep′′1

∈ subex(ep′1
),ep′′2

∈ subex(ep′2
),

[achieve,clobber] precondition(ep′′1
, `(c2),ep′′2

, t,h) ∧
external precondition(`(c2),ep′2

)

Achieving and clobbering in- and postconditions are defined the same as Definition 11 but sub-
stituting “in” and “post” for “pre” and removing the last line for inconditions. Additionally sub-
stituting∃ for ∀ gives the definitions ofmay achieveandclobber. Furthermore, the definitions of
must/may-undoare obtained by substituting “post” for “pre” and “undo” for “achieve” in Defini-
tion 11. Note that, as mentioned in Section 2.5, achieving inconditions and postconditions does not
make sense for this formalism.

Algorithms for these interactions are given in Figure 6 and Figure 7. These algorithms build
on others (detailed in Appendix B) that use interval point algebra to determine whether a plan must
or may assert a summary condition before, at, or during the time another plan requires a summary
condition to hold. Similar to Definition 3 of must-achieve forCHiP conditions, Figure 6 says thatp′

469

CLEMENT, DURFEE, & BARRETT

Algorithm: Must-[achieve, clobber]
Input: plan p′, summary condition c of plan p, Psum, and order
Output: true or f alse, whether p′ must-[achieve, clobber] c
begin function
for each c′ ∈ in(p′)∪ post(p′)

if `(c′)⇔ [`(c), ¬`(c)] ∧ must(c′) then
if c∈ insum(p) ∧ p′ must-assert c′ in c then return [unde f ined, true]
if c∈ postsum(p) ∧ p′ must-assert c′ when c then return [unde f ined, true]
if c∈ presum(p) ∧ p′ must-assert c′ by c then

set assertioninbetween= f alse
for each c′′ ∈ in(p′′)∪ post(p′′), p′′ ∈ Psum while assertioninbetween= f alse

if (p′ may-assert c′ before c′′ ∧
p′′ may-assert c′′ by c ∧
`(c′′)⇔ [¬`(c), `(c)]) ∨
(p′ must-assert c′ before c′′ ∧
p′′ must-assert c′′ by c ∧
`(c′′)⇔ [`(c), ¬`(c)] ∧ must(c′′)) then

set assertioninbetween= true
if ¬assertioninbetweenthen return true

return f alse
end function

Figure 6: Algorithm for whether a plan must achieve or clobber a summary condition

achieves summary conditionc if it must asserts the condition before it must hold, and there are no
other plans that may assert the condition or its negative in between. The algorithm for may-achieve
(in Figure 7) mainly differs in thatp′ mayassert the condition beforehand, and there is no plan that
mustassert in between. The undo algorithms are the same as those for achieve after swappingc and
c′ in all must/may-assertlines.

The complexity of determining must/may-clobber for inconditions and postconditions is simply
O(c) to checkc conditions inp′. If the conditions are hashed, then the algorithm is constant time.
For the rest of the algorithm cases, the complexity of walking through the summary conditions
checking forp′′ and c′′ is O(nc) for a maximum ofc summary conditions for each ofn plans
represented inPsum. In the worst case, all summary conditions summarize the same propositional
variable, and allO(nc) conditions must be visited.

Let’s look at some examples of these relationships. In Figure 8a,p′ = equipM2 tool may-
clobberc = available(M2)MaS in the summary preconditions ofp = produceG because there is
somehistory whereequipM2 tool ends beforeproduceG starts, andcalibrate M2 starts after
produceG starts. In Figure 8b,p′ = build H must-achievec = available(H)MuF in the sum-
mary preconditions ofp = moveH. Here,c′ is available(H)MuL in the summary postconditions
of build H. In all histories,build H attempts to assertc′ before themoveH requiresc to be
met, and there is no other plan execution that attempts to assert a condition on the availability
of H. equipM2 tool doesnot may-clobberc = available(M2)MuF in the summary preconditions
of build H even thoughequipM2 tool assertsc′ = ¬available(M2)MuL beforec is required to
be met. This is becausecalibrate M2 must assert¬available(M2)MuA between the time that
equipM2 tool assertsc′ and whenc is required. Thus,calibrate M2 must-undoequipM2 tool ’s

470

ABSTRACT REASONING FORPLANNING AND COORDINATION

Algorithm: May-[achieve, clobber]
Input: plan p′, summary condition c of plan p
Output: true or f alse, whether p′ may-[achieve, clobber] c
begin function
for each c′ ∈ in(p′)∪ post(p′)

if `(c′)⇔ [`(c), ¬`(c)] then
if c∈ insum(p) ∧ p′ may-assert c′ in c then return [unde f ined, true]
if c∈ postsum(p) ∧ p′ may-assert c′ when c then return [unde f ined, true]
if c∈ presum(p) ∧ p′ may-assert c′ by c then

set assertioninbetween= f alse
for each c′′ ∈ in(p′′)∪ post(p′′), p′′ ∈ Psum while assertioninbetween= f alse

if p′ must-assert c′ before c′′ ∧
p′′ must-assert c′′ by c ∧
`(c′′)⇔ `(c) or ¬`(c) ∧ must(c′′)) then

set assertioninbetween= true
if ¬assertioninbetweenthen return true

return f alse
end function

Figure 7: Algorithm for whether a plan may achieve or clobber a summary condition

produce G

move G build H move H

produce G

move G build H move H

service M2

tool

move equip M2

tool

calibrate M2

tool

move equip M2

tool

produce H

produce H

produce H from G

produce H from G

calibrate M2

service M2

a)

=

b)

Figure 8: The production and facilities managers’ plans partially expanded. a) The managers’ plans
unordered with respect to each other. b)equipM2 tool must clobberavailable(M2)MaL
of produceG, andcalibrate M2 must clobberavailable(M2)MuF of build H.

summary postcondition. Becausecalibrate M2 cannot assert its postconditionavailable(M2)MuL
beforebuild H requiresavailable(M2)MuF,calibrate M2 must-clobber the summary precondition.

471

CLEMENT, DURFEE, & BARRETT

3.4 Deriving Summary Conditions

Now that we have algorithms that determine interactions of abstract plans based on their summary
conditions, we can create an algorithm that derives summary conditions according to their defini-
tions in Section 3.2. Figure 9 shows pseudocode for the algorithm. The method for deriving the
summary conditions of a planp is recursive. First, summary information is derived for each ofp’s
subplans. Then conditions are added based onp’s own conditions. Most of the rest of the algorithm
derives summary conditions from those ofp’s subplans. Whetherp is consistentdepends on the
consistency of its subplans and whether its own summary conditions and resource usages are in
conflict. The braces ’{’ ’ }’ used here have slightly different semantics than used before with the
brackets. An expression{x,y} can be interpreted simply as (x or y, respectively).

Definitions and algorithms for temporal relationships such asalways- f irst andcoversare in
Appendix A. When the algorithm adds or copies a condition to a set, only one condition can exist
for any literal, so a condition’s information may be overwritten if it has the same literal. In all cases,
mustoverwritesmay; and f irst, last, andalwaysoverwritesometimes; but, not vice-versa. Further,
because it uses recursion, this procedure is assumed to work on plans whose expansion is finite.

3.5 Summary Resource Usage

In this section, we define a representation for capturing ranges of usage both local to the task in-
terval and the depleted usage lasting after the end of the interval. Based on this we introduce a
summarization algorithm that captures in these ranges the uncertainty represented by decomposi-
tion choices inor plans and partial temporal orderings ofand plan subtasks. This representation
allows a coordinator or planner to reason about the potential for conflicts for a set of tasks. We will
discuss this reasoning later in Section 4.2. Although referred to as resources, these variables could
be durations or additive costs or rewards.

3.5.1 REPRESENTATION

We start with a new example for simplicity that motivates our choice of representation. Consider
the task of coordinating a collection of rovers as they explore the environment around a lander on
Mars. This exploration takes the form of visiting different locations and making observations. Each
traversal between locations follows established paths to minimize effort and risk. These paths com-
bine to form a network like the one mapped out in Figure 10, where vertices denote distinguished
locations, and edges denote allowed paths. Thinner edges are harder to traverse, and labeled points
have associated observation goals. While some paths are over hard ground, others are over loose
sand where traversal is harder since a rover can slip.

Figure 11 gives an example of an abstract task. Imagine a rover that wants to make an early
morning trip from pointA to point B on the example map. During this trip the sun slowly rises
above the horizon giving the rover the ability to progressively usesoak raystasks to provide more
solar power (a non-consumable resource3) to motors in the wheels. In addition to collecting photons,
the morning traverse moves the rover, and the resultantgo tasks require path dependent amounts of
power. While a rover traveling from pointA to pointB can take any number of paths, the shortest
three involve following one, two, or three steps.

3. It is important not to confuse power with battery energy. A power source (e.g. battery, solar panels) makes a fixed
amount of power in Watts available at any point in time. A battery’s energy (in Watt-hours) is reduced by the integral
of the total use of this power over time.

472

ABSTRACT REASONING FORPLANNING AND COORDINATION

Algorithm: Derive summary information
Input: plan p
Output: psum

begin function
derive summary information for each p′ ∈ d(p)
set consistent(p) =

V
p′∈d(p) consistent(p′)

for each ` ∈ pre(p) add 〈`,must, f irst〉 to presum(p)
for each ` ∈ in(p) add 〈`,must,always〉 to insum(p)
for each ` ∈ post(p) add 〈`,must, last〉 to postsum(p)
for each summary condition c′ of p′ ∈ d(p)

set c = c′

if c′ ∈ {presum(p′),postsum(p′)} and
c′ is not must-{achieved,undone} or must-clobbered within d(p), then
if type(p) = and and (p′ is always not the { f irst,last}

temporally ordered subplan according to order(p) or
there is a sometimes- { f irst,last} subplan p′ that
does not have a { f irst, last} `(c′) condition in {presum(p′),postsum(p′)}), then
set timing(c) = sometimes

if c′ is may-{achieved,undone} or may-clobbered by each of P⊂ d(p) and
not all p′′ ∈ P have a must `(c′) condition in {presum(p′′),postsum(p′′)}, then
set existence(c) = may

copy c to {presum(p),postsum(p)}
if c′ ∈ insum(p′) or p′ is not-always { f irst,last} according to order(p), then

if must(c′) and c′ is always-not- { f irst,last} according to order(p), then
set existence(c) = must

set P = /0
set allAlways= true
for each p′′ ∈ d(p),c′′ ∈ insum(p′′)

if `(c′′)⇔ `(c)
if always(c′′) then add p′′ to P
else set allAlways = f alse

else allAlways= f alse
if always(c) and ((type(p) = and and P covers paccording to order(p)) or

(type(p) = or and allAlways)), then
set timing(c) = always

add c to insum(p)
if c′ is may-clobbered, then set consistent= f alse

usagesum(p) = SummarizeResourceUsage(p) (in Section 3.5.2)
if consistent(usagesum(p)) = f alse, then set consistent(p) = f alse

end function

Figure 9: Algorithm for deriving summary information

A summarized resource usageconsists of ranges of potential resource usage amounts during
and after performing an abstract task, and we represent this summary information for a planp on a
resourceresusing the structure

usagesum(p, res) = 〈local min(p, res), local max(p, res), persist(p, res)〉,

473

CLEMENT, DURFEE, & BARRETT

B

A D

C

F

E

Figure 10: Example map of established paths between points in a rover domain

high path

go(A,3) go(3,B)
use 4w use 6w
15 min 25 min

go(A,B)

50 min
use 4w

move(A,B)

take low pathsoak rays soak rays soak rays
use -4w
20 min

use -5w use -6w
20 min 20 min

go(2,B)
use 3w use 3w use 6w
10 min 10 min 20 min

go(A,1) go(1,2)

morning activities

middle path

Figure 11:and/or tree defining a rover’s tasks and their resource usages

where the resource’s local usage occurs withinp’s execution, and the persistent usage represents
the usage that lasts after the execution terminates for consumable resources.

Definition 12

usagesum(p, res)≡
〈[minh∈H,ep∈E(h)(mints(ep)<t<t f (ep)(−r(res,h, t))), maxh∈H,ep∈E(h)(mints(ep)<t<t f (ep)(−r(res,h, t)))]
[minh∈H,ep∈E(h)(maxts(ep)<t<t f (ep)(−r(res,h, t))), maxh∈H,ep∈E(h)(maxts(ep)<t<t f (ep)(−r(res,h, t)))]
[minh∈H,ep∈E(h)(−r(res,h, t f (ep))), maxh∈H,ep∈E(h)(−r(res,h, t f (ep)))] 〉

The context for Definition 12 is the set of all historiesH where the value ofres is 0 in the initial
state, andE(h) only contains the execution ofp and its subexecutions. Thus, the−r(res,h, t) term
is the combined usage ofresat timet of all executions in the hierarchy as defined in Section 2.4. So,
the maximum of thelocal min is the highest among all histories of the lowest point of usage during
p’s execution. The usage ranges capture the multiple possible usage profiles of a task with multiple
decomposition choices and timing choices among loosely constrained subtasks. For example, the
high pathtask has a〈[4,4],[6,6],[0,0]〉 summary power use over a 40 minute interval. In this case
the ranges are single points due to no uncertainty – the task simply uses 4 watts for 15 minutes
followed by 6 watts for 25 minutes. Themove(A,B) task provides a slightly more complex example
due to its decompositional uncertainty. This task has a〈[0,4],[4,6],[0,0]〉 summary power use over
a 50 minute interval. In both cases thepersist is [0,0] because solar power is a non-consumable
resource.

As an example of reasoning with resource usage summaries, suppose that only 3 watts of power
were available during amove(A,B) task. Given the [4,6]local max, we know that there is not
enough power no matter how the task is decomposed. Raising the available power to 4 watts makes
the task executable depending on how it gets decomposed and scheduled, and raising to 6 or more
watts makes the task executable for all possible decompositions.

474

ABSTRACT REASONING FORPLANNING AND COORDINATION

This representation of abstract (or uncertain) metric resource usage can be seen as an extension
of tracking optimistic and pessimistic resource levels (Drabble & Tate, 1994). Computing only
the upper and lower bounds on resource usage for an abstract plan gives some information about
whether lower or upper bound constraints on a resource may, must, or must not be violated, but
it is not complete. By representing upper and lower bounds as ranges of these bounds over all
potential histories, we can certainly know whether bounds may, must, or must not be violated over
all histories. For the example above, if we only tracked one range for the local usage, [0,6], we
would not know that there is definitely a conflict when only 3 watts are available. Knowing this
extra information can avoid exploration of an infeasible search space.

3.5.2 RESOURCESUMMARIZATION ALGORITHM

The state summarization algorithm in Section 3.4 recursively propagates summary conditions up-
wards from anand/or hierarchy’s leaves, and the algorithm for resource summarization takes the
same approach. Starting at the leaves, the algorithm finds primitive tasks that use constant amounts
of a resource. The resource summary of a task usingx units of a resource is〈[x,x],[x,x],[0,0]〉 or
〈[x,x],[x,x],[x,x]〉 over the task’s duration for non-consumable or consumable resources respectively.

Moving up theand/or tree, the summarization algorithm either comes to anandor anor branch.
For anor branch the combined summary usage comes from theor computation

〈 [minc∈children(lb(local min(c))), maxc∈children(ub(local min(c)))],
[minc∈children(lb(local max(c))), maxc∈children(ub(local max(c)))],
[minc∈children(lb(persist(c))), maxc∈children(ub(persist(c)))] 〉,

wherelb() andub() extract the lower bound and upper bound of a range respectively. Thechildren
denote the branch’s children with their durations extended to the length of the longest child. This
duration extension alters a child’s resource summary information because the child’s usage profile
has a zero resource usage during the extension. For instance, in determining the resource usage
for move(A,B), the algorithm combines two 40 minute tasks with a 50 minute task. The resulting
summary information describes a 50 minute abstract task whose profile might have a zero watt
power usage for 10 minutes. This extension is whymove(A,B) has a [0,4] for alocal min instead
of [3,4]. Planners that reason about variable durations could use [3,4] for a duration ranging from
40 to 50.

Computing anand branch’s summary information is a bit more complicated due to timing
choices among loosely constrained subtasks. Thetake x pathexamples illustrate the simplest sub-
case, where subtasks are tightly constrained to execute serially. Here profiles are appended together,
and the resulting summary usage information comes from the SERIAL-AND computation

〈 [minc∈children(lb(local min(c))+Σpre
lb (c)), minc∈children(ub(local min(c))+Σpre

ub (c))],
[maxc∈children(lb(local max(c))+Σpre

lb (c)), maxc∈children(ub(local max(c))+Σpre
ub (c))],

[Σc∈children(lb(persist(c))), Σc∈children(ub(persist(c)))] 〉,

whereΣpre
lb (c) and Σpre

ub (c) are the respective lower and upper bounds on the cumulative persis-
tent usages of children that execute beforec. These computations have the same form as theΣ
computations for the finalpersist.

The case where all subtasks execute in parallel and have identical durations is slightly simpler.
Here the usage profiles add together, and the branch’s resultant summary usage comes from the

475

CLEMENT, DURFEE, & BARRETT

soak rays

<[0,4],[4,6],[0,0]>

move(A,B)

soak rays

soak rays

<[-6,-6],[-6,-6],[0,0]>
<[-5,-5],[-5,-5],[0,0]>

<[-4,-4],[-4,-4],[0,0]>

Figure 12: Possible task ordering for a rover’s morning activities, with resulting subintervals.

PARALLEL-AND computation

〈 [Σc∈children(lb(local min(c))), maxc∈children(ub(local min(c))+Σnon
ub (c))],

[minc∈children(lb(local max(c))+Σnon
lb (c)), Σc∈children(ub(local max(c)))],

[Σc∈children(lb(persist(c))), Σc∈children(ub(persist(c)))] 〉,

whereΣnon
ub (c) andΣnon

lb (c) are the respective sums of thelocal maxupper bounds and thelocal min
lower bounds for all children exceptc.

To handleand tasks with loose temporal constraints, we consider all legal orderings of child
task endpoints. For example, in the rover’s early morning tasks, there are three serial solar en-
ergy collection subtasks running in parallel with a subtask to drive to locationB. Figure 12 shows
one possible ordering of the subtask endpoints, which breaksmove(A,B) into three pieces, and
two of the soak rayschildren in half. Given an ordering, the summarization algorithm can (1)
use the endpoints of the children to determine subintervals, (2) compute summary information for
each child task/subinterval combination, (3) combine the parallel subinterval summaries using the
PARALLEL-AND computation, and then (4) chain the subintervals together using the SERIAL-
AND computation. Finally, theand task’s summary is computed by combining the summaries for
all possible orderings using anor computation.

Here we describe how step (2) generates different summary resource usages for the subintervals
of a child task. A child task with summary resource usage〈[a,b],[c,d],[e, f]〉 contributes one of two
summary resource usages to each intersecting subinterval4:

〈[a,b], [c,d], [0,0]〉,〈[a,d], [a,d], [0,0]〉.

While the first usage has the tighter [a,b],[c,d] local ranges, the second has looser [a,d],[a,d] local
ranges. Since theb andc bounds only apply to the subintervals containing the subtask’s minimum
and maximum usages, the tighter ranges apply to one of a subtask’s intersecting subintervals. While
the minimum and maximum usages may not occur in the same subinterval, symmetry arguments
let us connect them in the computation. Thus one subinterval has tighter local ranges and all other
intersecting subintervals get the looser local ranges, and the extra complexity comes from having
to investigate all subtask/subinterval assignment options. For instance, there are three subintervals
intersectingmove(A,B) in Figure 12, and three different assignments of summary resource usages
to the subintervals: placing [0,4],[4,6] in one subinterval with [0,6],[0,6] in the other two. These
placement options result in a subtask withn subintervals havingn possible subinterval assignments.
So if there arem child tasks each withn alternate assignments, then there arenm combinations
of potential subtask/subinterval summary resource usage assignments. Thus propagating summary
information through anand branch is exponential in the number of subtasks with multiple internal

4. For summary resource usages of the last interval intersecting the child task, we replace[0,0] with [e, f] in thepersist.

476

ABSTRACT REASONING FORPLANNING AND COORDINATION

subintervals. However since the number of subtasks is controlled by the domain modeler and is
usually bounded by a constant, this computation is tractable. In addition, summary information can
often be derived offline for a domain. The propagation algorithm takes on the form:

• For each consistent ordering of endpoints:

– For each consistent subtask/subinterval summary usage assignment:

∗ Use PARALLEL-AND computations to combine subtask/subinterval summary
usages by subinterval.

∗ Use a SERIAL-AND computation on the subintervals’ combined summary usages
to get a consistent summary usage.

• Useor computation to combine all consistent summary usages to getand task’s summary
usage.

Now that we have described how to derive summary information, we can discuss how to use it.

4. Identifying Abstract Solutions

Up to this point, we have detailed algorithms for deriving summary conditions and for reasoning
about potential (may) and definite (must) interactions between tasks based on their summary in-
formation. In addition, we have outlined algorithms for deriving summarized resource usage but
have not yet discussed how to identify solutions at abstract levels. In this section, we show how
the interactions of summary conditions and summarized metric resource usages identify potentially
resolvable threats and unresolvable conflicts among the plans of a group of agents.

4.1 Threats on Summary Conditions

Agents can attempt to resolve conflicts among their plans by considering commitments to particular
decompositions and ordering constraints. In order to do this, the agents must be able to identify
remaining conflicts (threats) among their plans. Here we present simple algorithms for reasoning
about threats between abstract plans and their required conditions.

Formally, for a set ofCHiPsP with ordering constraintsorder, a threatbetween an abstract plan
p∈P and a summary conditionc′ of another planp′ ∈P exists iff p may-clobberc′. We say that the
threat isunresolvableif p must-clobberc′ andmust(c′) because there are no decomposition choices
or ordering constraints that could be added to resolve the threat.

So, a simple algorithm for identifying threats is to check to see if each of theO(nc) summary
conditions ofn plans inPsum is must- or may-clobbered by any other plan. Since the complexity
of checking to see if a particular condition is must- or may-clobbered isO(nc), this algorithm’s
complexity isO(n2c2).

In many coordination tasks, if agents could determine that under certain temporal constraints
their plans can be decomposed in any way (CanAnyWay) or that under those constraints there is
no way they can be successfully decomposed (¬MightSomeWay), then they can make coordination
decisions at abstract levels without entering a potentially costly search for valid plan merges at lower
levels. Here are the formal definitions ofCanAnyWayandMightSomeWay:

477

CLEMENT, DURFEE, & BARRETT

maintenance

move_parts

maintenance

move_parts

move_parts

produce H produce H

produce G produce H from G

produce H

tool

move

service M1 M2

service service

M2M1

maintenance

a) b)

c)

Figure 13: The top-level plans of each of the managers for the manufacturing domain

Definition 13

[CanAnyWay,MightSomeWay](order,Psum)≡
[∀,∃]h,P with summary in f ormation= Psum∧h∈ H(P,order)→
[∀,∃]e∈ E(h),succeeds(e,h)

Definition 13 states that the plans with summary informationPsum under ordering constraints
can execute in any way if and only if all sets of plansP that have summary informationPsum

will execute successfully in any history.MightSomeWayis true if there is some set of plans
that could possibly execute successfully. We could also describeCanSomeWay(order,Psum) and
MightAnyWay(rel,Psum) in the same fashion, but it is not obvious how their addition could further
influence search. Exploring these relations may be an interesting topic for future research.

In Figure 13a, the three top-level plans of the managers are unordered with respect to each other.
The leaf plans of the partially expanded hierarchies comprisePsum. Arrows represent the constraints
in order. CanAnyWay({},{produceG, maintenance, moveparts}) is false because there are sev-
eral conflicts over the use of machines and transports that could occur for certain executions of
the plans as described in Section 3.3 for Figure 8. However,MightSomeWay({}, {produceG,
maintenance, moveparts}) is true because the plans might in some way execute successfully
as shown in Figure 13b. With the ordering constraints in Figure 13b,CanAnyWay({before(1,0),
before(0,2)},{produceG, maintenance, moveparts}) is true because the plans can execute in any
way consistent with these ordering constraints without conflict. Figure 8b is an example where
MightSomeWayis false becausecalibrate M2 must-clobber theavailable(M2)MuF summary pre-
condition ofbuild H.

As shown in Figure 14, the algorithm for determiningCanAnyWayfor summary conditions
is simple in that it only needs to check for threats.MightSomeWayis more complicated because
just checking for an unresolvable threat is not enough. As shown in Figure 15, it is not the case
that planp must clobberp′ becausep′′ could come between and achieve the precondition` of p′.
Thus, p may-clobbers̀ in p and in p′′. However, obviouslyp will clobber one or the other, so

478

ABSTRACT REASONING FORPLANNING AND COORDINATION

Algorithm: [CanAnyWay, MightSomeWay]
Input: order, Psum

Output: true or f alse
begin function
for each psum∈ Psum

if [¬consistent(psum), f alse] then return f alse
for each p′sum∈ Psum

for each summary condition c of psum

if p′ [may-clobber, must-clobber] c, and
c is [may or must, must], then

return f alse
for each resource res

if ¬[CanAnyWay, MightSomeWay](order,Psum, res) (see Section 4.2) then
return false

return true
end function

Figure 14: Algorithm determining whether plans with the given summary information CanAnyWay
or MightSomeWay execute successfully.

p

p’

p’’

lll

l l l

-l

Figure 15:MightSomeWayis false even though there is no must-clobber relationship.

MightSomeWayis false. In order to determineMightSomeWayis f alse, an agent must exhaustively
search through an exponential number of schedules to see if not all conflicts can be resolved. Instead
of performing an exponential search to determineMightSomeWay, we use the simple algorithm in
Figure 14 that just checks for must-clobber relationships. In Section 5.1 we describe a more flexible
search to find conflict-free abstract plans than just scheduling at an abstract level.

Thus, while theCanAnyWayalgorithm is sound and complete, theMightSomeWayalgorithm
is complete but not sound. This also means that determining¬MightSomeWayis sound but not
complete. We will still make use of both of these algorithms in a sound and complete plan-
ning/coordination algorithm in Section 5.1. The complexity of these algorithms isO(n2c2) since
the O(nc) procedures for determining must/may-clobber must be run for each ofnc conditions (c
summary conditions in each ofn plans represented byPsum).

4.2 Summary Resource Usage Threats

Planners detect threats on resource constraints in different ways. If the planner reasons about par-
tially ordered actions, it must consider which combinations of actions can overlap and together
exceed (or fall below) the resource’s maximum value (or minimum value). A polynomial algorithm

479

CLEMENT, DURFEE, & BARRETT

does this for the IxTeT planner (Laborie & Ghallab, 1995). Other planners that consider total or-
der plans can more simply project the levels of the resource from the initial state through the plan,
summing overlapping usages, to see if there are conflicts (e.g., Chien et al., 2000b).

Finding conflicts involving summarized resource usages can work in the same way. For the
partial order planner, the resultant usage of clusters of actions are tested using the PARALLEL-
AND algorithm in Section 3.5. For the total order planner, the level of the resource is represented
as a summarized usage, initially〈[x, x], [x, x], [x, x]〉 for a consumable resource with an initial level
x and 〈[x, x], [x, x], [0, 0]〉 for a non-consumable resource. Then, for each subinterval between
start and end times of the schedule of tasks, the summary usage for each is computed using the
PARALLEL-AND algorithm. Then the level of the resource is computed for each subinterval while
propagating persistent usages using the SERIAL-AND algorithm.

We can decideCanAnyWayandMightSomeWayas defined in Section 4.1, in terms of the sum-
mary usage values resulting from invocations of PARALLEL-AND and SERIAL-AND in the prop-
agation algorithm at the end of Section 3.5.2.CanAnyWay(order,Psum, res) is true if and only if
there are no potential threats. These algorithms discover a threat if they ever compute an intervali
such that

lb(local min(i)) < min value(res) ∨ lb(persist(i)) < min value(res) ∨
ub(local max(i)) > max value(res) ∨ ub(persist(i)) > max value(res).

MightSomeWay(order,Psum, res) is true if and only if there is a possible run with potentially no
threats. SERIAL-AND discovers such a run if it returns a summary usage where

ub(local min(i))≥min value(res) ∧ lb(persist(i))≥min value(res) ∧
lb(local max(i))≤max value(res) ∧ ub(persist(i))≤max value(res).

Now that we have mechanisms for deriving summary information and evaluating plans based
on their summarizations, we will discuss how to exploit them in a planning/coordination algorithm.

5. Hierarchical Planning and Coordination Algorithm

With the earlier defined algorithms for reasoning about a group of agents’ plans at multiple levels
of abstraction, we now describe how agents can efficiently plan and coordinate based on summary
information. We describe a coordination algorithm that searches for ways to restrict the decom-
position and ordering of the collective actions of the agent(s) in order to resolve conflicts while
maximizing the utilities of the individual agents or the global utility of the group.

Our approach starts by making planning decisions at the most abstract level and, as needed,
decomposes the agents’ plans in a top-down fashion. The idea is to introduce only the informa-
tion that is needed. Introducing irrelevant details complicates search and increases communication.
After describing the top-down planning/coordination algorithm, we describe search techniques and
heuristics that the algorithm can use to further exploit summary information.

5.1 Top-Down Hierarchical Planning and Coordination

The formalism of summary conditions culminated in Section 4 in algorithms that determine if a set
of plans (abstract or primitive) under a partial set of ordering constraints is definitely conflict-free
(CanAnyWay) or has unresolvable conflicts (¬MightSomeWay). Here we integrate these algorithms
into one that searches for a consistent plan for one or more agents. The particular algorithm we
describe here is shown to be sound and complete (Clement, 2002). The search starts out with
the top-level plans of each agent. A solution is one where there are no possible conflicts among the

480

ABSTRACT REASONING FORPLANNING AND COORDINATION

agents’ plans. The algorithm tries to find a solution at this top level and then expands the hierarchies
deeper and deeper until the optimal solution is found or the search space has been exhausted. A
pseudocode description of the algorithm is given in Figure 16.

A state of the search is a partially elaborated plan that we represent as a set ofandplans (one for
each agent), a set of temporal constraints, and a set of blocked plans. The subplans of theandplans
are the leaves of the partially expanded hierarchies of the agents. The set of temporal constraints
includes synchronization constraints added during the search in addition to those dictated by the
agents’ individual hierarchical plans. Blocked subplans keep track of prunedor subplans.

Decisions can be made during search in a decentralized fashion. The agents can negotiate over
ordering constraints to adopt, over choices of subplans to accomplish higher level plans, and over
which decompositions to explore first. While the algorithm described here does not specify (or
commit to) any negotiation technique, it does provide the mechanisms for identifying the choices
over which the agents can negotiate. Although agents can make search decisions in a decentral-
ized fashion, we describe the algorithm given here as a centralized process that requests summary
information from the agents being coordinated.

In the pseudocode in Figure 16, the coordinating agent collects summary information about the
other agents’ plans as it decomposes them. Thequeuekeeps track of expanded search states. If the
CanAnyWayrelation holds for the search state, theDominates function determines if the current
solutions are better for every agent than the solution represented by the current search state and
keeps it if the solution is not dominated. IfMightSomeWayis false, then the search space rooted at
the current search state can be pruned; otherwise, the coordinator applies operators to generate new
search states.

The operators for generating successor search states are expanding non-primitive plans, block-
ing or subplans, and adding temporal constraints on pairs of plans. When an agent expands one
of its plans, each of the plan’s summary conditions are replaced with only the original conditions
of the parent plan. Then the subplans’ summary information and ordering constraints are added to
the search state. A subplan of anor plan is added (or selected) only when all other subplans are
blocked. WhenApplyOperator is called for theselect andblock operators, search states are
generated for each selectable and blockable subplan, respectively. Blocking anor subplan can be
effective in resolving a constraint in which the otheror subplans are not involved. For example, if
the inventory manager plans to only use transport2, the production manager could block subplans
using transport2, leaving subplans using transport1 that do not conflict with the inventory manager’s
plan. This can lead to least commitment abstract solutions that leave the agents flexibility in select-
ing among the multiple applicable remaining subplans. The agents can take another approach by
selecting a subplan (effectively blocking all of the others) to investigate a preferred choice or one
that more likely avoids conflicts.

When the operator is to add a temporal constraint, a new search state is created for each al-
ternative temporal constraint that could be added. These successor states are enqueued so that if
backtracking is needed, each alternative can be tried. Adding temporal constraints should only gen-
erate new search states when the ordering is consistent with the other global and local constraints.
In our implementation, we only add constraints that will help resolve threats as determined by the
must/may achieves and clobbers algorithms. When a plan is expanded or selected, the ordering
constraints must be updated for the subplans that are added.

The soundness and completeness of the coordination algorithm depends on the soundness and
completeness of identifying solutions and the complete exploration of the search space. Soundness

481

CLEMENT, DURFEE, & BARRETT

Concurrent Hierarchical Coordination Algorithm
Input: set of top-level plans, initial state
Output: set of solutions, each a pair of order constraints and blocked plan choices
begin function

summarizedplans = /0
for each plan p∈ plans

p′ = get summary information for plan p
summarizedplans = summarizedplans ∪ { p′ }

end for
threats = { (p, p′) | p, p′ ∈ summarizedplans, MayClobber(p, p′) }
queue= { (/0, /0, threats) }
solutions = /0
loop

if queue== /0
return solutions

(order, blocked, threats) = Pop(queue)
if CanAnyWay(initial state, summarizedplans, order, blocked)

solution = (order, blocked)
solutions = solutions∪ {solution}
for each sol1 and sol2 in solutions

if Dominates(sol1, sol2)
solutions = solutions - { sol2 }

if MightSomeWay(initial state, summarizedplans, order, blocked)
operator = Choose({expand, select, block, constrain})
queue= queue∪ ApplyOperator(operator, summarizedplans, order, blocked)

return solutions
end function

Figure 16: A concurrent hierarchical coordination algorithm.

and completeness is not defined with respect to achieving particular goal predicates but resolving
conflicts in the plan hierarchies. A domain modeler may represent goals as abstractCHiPs that
decompose into possible plans that accomplish them or as a series of actions for an agent to execute
successfully.

Consider how the algorithm would find coordinated plans for the manufacturing agents. At the
beginning of the search, a coordinating agent gathers the summary information for the top-level
plans of the three agents inplans. At first, there are no ordering constraints, soorder is empty
in the first search state (shown in Figure 13a) popped from thequeue. CanAnyWayis false, and
MightSomeWayis true for this state as described earlier in this section, so the coordinator chooses
an operator to apply to the search state. It could chooseconstrain and order themaintenance
plan beforeproduceH to resolve all conflicts between those two plans. Theorder is updated with
the new constraint, and the new search state is inserted into thequeueby according to some ranking
function. On the next iteration of theloop, the only search state in the queue that was just inserted
is popped. The coordinator again finds thatCanAnyWayis false, andMightSomeWayis true since
movepartsmay still conflict with other plans over the use of transports. It can choose to constrain
produceH beforemovepartsto resolve the remaining conflicts. This is detected on the next cycle
of the searchloop whereCanAnyWayis found to be true for this search state (shown in Figure 13b).

482

ABSTRACT REASONING FORPLANNING AND COORDINATION

The plans, the two constraints inorder, and the empty set of blocked plans are added as a solution
since there is no previously found solution thatDominates it. TheDominates function uses domain
specific criteria for determining when a solution has value as an alternative and should be kept or
is inferior compared to another and should be dropped. In this manufacturing domain, one solution
dominates another if the finish time for at least one agent is earlier and no finish times are later for
any agents. The search then continues to find alternative or superior solutions, although the agents
may decide to terminate the search in the interest of time.

5.2 Search Techniques and Heuristics

Although summary information is valuable for finding conflict free or coordinated plans at abstract
levels, this information can also be valuable in directing the search to avoid branches in the search
space that lead to inconsistent or suboptimal coordinated plans. A coordinator can prune away
inconsistent coordinated plans at the abstract level by doing a quick check to see ifMightSomeWay
is false. For example, if the search somehow reached the state shown in Figure 8b, the coordinator
could backtrack before expanding the hierarchies further and avoid reasoning about details of the
plans where they must fail.

Another strategy is to first expand plans involved in the most threats. For the sake of complete-
ness, the order of plan expansions does not matter as long as they are all expanded at some point
when the search trail cannot be pruned. But, employing this “expand on most threats first” (EMTF)
heuristic aims at driving the search down through the hierarchy to find the subplan(s) causing con-
flicts with others so that they can be resolved more quickly. This is similar to a most-constrained
variable heuristic often employed in constraint satisfaction problems. For example, if the facilities
and inventory managers wished to execute their plans concurrently as shown in Figure 17a, at the
most abstract level, the coordinator would find that there are conflicts over the use of transports for
moving parts. Instead of decomposingproduceH and reasoning about plan details where there
are no conflicts, theEMTF heuristic would choose to decompose eithermaintenanceor moveparts
which have the most conflicts. By decomposingmaintenancethe agents can resolve the remaining
conflicts and still execute concurrently.

Another heuristic that a coordinator can use in parallel withEMTF is “choose fewest threats
first” (CFTF). Here the search orders states in the search queue by ascending numbers of threats
left to resolve. In effect, this is a least-constraining value heuristic used in constraint satisfaction
approaches. As mentioned in Section 4.1, threats are identified by theCanAnyWayalgorithm. By
trying to resolve the threats of coordinated plan search states with fewer conflicts, it is hoped that
solutions can be found more quickly. So,EMTF is a heuristic for orderingand subplans to expand,
andCFTF, in effect, ordersor subplan choices. For example, if the production manager chooses to
use machine M1 instead of M2 to produce G, the coordinator is likely closer to a solution because
there are fewer conflicts to resolve. This heuristic can be applied not only to selectingor subplan
choices but also to choosing temporal constraints and variable bindings or any search operator from
the entire set of operators.

In addition, in trying to find optimal solutions in the style of a branch-and-bound search, the
coordinator can use the cost of abstract solutions to prune away branches of the search space whose
minimum cost is greater than the maximum cost of the current best solution. This is the role of the
Dominates function in the description of the coordination algorithm in Section 5.1. This usually

483

CLEMENT, DURFEE, & BARRETT

maintenance

produce H

produce H

move_parts

maintenance

M1

move_parts

M2 tool

move

service M1 M2

service service

b)

a)

Figure 17:EMTF heuristic resolving conflicts by decomposing themaintenanceplan

assumes that cost/utility information is decomposable over the hierarchy of actions, or the cost of
any abstract action is a function of its decompositions.

6. Complexity Analyses

Even though the planner or coordinator can use the search techniques described in the Section 5.2 to
prune the search space, just being able to find solutions at multiple levels of abstraction can reduce
the computation as much as doubly exponentially. In this section, we give an example of this and
then analyze the complexity of planning and scheduling to characterize this cost reduction and the
conditions under which it occurs.

An agent that interleaves execution with planning/coordination often must limit the total compu-
tation and execution cost required to achieve its goals. The planning algorithm described in Section
5.1 is able to search for solutions at different levels of abstraction. For the manufacturing example,
our implementation of a centralized coordinator uses this algorithm to find in 1.9 CPU seconds a so-
lution at the top level of the agents’ plans as shown in Figure 13b. If we define the cost of execution
as the makespan (completion time) of the coordinated plan, the cost of this solution is 210 where the
makespan of the production manager’s plan is 90, the facilities manager’s is 90, and the inventory
manager’s is 30. For the solution in Figure 13c, the coordinator required 667 CPU seconds, and
the makespan of the coordinated plan is 170. Another solution is found at an intermediate level of
abstraction, taking 69 CPU seconds and having a makespan of 180. So, with a little more effort,
the algorithm expanded the hierarchy to an intermediate level where the cost of the solution was
reduced by 30. Thus, overall cost can be reduced by coordinating at intermediate levels.

For this problem, coordinating at higher levels of abstraction is less costly because there are
fewer plan steps. But, even though there are fewer plans at higher levels, those plans may have
greater numbers of summary conditions to reason about because they are collected from the much
greater set of plans below. Here we argue that even in the worst case where the number of summary
conditions per plan increases exponentially up the hierarchy, finding solutions at abstract levels is
expected to be exponentially cheaper than at lower levels. We first analyze the complexity of the

484

ABSTRACT REASONING FORPLANNING AND COORDINATION

summarization algorithm to help the reader understand how the summary conditions can collect in
greater sets at higher levels.

6.1 Complexity of Summarization

Consider a hierarchy withn total plans,b subplans for each non-primitive plan, and depthd, starting
with zero at the root, as shown in Figure 18. The procedure for deriving summary conditions works
by basically propagating the conditions from the primitives up the hierarchy to the most abstract
plans. Because the conditions of any non-primitive plan depend only on those of its immediate sub-
plans, deriving summary conditions can be done quickly if the number of subplans is not large. The
derivation algorithm mainly involves checking for achieve, clobber, and undo interactions among
subplans for all possible total orderings of the subplans (as described in Section 3.4). Checking for
one of these relations for one summary condition of one subplan isO(bs) for b subplans, each with
s summary conditions (as discussed in Section 3.3). Since there areO(bs) conditions that must be
checked in the set of subplans, deriving the summary conditions of one plan from its subplans is
O(b2s2).

However, the maximum number of summary conditions for a subplan grows exponentially up
the hierarchy since, in the worst case, no summary conditions merge during summarization. This
happens when the conditions of each subplan are on completely different propositions/variables
than those of any sibling subplan. In this case, a separate summary condition will be generated for
each summary condition of each subplan. If the children share conditions on the same variable, this
information is collapsed into a singlesummarycondition in the parent plan.

As shown in the third column of the table in Figure 18, a plan at the lowest leveld hass= c
summary conditions derived from itsc pre-, in-, and postconditions. A plan at leveld−1 derivesc
summary conditions from its own conditions andc from each of itsb subplans givingc+bc sum-
mary conditions, ors= O(bc). So, in this worst cases= O(bd−ic) for a plan at leveli in a hierarchy
for which each plan hasc (non-summary) conditions. Thus, the complexity of summarizing a plan
at level i (with subplans at leveli + 1) is O(b2b2(d−(i+1))c2) = O(b2(d−i)c2). There arebi plans at
level i (second column in the figure), so the complexity of summarizing the set of plans at leveli is
O(bib2(d−i)c2) = O(b2d−ic2) as shown in the fourth column in the figure. Thus, the complexity of
summarizing the entire hierarchy of plans would beO(∑d−1

i=0 bib2(d−i)c2). In this summationi = 0
dominates, so the complexity can be simplified toO(b2dc2). If there aren = O(bd) plans in the
hierarchy, we can write this simply asO(n2c2), which is the square of the size of the hierarchy.

In the best case where all conditions are on the same variable, each plan will havec summary
conditions. Thus, the complexity for summarizing the hierarchy will beO(∑d−1

i=0 bib2c2), which
simplifies toO(bd+1c2) = O(nbc2). In any case, the summarization of conditions is tractable, and
as we discussed in Section 3.5.2, the summarization of resources is also tractable.

6.2 Complexity of Finding Abstract Solutions

In order to resolve conflicts (and potentially arrive at a solution) at a particular level of expansion
of the hierarchy, the coordination algorithm checks for threats between the plans under particular
ordering constraints at that level. Checking for threats involves finding clobber relations among the
plans and their summary conditions. The complexity of finding threats amongn plans each withs
summary conditions isO(n2s2) as shown in Section 4.1 for theMightSomeWayalgorithm. For a
hierarchy expanded to leveli, there aren = O(bi) plans at the frontier of expansion, and each plan

485

CLEMENT, DURFEE, & BARRETT

d O(1) O(kbd)3cbd O(b2dc2)

i O(b2d-ic2) O(kbi)O(bd-ic)bi O(b2dc2)

1 2 b

1 2 b

...

......

...

.................................

d-1

d-2

2

1

0

level

O(bd-1b2c2)
= O(bd+1c2)

O(bd-2b2(bc)2)
= O(bd+2c2)

O(b2b2(bd-3c)2)
= O(b2d-2c2)

O(bb2(bd-2c)2)
= O(b2d-1c2)

O(b2(bd-1c)2)
= O(b2dc2)

#operations to
derive summ. info.

O(kbd-1)

O(kbd-2)

O(kb2)

O(kb)

1

solution
space

3c+b3c
= O(bc)

bd-1

O(b2c)bd-2

O(bd-2c)b2

O(bd-1c)b

O(bdc)1

#conds /
plan

#plans

1 2 b...

..........

............ O(b2(d-1)(bc)2)
= O(b2dc2)

O(b2(d-2)(b2c)2)
= O(b2dc2)

O(b4(b(d-2)c)2)
= O(b2dc2)

O(b2(b(d-1)c)2)
= O(b2dc2)

O(1)

#test operations /
solution candidate

Figure 18: Complexity of threat identification and resolution at abstract levels

hass= O(bd−ic) summary conditions. So, as shown in the fifth column of the table in Figure 18,
the worst case complexity of checking for threats for one synchronization of a set of plans at leveli
is O(b2i(bd−ic)2) = O(b2dc2). Notice thati drops out of the formula, meaning that the complexity
of checking a candidate solution isindependent of the depth level. In the best case where summary
conditions fully merge, each plan hass= c summary conditions, so the complexity of checking a
candidate solution isO(b2ic2), a factor ofO(b2(d−i))faster than the worst case.

However, the algorithm may check many synchronizations at a particular level before finding
a solution or exhausting the search space. In fact this search complexity grows exponentially with
the number of plans.5 Thus, as shown in the last column of the table in Figure 18, the search space
is O(kbi

) for bi plans at leveli and constantk.6 Thus, the search space grows doubly exponentially
down the hierarchy based on the number of plan steps.

In our refinement coordination and planning algorithm, the conflict detection is a basic operation
that is done for resolving conflicts. So, to also include the effect of the size of conditions (in
addition to plan steps) on the complexity of the planning/coordination algorithm, we must multiply
by the complexity to check threats. Thus, the complexity isO(kbi

b2dc2) when summary information
does not merge at all andO(kbi

b2ic2) when summary information fully merges. The complexity
of resolving conflicts at the primitive level isO(kbd

b2dc2), so resolving conflicts at an abstract
level speeds search doubly exponentially, a factor ofO(kbd−bi

) even when summary information
does not merge during summarization. Now, if it completely merges, the speedup is a factor of
O(kbd−bi

b2(d−i)).

5. In fact, it is NP-complete (Clement, 2002).
6. This is why Georgeff chose to cluster multiple operators into “critical regions” and synchronize the (fewer) regions

since there would be many fewer interleavings to check (1983). By exploiting the hierarchical structure of plans, we
use the “clusters” predefined in the hierarchy to this kind of advantage without needing to cluster from the bottom
up.

486

ABSTRACT REASONING FORPLANNING AND COORDINATION

. . .

level
0
1

d
1 2 n

branching
factor b

c constraints
per hierarchy

v
variables

Figure 19: Schedule ofn task hierarchies each withc constraints onv variables

There are onlyandplans in this analysis. In the case that there areor plans, being able to prune
branches at higher levels based on summary information will also greatly improve the search despite
the overhead of deriving and using summary conditions. Pruning effectively reduces the branching
factor since the branch is eliminated before investigating its details. Thus, the complexity based on
the number of plan steps becomesO(k(b−p)d

) when a fraction ofp/b branches can be pruned. Thus,
pruning can also create an exponential reduction in search.

6.3 Scheduling Complexity

A local search planner (e.g.ASPEN, Chien et al., 2000b) does not backtrack, but the problem to be
solved is the same, so one might expect that complexity advantages are the same as for the refine-
ment planner. However, the search operations for the local search planner can be very different. A
previous study of a technique calledaggregationeliminates search inefficiencies at lower levels of
detail in task hierarchies by operating on hierarchies as single tasks (Knight, Rabideau, & Chien,
2000). Thus, it is not immediately clear what additional improvements a scheduler could obtained
using summary information. We will show that the improvements are significant, but first we must
provide more background on aggregation.

Moving tasks is a central scheduling operation in iterative repair planners. A planner can more
effectively schedule tasks by moving related groups of tasks to preserve constraints among them.
Hierarchical task representations are a common way of representing these groups and their con-
straints. Aggregation involves moving a fully detailed abstract task hierarchy while preserving the
temporal ordering constraints among the subtasks. Moving individual tasks independently of their
parent, siblings, and subtasks is shown to be much less efficient (Knight et al., 2000). Valid place-
ments of the task hierarchy in the schedule are computed from the state and resource usage profiles
for the hierarchy and for the other tasks in the context of the movement. A hierarchy’s profile repre-
sents one instantiation of the decomposition and temporal ordering of the most abstract task in the
hierarchy.

Consider a schedule ofn task hierarchies with a maximum branching factorb expanded to a
maximum depth ofd as shown in Figure 19. Suppose each hierarchy hasc constraints on each ofv
variables (states or metric resources). To move a hierarchy of tasks using aggregation, the scheduler

487

CLEMENT, DURFEE, & BARRETT

must compute valid intervals for each resource variable affected by the hierarchy.7 The scheduler
then intersects these intervals to get valid placements for the abstract tasks and their children. The
complexity of computing the set of valid intervals for a resource isO(cC) wherec is the number
of constraints (usages) an abstract task has with its children for the variable, andC is the number
of constraints of other tasks in the schedule on the variable (Knight et al., 2000). Withn similar
task hierarchies in the entire schedule, thenC = (n−1)c, and the complexity of computing valid
intervals isO(nc2). But this computation is done for each ofv resource variables (often constant for
a domain), so moving a task will have a complexity ofO(vnc2). The intersection of valid intervals
across variables does not increase the complexity. Its complexity isO(tnr) because there can be at
mostnr valid intervals for each timeline; intersecting intervals for a pair of timelines is linear with
the number of intervals; and onlyt−1 pairs of timelines need to be intersected to get the intersection
of the set.

The summary information of an abstract task represents all of the constraints of its children, but
if the children share constraints over the same resource, this information is collapsed into a single
summaryresource usage in the abstract task. Therefore, when moving an abstract task, the number
of different constraints involved may be far fewer depending on the domain. If the scheduler is
trying to place a summarized abstract task among other summarized tasks, the computation of valid
placement intervals can be greatly reduced because thec in O(vnc2) is smaller. We now consider
the two extreme cases where constraints can be fully collapsed and where they cannot be collapsed
at all.

In the case that all tasks in a hierarchy have constraints on the same variable, the number of
constraints in a hierarchy isO(bd) for a hierarchy of depthd and branching factor (number of child
tasks per parent)b. In aggregation, where hierarchies are fully detailed first, this means that the
complexity of moving a task isO(vnb2d) becausec = O(bd). Now consider using aggregation
for moving a partially expanded hierarchy where the leaves are summarized abstract tasks. If all
hierarchies in the schedule are decomposed to leveli, there areO(bi) tasks in a hierarchy, each with
one summarized constraint representing those of all of the yet undetailed subtasks beneath it for
each constraint variable. Soc = O(bi), and the complexity of moving the task isO(vnb2i). Thus,
moving an abstract task using summary information can be a factor ofO(b2(d−i)) times faster than
for aggregation. Because the worst case number of conflicts increases with the number of plan
steps (just as with the refinement planner), the worst case complexity of resolving conflicts based
on the number of plan steps at leveli is O(kbi

). Thus (as with refinement planning) using summary
information can make speedups ofO(kbd−i

b2(d−i)) when summary information fully collapses.
The other extreme is when all of the tasks place constraints on different variables. In this case,

c = 1 because any hierarchy can only have one constraint per variable. Fully detailed hierarchies
containv = O(bd) different variables, so the complexity of moving a task in this case isO(nbd).
If moving a summarized abstract task where all tasks in the schedule are decomposed to leveli, v
is the same because the abstract task summarizes all constraints for each subtask in the hierarchy
beneath it, and each of those constraints are on different variables such that no constraints combine
when summarized. Thus, the complexity for moving a partially expanded hierarchy is the same as
for a fully expanded one. In this case, the number of conflicts also does not change with the depth of
the hierarchy because the conflicts are always between pairs of then hierarchies. So, for this other

7. The analysis also applies to state constraints, but we restrict the discussion to resource usage constraints for simplicity.

488

ABSTRACT REASONING FORPLANNING AND COORDINATION

extreme case, summary information does not reduce the complexity of scheduling and would only
incur unnecessary overhead.

Other complexity analyses have shown that different forms of hierarchical problem solving, if
they do not need to backtrack from lower to higher levels because there are no interacting subprob-
lems, can reduce the size of the search space by an exponential factor (Korf, 1987; Knoblock, 1991).
A planner or scheduler using summary information can witness exponential improvements without
this assumption. Backtracking across abstraction levels occurs within the planner/coordinator de-
scribed in Section 5.1 when the current search state is¬MightSomeWayand anotheror subplan
on the same or higher level can be selected. We demonstrated that the search space grows doubly
exponentially down the hierarchy because the number of plans grows exponentially, and resolving
conflicts grows exponentially with the number of plans. Thus, as long as the planner or coordina-
tor does not have to fully expand all abstract plans to the primitive level and summary information
merges at higher levels, the search complexity is reduced at least by a factor ofkbd−bi

wherei is the
level where the search completed, andd is the depth of the hierarchy. Yang (1997) also suggests
ways exponential speedups can be obtained when subplans interact based on hierarchy structure.
Our speedups are complementary to these because summary information limits the decomposition
of task hierarchies and compresses the information manipulated by a planner or scheduler.

7. Experiments

Now we experimentally evaluate the use of summary information in planning and coordination for
three different domains: an evacuation domain, the manufacturing domain described in Section 1.1,
and a multi-rover domain. In these domains, we define performance in different ways to show a
range of benefits that abstract reasoning offers.

We evaluate the algorithm described in Section 5.1. Our implementation orders search states
in the queue such that those generated by synchronization operators precede those generated by
expansion and selection operators. Thus, before going deeper into a part of the hierarchy, the im-
plementation of the algorithm explores all orderings of the agents’ plans before digging deeper into
the hierarchy. Investigating heuristics for choosing between synchronization and decomposition
operators is a topic for future research.

In the next section we report experiments for an evacuation domain that show how abstract
reasoning using summary information can find optimal coordination solutions more quickly than
conventional search strategies. Optimal solutions in the evacuation domain have minimal global ex-
ecution times because evacuees must be transported to safety as quickly as possible. In Section 7.2,
we show that summary information improves local search performance significantly when tasks
within the same hierarchy have constraints over the same resource, and when solutions are found at
some level of abstraction. We also evaluate the benefits of using theCFTF andEMTF heuristics for
iterative repair and show where summary information can slow search.

In some domains, computation time may be insignificant to communication costs. These costs
could be in terms of privacy for self-interested agents, security for sensitive information that could
obtained by malicious agents, or simply communication delay. In Section 7.3, we show how multi-
level coordination fails to reduce communication delay for the manufacturing domain example but,
for other domains, can be expected to reduce communication overhead exponentially.

489

CLEMENT, DURFEE, & BARRETT

5

s0
0

1 2

3

4

s3
t2t1

Figure 20: Evacuation problem

7.1 Coordinated Planning Experiments

In this section, we describe experiments that evaluate the use of summary information in coordinat-
ing a group of evacuation transports that must together retrieve evacuees from a number of locations
with constraints on the routes. In comparing theEMTF andCFTFsearch techniques described in Sec-
tion 5.2 against conventionalHTN approaches, the experiments show that reasoning about summary
information finds optimally coordinated plans much more quickly than priorHTN techniques.

We compare different techniques for ordering the expansion of subplans of bothand andor
plans to direct the decomposition of plan hierarchies in the search for optimal solutions. These
expansion techniques are theexpand(for and subplans) andselect(for or subplans) operators of
the algorithm described in Section 5.1.

We compareEMTF’s expansion ofand plans to the ExCon heuristic and to a random selection
heuristic. The ExCon heuristic (Tsuneto et al., 1998) first selects plans that can achieve an external
precondition, or if there are no such plans, it selects one that threatens the external precondition.
In the case that there are neither achieving or threatening plans, it chooses randomly. Note that
EMTF will additionally choose to expand plans with only threatened external preconditions but has
no preference as to whether the plan achieves, threatens, or is threatened. For the expansion ofor
plans, we compareCFTF to a depth-first (DFS) and a random heuristic.

We also compare the combination ofCFTF and EMTF to an FAF (“fewest alternatives first”)
heuristic and to the combination ofDFS and ExCon. TheFAF heuristic does not employ summary
information but rather chooses to expandand and selector plans that have the fewest subplans
(Currie & Tate, 1991; Tsuneto, Hendler, & Nau, 1997). Since no summary information is used,
threats are only resolved at primitive levels. While it has been shown that theFAF heuristic can
be effectively used by anHTN planner (Tsuneto et al., 1997), the combination ofDFS and ExCon
has been shown to make great improvements overFAF in a domain with more task interactions
(Tsuneto et al., 1998). We show in one such domain that theCFTFandEMTF heuristics can together
outperform combinations ofFAF, DFS, and ExCon.

The problems were generated for an evacuation domain where transports are responsible for
visiting certain locations along restricted routes to pick up evacuees and bring them back to safety
points. Transports are allowed to be at the same location at the same time, but the coordinator must
ensure that transports avoid collisions along the single lane routes. In addition, in order to avoid the
risk of oncoming danger (from a typhoon or enemy attack), the transports must accomplish their
goals as quickly as possible.

Suppose there are two transports,t1 andt2, located at safety pointss0 ands3 respectively, and
they must visit the locations 0, 1, and 2 and 2, 3, and 4 respectively and bring evacuees back to safe

490

ABSTRACT REASONING FORPLANNING AND COORDINATION

move 0-1 move 1-2

first route goto safe locgo back

move 3-s3cw0-1

clockwise counterclockwise

one switch

evacuate

make roundsmove s0-0

no switch

move 0-s0no moveccw2-0ccw2-0ccw1-2cw0-2

second route

Figure 21: The plan hierarchy for transportt1

locations as shown in Figure 20. Because of overlap in the locations they must visit, the coordinator
must synchronize their actions in order to avoid collision. The coordinator’s goal network includes
two unordered tasks, one for each transport toevacuatethe locations for which it is responsible.
As shown in Figure 21, the high-level task fort1 (evacuate) decomposes into a primitive action of
moving to location 0 on the ring and an abstract plan to traverse the ring (make rounds). t1 can
travel in one direction around the ring without switching directions, or it can switch directions once.
t1 can then either go clockwise or counterclockwise and, if switching, can switch directions at any
location (f irst route) and travel to the farthest location it needs to visit from where it switched
(second route). Once it has visited all the locations, it continues around until it reaches the first
safety point in its path (go backandgoto sa f e loc). Theno moveplan is for the case wheret1 is
already at location 0. The task fort2 can be refined similarly.

Suppose the coordinator gathers summary information for the plan hierarchy and attempts to
resolve conflicts. Looking just at the summary information one level from the top, the coordinator
can determine that ift1 finishes evacuating beforet2 even begins, then there will be no conflicts
since the external conditions oft1’s evacuateplan are that none of the routes are being traversed.
This solution has a makespan (total completion time) of 16 steps. The optimal solution is a plan of
duration seven wheret1 moves clockwise until it reaches locations3, andt2 starts out clockwise,
switches directions at location 4, and then winds up ats0. For this solutiont1 waits at location 2 for
one time step to avoid a collision on the route from location 2 to location 3.

We generated problems with four, six, eight, and twelve locations; with two, three and four
transports; and with no, some, and complete overlap in the locations the transports visit. Perfor-
mance was measured as the number of search states expanded to find the optimal solution or (if the
compared heuristics did not both find the optimal solution) as the number of states each expanded
to find solutions of highest common quality within memory and time bounds. We chose this in-
stead of CPU time as the measure of performance in order to avoid fairness issues with respect to
implementation details of the various approaches.

491

CLEMENT, DURFEE, & BARRETT

Search States Expanded

1

10

100

1000

10000

100000

1 10 100 1000 10000 1E+05

CFTF-EMTF

C
F

T
F

-R
A

N
D

Search States Expanded

1

10

100

1000

10000

100000

1 10 100 1000 10000 1E+05

CFTF-EMTF

C
F

T
F

-R
A

N
D

Figure 22: ComparingEMTF to random expansion in searching for optimal solutions

Figure 23: ComparingEMTF to ExCon in searching for optimal solutions

The scatter plot in Figure 22 shows the relative performance of the combination ofCFTF and
EMTF (CFTF-EMTF) and the combination ofCFTF and randomand expansion (CFTF-Rand). We
chose scatterplots to compare results because they capture the results more simply than trying to
plot against three dimensions of problem size/complexity. Note that for all scatter plots, the axes are
scaled logarithmically. Points above the diagonal line mean thatEMTF (x-axis) is performing better
than Rand (y-axis) because fewer search states were required to find the optimal solution. While
performance is similar for most problems, there are a few cases whereCFTF-EMTF outperformed
CFTF-Rand by an order of magnitude or more. Figure 23 exhibits a similar effect forCFTF-EMTF

andCFTF-ExCon. Note that runs were terminated after the expansion of 3,500 search states. Data
points at 3,500 (the ones forming a horizontal line at the top) indicate that no solution was found
within memory and time constraints. While performance is similar for most problems, there are four
points along the top whereCFTF-ExCon finds no solution. Thus, althoughEMTF does not greatly

492

ABSTRACT REASONING FORPLANNING AND COORDINATION

Figure 24: ComparingCFTF andDFS in searching for optimal solutions

improve performance for many problems, it rarely performs much worse, and almost always avoids
getting stuck in fruitless areas of the search space compared to the ExCon and the random heuristic.
This is to be expected sinceEMTF focuses on resolving conflicts among the most problematic plans
first and avoids spending a lot of time reasoning about the details of less problematic plans.

The combination ofCFTF with EMTF, pruning inconsistent abstract plan spaces, and branch-
and-bound pruning of more costly abstract plan spaces (all described in Section 5.2) much more
dramatically outperforms techniques that do not reason at abstract levels. Figure 24 showsDFS-
Rand expanding between one and three orders of magnitude more states thanCFTF-Rand. Runs
were terminated after the expansion of 25,000 search states. Data points at 25,000 (forming the
horizontal line at the top) indicate that no solution was found within memory and time constraints.
By avoiding search spaces with greater numbers conflicts,CFTF finds optimal or near-optimal so-
lutions much more quickly. In Figures 25 and 26,CFTF-EMTF outperformsFAF-FAF (FAF for both
selectingand andor plans) andDFS-ExCon by one to two orders of magnitude for most problems.
These last two comparisons especially emphasize the importance of abstract reasoning for finding
optimal solutions. Within a maximum of 3,500 expanded search states (the lowest cutoff point in
the experiments),CFTF-EMTF andCFTF-Rand found optimal solutions for 13 of the 24 problems.
CFTF-ExCon andFAF-FAF found 12; andDFS-ExCon andDFS-Rand only found three.

A surprising result is thatFAF-FAF performs much better thanDFS-ExCon for the evacuation
problems contrary to the results given by Tsuneto et al. (1998) that showDFS-ExCon dominating
for problems with more goal interactions. We believe that this result was not reproduced here
because those experiments involved hierarchies with noor plans. The experiments show that the
selection ofor subplans more greatly affects performance than the order ofandsubplans to expand.
So, we believeDFS-ExCon performed worse thanFAF-FAF not becauseFAF is better at choosing
andsubplans than ExCon but becauseFAF is stronger at selectingor subplans thanDFS.

However, the main point of this section is that each of the heuristic combinations that use sum-
mary information to find solutions and prune the search space at abstract levels (CFTF-EMTF, CFTF-
ExCon, andCFTF-Rand) greatly outperform all of those that do not (FAF-FAF, DFS-ExCon, and
DFS-Rand) when searching for optimal solutions.

493

CLEMENT, DURFEE, & BARRETT

Figure 25: Comparing the use of summary information to theFAF heuristic

Figure 26: Comparing the use of summary information to the algorithm using external conditions

7.2 Scheduling Experiments

The experiments we describe here show that summary information improves performance signifi-
cantly when tasks within the same hierarchy have constraints over the same resource, and solutions
are found at some level of abstraction. At the same time, there are cases where abstract reasoning
incurs significant overhead when solutions are only found at deeper levels. However, in domains
where decomposition choices are critical, we show that this overhead is insignificant because the
CFTF heuristic chooses decompositions that more quickly lead to solutions at deeper levels. These
experiments also show that theEMTF heuristic outperforms a simpler heuristic depending on the
decomposition rate, raising new research questions. We use theASPEN Planning System (Chien
et al., 2000b) to coordinate a rover team for the problem described next.

494

ABSTRACT REASONING FORPLANNING AND COORDINATION

Figure 27: Randomly generated rectangular field of triangulated waypoints

Figure 28: Randomly generated waypoints along corridors

7.2.1 PROBLEM DOMAINS

The domain involves a team of rovers that must resolve conflicts over shared resources. We generate
two classes of maps within which the rovers move. For one, we randomly generate a map of trian-
gulated waypoints (Figure 27). For the other, we generate corridor paths from a circle of locations
with three paths from the center to points on the circle to represent narrow paths around obstacles
(Figure 28). This “corridor” map is used to evaluate theCFTF heuristic. We then select a subset of
the points as science locations (where the rovers study rocks/soil) and use a simple multiple trav-
eling salesman algorithm to assign routes for the rovers to traverse and perform experiments. The
idea is that a map of the area around a lander is constructed from an image taken upon landing on
Mars.

Paths between waypoints are assigned random capacities such that either one, two, or three
rovers can traverse a path simultaneously. Only one rover can be at any waypoint, and rovers may
not traverse paths in opposite directions at the same time. These constraints are modeled as metric
resources. State variables are also used to ensure rovers are at locations from which they are about
to leave. In addition, rovers must communicate with the lander for telemetry using a shared channel
of fixed bandwidth (metric resource). Depending on the terrain between waypoints, the required
bandwidth varies. 80 problems were generated for two to five rovers, three to six science locations
per rover, and 9 to 105 waypoints. In general, problems that contain fewer waypoints and more
science goals are more difficult because there are more interactions among the rovers.

Schedules consist of an abstract task for each rover that have ananddecomposition into tasks for
visiting each assigned science location. Those tasks have anor decomposition into the three shortest
paths through the waypoints to the target science location. The paths have anand decomposition
into movements between waypoints. Additional levels of hierarchy were introduced for longer paths
in order to keep the offline resource summarization tractable. Schedules ranged from 180 to 1300
tasks.

495

CLEMENT, DURFEE, & BARRETT

7.2.2 EMPIRICAL RESULTS FORMARS ROVERS

We compareASPEN using aggregation with and without summarization for three variations of the
rectangular field domain. When using summary information,ASPENalso uses theEMTF andCFTF

decomposition heuristics. One domain excludes the communications channel resource (no channel);
one excludes the path capacity restrictions (channel only); and the other excludes neither (mixed).
Since all of the movement tasks reserve the channel resource, greater improvement in performance
is expected when using summary information according to the complexity analyses in Section 6.3.
This is because constraints on the channel resource collapse in the summary information derived
at higher levels such that any task in a hierarchy only has one constraint on the resource. When
ASPENdoes not use summary information, the hierarchies must be fully expanded, and the number
of constraints on the channel resource is equivalent to the number of leaf movement tasks.

However, tasks within a rover’s hierarchy rarely place constraints on the other path variables
more than once, so theno channeldomain corresponds to the worst case where summarization
collapses no constraints. Here the complexity of moving an abstract task is the same without sum-
mary information for the fully expanded hierarchy as it is with summary information for a partially
expanded hierarchy.

Figure 29 (top) exhibits two distributions of problems for theno channeldomain. In most of the
cases (points above the x=y diagonal),ASPENwith summary information finds a solution quickly at
some level of abstraction. However, in many cases, summary information performs notably worse
(points below the x=y diagonal). We discovered that for these problems finding a solution requires
the planner to dig deeply into the rovers’ hierarchies, and once it decomposes the hierarchies to
the level of the solution, the difference in the additional time to find a solution between the two
approaches is negligible (unless the use of summary information found a solution at a slightly higher
level of abstraction more quickly). Thus, the time spent reasoning about summary information at
higher levels incurred unnecessary overhead.

But this is the worst case in the analysis in Section 6.3 where we showed that summary informa-
tion had no advantage even if it found abstract solutions. So, why did summary information perform
better when abstract solutions were found? It was not because of theCFTF heuristic sinceor branch
choices result in small differences in numbers of conflicts. It actually results from the stochastic na-
ture ofASPEN’s iterative repair. Although moving the most abstract tasks using aggregation without
summary information would have enabledASPENto find solutions more quickly for fully expanded
hierarchies,ASPENmust sometimes move lower level tasks independently of their parents and sib-
lings in order to resolve conflicts at lower levels. The problem is thatASPENhas no heuristic to tell
it at what level it needs to move activities, and it sometimes chooses to move activities at detailed
levels unnecessarily. This search at lower levels is where the search space explodes. Using summary
information to search at higher levels below lower levels of abstraction better protectsASPEN from
unnecessary search.

Figure 29 (middle) shows significant improvement for summary information in themixeddo-
main compared to theno channeldomain. Adding the channel resource rarely affects the use of
summary information because the collapse in summary constraints incurs insignificant additional
complexity. However, the channel resource makes the scheduling task noticeably more difficult for
ASPENwhen not using summary information. In thechannel onlydomain (Figure 29 bottom), sum-
mary information finds solutions at the abstract level almost immediately, but the problems are still
complicated whenASPENdoes not use summary information. These results support the complexity

496

ABSTRACT REASONING FORPLANNING AND COORDINATION

a) b)

c)

Figure 29: Plots for the a)no channel, b) mixed, and c)channel onlydomains

analysis in Section 6.3 that argues that summary information exponentially improves performance
when tasks within the same hierarchy have constraints over the same resource and when solutions
are found at some level of abstraction.

Because summary information is generated offline, the domain modeler knows up front whether
or not constraints are significantly collapsed. Thus, an obvious approach to avoiding cases where
reasoning about summary information causes unnecessary overhead is to fully expand at the start
of scheduling the hierarchies of tasks where summary information does not collapse. Because the
complexity of moving a task hierarchy is the same in this case whether fully expanded or not,ASPEN

does not waste time by duplicating its efforts at each level of expansion before reaching the level at
which it finds a solution. Evaluating this approach is a subject of future work.

Earlier we mentioned that theCFTF heuristic is not effective for the rectangular field problems.
This is because the choice among different paths to a science location usually does not make a

497

CLEMENT, DURFEE, & BARRETT

Figure 30: Performance using theCFTF heuristic

significant difference in the number of conflicts encountered—if the rovers cross paths, all path
choices usually still lead to conflict. For the set of corridor problems, path choices always lead
down a different corridor to get to the target location, so there is usually a path that avoids a conflict
and a path that causes one depending on the path choices of the other rovers. WhenASPENuses the
CFTFheuristic, the performance dominates that of when it chooses decompositions randomly for all
but two problems (Figure 30). This reflects experiments for the coordination algorithm in Section 7
that show thatCFTF is crucial for reducing the search time required to find solutions.

In order to evaluate theEMTF heuristic for iterative repair planning, we compared it to a simple
alternative. This alternative strategy (that we refer to aslevel decomposition) is to interleave repair
with decomposition as separate steps. Step 1) The planner repairs the current schedule until the
number of conflicts cannot be reduced. Step 2) It decomposes all abstract tasks one level down
and returns to Step 1. By only spending enough time at a particular level of expansion that appears
effective, the planner attempts to find the highest decomposition level where solutions exist without
wasting time at any level. The time spent searching for a solution at any level of expansion is
controlled by the rate at which abstract tasks are decomposed. TheEMTF heuristic is implemented
as a repair method to give priority to detailing plans that are involved in more conflicts.

Figure 31 shows the performance ofEMTF vs. level decomposition for different rates of decom-
position for three problems from the set with varied performance. The plotted points are averages
over ten runs for each problem. Depending on the choice of rate of decomposition (the probability
that a task will decompose when a conflict is encountered), performance varies significantly. How-
ever, the best decomposition rate can vary from problem to problem making it potentially difficult
for the domain expert to choose. For example, for problem A in the figure, all tested decomposition
rates forEMTF outperformed the use of level decomposition. At the same time, for problem C using
either decomposition technique did not make a significant difference while for problem B choosing
the rate forEMTF made a big difference in whether to useEMTF or level decomposition. Although
these examples show varied performance, results for most other problems showed that a decompo-

498

ABSTRACT REASONING FORPLANNING AND COORDINATION

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

C
P

U
se

co
n

d
s

A

A level-decomp

B

B level decomp

C

C level decomp

Figure 31: Performance ofEMTF vs. level-decomposition heuristics

sition rate of around 15% was most successful. This suggests that a domain modeler may be able to
choose a generally successful decomposition rate by running performance experiments for a set of
example problems.8

We have demonstrated many of the results of the complexity analyses in Section 6. Scheduling
with summary information gains speedups (over aggregation) by resolving conflicts at appropri-
ate levels of abstraction. When summary information collapses, the scheduler gains exponential
speedups. In addition, theCFTF heuristic enables exponential speedups whenor decomposition
choices have varying numbers of conflicts.

7.3 Communication Overhead

Here we show that, depending on bandwidth, latency, and how summary information is communi-
cated among the agents, delays due to communication overhead vary. If only communication costs
are a concern, then at one extreme where message delay dominates cost, sending the plan hierarchy
without summary information makes the most sense. At the other extreme where bandwidth costs
dominate, it makes sense to send the summary information for each task in a separate message as
each is requested. Still, there are cases when sending the summary information for tasks in groups
makes the most sense. This section will explain how a system designer can choose how much
summary information to send at a time in order to reduce communication overhead exponentially.

Consider a simple protocol where agents request coordination from a central coordinating agent.
During the search for a feasible solution, whenever it decomposes a task, the coordinator requests
summary information for the subtasks that it has not yet received. For the manufacturing domain,
the coordinator may already have summary information for a task to move a part, but if it encounters
a different instantiation of the same task schema, it still must request the parameters for the new task.
If a coordinator needs the subplans of anor plan, the client agent sends the required information for
all subplans, specifying its preferences for each. The coordinator then chooses the most preferred

8. For other experiments, we used a decomposition rate of 20% since it seemed to work well.

499

CLEMENT, DURFEE, & BARRETT

a) b)

Figure 32: Delay of communicating different granularities of summary information with varying a)
latency and b) bandwidth

subplan, and in the case it must backtrack, it chooses the next most preferred subplan. Once the
coordinator finds a feasible solution, it sends modifications to each agent specifying whichor sub-
plans are blocked and where the agent must send and wait for synchronization messages. An agent
can choose to send summary information for some number of levels of expansion of the requested
task’s hierarchy.

For the manufacturing problem described in Section 1.1, communication data in terms of num-
bers of messages and the size of each was collected up to the point that the coordinator found the
solution in Figure 13c. This data was collected for cases where agents sent summary information
for tasks in their hierarchies, one at a time, two levels at a time, and all at once. The two levels
include the requested task and its immediate subplans. The following table below summarizes the
numbers and total sizes of messages sent for each granularity level of information:

number of messagestotal size (bytes)
one task at a time 9 8708
two levels at a time 4 10525
all at once 3 16268

Assuming that the coordinator must wait for requested information before continuing its search
and can request only one task of one agent at a time, the coordination will be delayed for an amount
of time depending on the bandwidth and latency of message passing. The total delay can be calcu-
lated as(n−2)`+s/b, wheren is the number of messages sent;` is the latency in seconds;s is the
total size of all messages; andb is the bandwidth in bytes per second. We usen−2 instead ofn
because we assume that the agents all transmit their first top-level summary information message at
the same time, so three messages actually only incur a delay of` instead of 3̀.

Figure 32a shows how the communication delay varies for the three granularities of information
for a fixed bandwidth of 100 bytes/second. (We will address the lack of realism in this example
shortly.) When the latency is less than 3 seconds, sending summary information for each task in
separate messages results in the smallest communication overhead. For latencies greater than 58
seconds, sending the entire hierarchy is best; and in between sending summary information two
levels at a time is best. If the latency is fixed at 100 seconds, then the communication delay varies

500

ABSTRACT REASONING FORPLANNING AND COORDINATION

a) b)

Figure 33: Delay with varying a) latency and b) bandwidth for hypothetical example

with bandwidth as shown in Figure 32b. When the bandwidth is less than 3 bytes/second, sending
one at a time is best; sending it all at once is best for bandwidths greater than 60 bytes/second; and
sending two levels at a time is best for bandwidths in between.

Admittedly, these values are unrealistic for the manufacturing domain. The manufacturing prob-
lem itself is very simple and provided mainly as an interesting domain for coordination. More real-
istic problems involving the manufacturing domain could have much larger hierarchies and require
much larger scales of data to be sent. In that case more realistic bandwidth and latency values would
exhibit similar tradeoffs.

To see this, suppose that the manufacturing managers’ hierarchies had a common branching
factorb and depthd. If tasks generally had reservations on similar resources throughout the hier-
archies, the amount of total summary information at a particular level would grow exponentially
down the hierarchy just as would the number of tasks. If the agents agreed on a feasible solution at
depth leveli in the hierarchy, then the table for messages and size would appear as follows:

number of messagestotal size
one task at a time O(bi) O(bi)
two levels at a time 3i/2 O(bi)
all at once 3 O(bd)

Now suppose that the branching factorb is 3; the depthd is 10; the solution is found at level
i = 5; and the summary information for any task is 1 Kbyte. Then the table would look like this:

number of messagestotal size (Kbytes)
one task at a time 363 1089
two levels at a time 9 3276
all at once 3 246033

Now, if we fixed the bandwidth at 100 Kbyte/second and varied the latency, more realistic
tradeoffs are seen in Figure 33a. Here, we see that unless the latency is very small, sending summary
information two levels at a time is best. As shown in Figure 33b, if we fix latency to be one second
and vary the bandwidth, for all realistic bandwidths sending summary information two levels at a
time is again best.

501

CLEMENT, DURFEE, & BARRETT

This simple protocol illustrates how communication can be minimized by sending summary
information at a particular granularity. If the agents chose not to send summary information but
the unsummarized hierarchies instead, they would need to send their entire hierarchies. As the
experiment shows, as hierarchies grow large, sending the entire hierarchy (“all at once”) would take
a long time, even with a high bandwidth. Thus, using summary information (as opposed to not using
it) can reduce communication exponentially when solutions can be found at abstract levels.

At the other extreme, if the agents sent summary information one task at a time, the latency
for sending so many messages can grow large for larger task hierarchies. If solutions could only
be found at primitive levels, then sending summary information one task at a time would cause an
exponential latency overhead compared to sending the entire hierarchy at once. But, if solutions
can be found at intermediate levels, being able to send summary information at some intermediate
granularity can minimize total delay.

However, this argument assumes that summary information collapses at higher levels in the hi-
erarchy. Otherwise, sending summary information at some intermediate level could be almost as
expensive as sending the entire hierarchy and cause unnecessary overhead. For the actual manufac-
turing domain, tasks in the agents’ hierarchies mostly have constraints on different resources, and
summarization is not able to reduce summary information significantly because constraints do not
collapse. The result is that it is better, in this case, to send the entire hierarchy at once to minimize
delay (unless there are unusual bandwidth and latency constraints, as shown in the experiment).
Even so, the coordination agent can still summarize the hierarchies itself to take advantage of the
computational advantages of abstract reasoning.

This section showed how a domain modeler can minimize communication overhead by com-
municating summary information at the proper level of granularity. If bandwidth, latency, and a
common depth for coordination solutions is known, the domain modeler can perform a hypothetical
experiment like the one above for varying granularities of summary information to determine which
granularity is optimal. If summary information collapses up the hierarchy, and solutions can be
found at intermediate levels, then communication can be exponentially reduced in this manner.

8. Other Related Work

The approach we have taken for abstract reasoning was originally inspired by earlier work involving
a hierarchical behavior-space search where agents represent their planned behaviors at multiple
levels of abstraction (Durfee & Montgomery, 1991). Distributed protocols are used to decide at what
level of abstraction coordination is needed and to resolve conflicts there. This approach capitalizes
on domains where resources can be abstracted naturally. This earlier work can be viewed as a very
limited, special case of the work presented here. It is justified only intuitively and with limited
experiments and analyses.

Corkill studied interleaved planning and merging in a distributed version of theNOAH planner
(1979). He recognized that, while most of the conditions affected by an abstract plan operator
might be unknown until further refinement, those that deal with the overall effects and preconditions
that hold no matter how the operator is refined can be captured and used to identify and resolve
some conflicts. He recognized that further choices of refinement or synchronization choices at
more abstract levels could lead to unresolvable conflicts at deeper levels, and backtracking could be
necessary. Our work is directed toward avoiding such backtracking by using summary information
to guide search.

502

ABSTRACT REASONING FORPLANNING AND COORDINATION

In closer relation to our approach, Pappachan shows how to interleave hierarchical plan coor-
dination with plan execution for cooperative agents using an online iterative constraint relaxation
(OICR) algorithm (Pappachan, 2001). Like our approach, coordination can be achieved at higher
levels of abstraction for more flexible execution, or the agents can decompose their tasks to lower
levels for tighter coordination that can improve plan quality. TheOICR approach is tailored toward
interleaving coordination and flexible execution at the price of completeness while the coordination
algorithm presented here is aimed at complete interleaved coordination and planning at the price of
potentially delaying execution due to backtracking.

In planning research, hierarchical plans have often been represented as Hierarchical Task Net-
works (HTNs, Erol et al., 1994a), which planners such asNOAH (Sacerdoti, 1977), NonLin (Tate,
1977),SIPE-2 (Wilkins, 1990), O-Plan (Currie & Tate, 1991),UMCP (Erol et al., 1994b), andSHOP2
(Nau, Au, Ilghami, Kuter, Murdock, Wu, & Yaman, 2003) use to search through combinations of
alternative courses of action to achieve goals within a particular context. These actions may be par-
tially ordered, giving timing flexibility during execution (Wilkins, 1990; Currie & Tate, 1991). Our
CHiP representation extendsHTNs to include temporal extent and partial orderings can be expressed
as constraints on the starting and ending timepoints of the action.

Yang presented a method (similar to our summarization) for preprocessing a plan hierarchy in
order to be able to detect unresolvable conflicts at an abstract level so that the planner could back-
track from inconsistent search spaces (Yang, 1990). This corresponds to the use of¬MightSomeWay
in Section 5.2. However, his approach requires that the decomposition hierarchy be modeled so that
each abstract operator havea unique main subactionthat has the same preconditions and effects as
the parent. We avoid this restriction by analyzing the subplans’ conditions and ordering constraints
to automatically compute the parent’s summary conditions.

While our approach has focused on resolving conflicts among agents, Cox and Durfee (2003)
have used summary information to exploit synergistic interactions. The idea is that using sum-
mary information to identify overlapping effects can help agents skip actions whose effects are
achieved by others. Thangarajah, Padgham, and Winikoff (2003) have used summary information
in rescheduling during execution. Their representations are actually subsumed by ours, and their
work significantly postdates our first reporting of work in this paper (Clement & Durfee, 1999).

DSIPE (desJardins & Wolverton, 1999) is a distributed version of theSIPE-2 (Wilkins, 1990)
hierarchical planning system. In the same way agents can use summary information to reduce
communication to just those states for which they have common constraints,DSIPEfilters conditions
communicated among planners using irrelevance reasoning (Wolverton & desJardins, 1998).

The DPOCL (Decompositional Partial-Order Causal-Link) planner (Young et al., 1994) adds
action decomposition toSNLP (McAllester & Rosenblitt, 1991). Like otherHTN planners, pre-
conditions and high level effects can be added to abstract tasks in order to help the planner resolve
conflicts during decomposition. In addition, causal links can be specified in decomposition schemas
to isolate external preconditions thatDPOCL must satisfy. However, because these conditions and
causal links do not necessarily capture all of the external conditions of abstract tasks, the planner
does not find solutions at abstract levels and requires that all tasks be completely decomposed. In ad-
dition, DPOCL cannot determine that an abstract plan has unresolvable conflicts (¬MightSomeWay)
because there may be effects hidden in the decompositions of yet undetailed tasks that could achieve
open preconditions. By deriving summary conditions automatically and using algorithms for deter-
mining causal link information (e.g. must-achieve), our planning/coordination algorithm can find

503

CLEMENT, DURFEE, & BARRETT

and reject abstract plans during search without adding burden to the domain expert to specify re-
dundant conditions or causal links for abstract tasks.

Like DPOCL, TÆMS (a framework for Task Analysis, Environment Modeling, and Simulation)
allows the domain modeler to specify a wide range of task relationships (Decker, 1995). This
work offers quantitative methods for analyzing and simulating agents as well as their interactions.
While only some of these interactions can be represented and discovered using summary conditions,
we discover this information through analysis rather than depending on the model developer to
predefine the interactions.

Grosz’s shared plans model of collaboration (1996) presents a theory for modeling multiagent
belief and intention. While the shared plans work is directed toward cooperative agents, it represents
action hierarchies and provides mental models at a higher level than represented in this article.
However, our use and analysis of summary information complements Grosz’s work by providing a
way to automatically represent and efficiently reason about the intentions of agents at multiple levels
of abstraction. Future work is needed to understand how summary information can be bridged with
mental states of agents to exploit the techniques employed in shared plans and other work based on
BDI (belief-desire-intention) models of agents (Rao & Georgeff, 1995).

An analysis of hierarchical planning (Yang, 1997) explains that, in the case of interacting sub-
goals, certain structures of the hierarchy that minimize these interactions can reduce worst case
planning complexity exponentially. However, the complexity analyses in Section 6 explain how us-
ing summary information can achieve exponential performance gains in addition to those achieved
by restructuring plan hierarchies according to Yang’s analysis by limiting the decomposition of task
hierarchies and compressing the information manipulated by a coordinator, planner, or scheduler.

SHOP2 (Nau et al., 2003) is anHTN planner that uses a domain translation technique to reason
about durative action. This however does not express temporal extent in the same way as the planner
given here. Our model differs in that it supports ordering relationships on endpoints as well as
conditions and effects during an action’s execution. While there may be some domain translation
that could achieve the expression of similar constraints and solutions for other systems, ours is the
only formal model of such expressions inHTN planning.

SIADEX (Castillo et al., 2006) is anotherHTN planner that handles temporal extent in the use
of more expressive simple temporal networks (Dechter, Meiri, & Pearl, 1991). The performance
improvement techniques reported forSIADEX are in temporal reasoning and not specific toHTNs.
Thus, this work is complementary to ours. However, more work is needed to understand how
summary information can be exploited in conjunction with the forward expansion approach that
bothSHOP2 andSIADEX use to perform competitively on planning competition problems.

Another class of hierarchical planners based onABSTRIPS (Sacerdoti, 1974) introduces con-
ditions at different levels of abstraction so that more critical conflicts are handled at higher levels
of abstraction and less important (or easier) conflicts are resolved later at lower levels. While this
approach similarly resolves conflicts at abstract levels, the planning decisions may not be consistent
with conditions at lower levels resulting in backtracking. Summary information provides a means
to make sound and complete decisions at abstract levels without the need to decompose and check
consistency with lower levels. However, resolving conflicts based on criticality can still improve
performance in complement to our approach.

Allen’s temporal planner (1991) uses hierarchical representations of tasks and could be applied
to reasoning about the concurrent actions of multiple agents. However, it does not exploit hierarchy
by reasoning about abstraction levels separately and generates a plan by proving the consistency of

504

ABSTRACT REASONING FORPLANNING AND COORDINATION

the collective constraints. Allen’s model of temporal plans (1983) and subsequent work on interval
point algebra (Vilain & Kautz, 1986) strongly influenced our hierarchical task representation and
algorithms that reason about them.

There are also many, many models and theories of concurrency. Some older examples include
automata representations, Petri nets and Hoare’s theory of communicating sequential processes
(Glabbeek, 1997). There are also many temporal logics such as computational tree logic (CTL,
Emerson & Halpern, 1985) that allow modal expressions about a proposition holding in some or all
possible worlds some of the time, all of the time, in the next state, eventually, or until some other
proposition holds. Another language for specifying manufacturing processes has been in the process
of being standardized over 10 years (Bock, 1996; Schlenoff, Knutilla, & Ray, 2006). Many of these
logics could have been used to define summary conditions and relations likeMightSomeWay. How-
ever, we found that these logics were awkward for representing inconditions and defining summary
conditions and that the terminology used in this article simplifies the definitions.

Model checking uses temporal logics to verify different properties of system models, software,
and hardware (such as correctness, deadlock-free, and convergence). In fact, model checking
and planning algorithms can be used interchangeably on the same problems (e.g., Giunchiglia &
Traverso, 1999). In the context of model checking, summary information is a set of properties
(akin to those specifiable inCTL) of a system model (as a planning domain) that summarize system
variable requirements (conditions) and assignments (effects). Thus, a model checking algorithm
could use this summary information to efficiently identify and resolve potential requirement viola-
tions/bugs (condition conflicts) or deadlock (resource conflicts) in a system model or its operation
(planning/scheduling problem instantiations).

9. Conclusion

This article provides a formalization of Hierarchical Task Network planning that, unlike theUMCP

formalism (Erol et al., 1994b), includes actions with temporal extent. We introduce a sound and
complete algorithm that can be used to generate a plan, coordinate a group of agents with hierarchi-
cal plans, and interleave planning and coordination.

The algorithms for summarizing propositional state and metric resource conditions and effects
at abstract levels and the mechanisms that reason about this summary information can facilitate the
construction of other planning and coordination systems that reason about plans at multiple levels
of abstraction. These mechanisms for reasoning about summary information determine whether a
task (at any level of abstraction) must or may achieve, clobber, or undo a condition of another task
under partial order constraints on endpoints of tasks. Built on these mechanisms, other mechanisms
determine whether a group of agents can decompose and execute a set of partially ordered abstract
tasks in any way (CanAnyWay), might decompose and execute them in some way (MightSomeWay),
or cannot execute them consistently in any way (¬MightSomeWay).

These algorithms enable a planning system to find solutions at multiple levels of abstraction
without needing to fully detail the task hierarchy. These abstract solutions support flexible execution
by remaining uncommitted about which of the alternative methods will be selected at runtime, based
on the circumstances, to achieve plan subgoals.

Our complexity analyses and experiments in different problem domains have quantified the ben-
efits of using summary information for a refinement planning and local search scheduling algorithm.
There is a potential doubly exponential speedup ofO(kbd−bi

b2(d−i)) for k ways to resolve a conflict,

505

CLEMENT, DURFEE, & BARRETT

a hierarchy branching factorb, a depth of the hierarchyd, and an abstract solution depthi. An ex-
ponential speedup is obtained if abstract solutions are found, if there are fewer summary conditions
at abstract levels, or if alternative decomposition choices lead to varying numbers of threats. These
conditions for exponential improvement are a significant relaxation compared to prior work, and the
performance improvement is greater.

A domain modeler can run the summarization algorithms offline for a library of plan hierarchies
so that summary information is available for the coordination and planning of any set of goal tasks
supported by the library. Using algorithms for reasoning about summary information, agents can
discover with whom they should coordinate and over which states and resources they must coor-
dinate/negotiate. Communicating summary information at different levels of abstraction reduces
communication costs exponentially under conditions similar to those reducing computation time.

The use of summary information in a local search planner (likeASPEN, Section 6.3) is another
contribution of this work. The strength of local search algorithms is their ability to efficiently reason
about large numbers of tasks with constraints on metric resources, state variables, and other complex
resource classes. By integrating algorithms for reasoning about summarized propositional state and
metric resource constraints into a heuristic local search planner/scheduler, we enable such scalable
planning systems to scale to even larger problem domains. This use of summary information in
a different style of planner demonstrates the applicability of abstract reasoning in improving the
performance of different kinds of planning (and plan coordination) systems.

Future work is needed to evaluate the use of summary information in other planning and
scheduling systems and for wider classes of problems requiring more expressive representations
for resources and temporal constraints. Already, an approach for exploiting cooperative action
among agents based on summary information has been developed (Cox & Durfee, 2003). Other
promising approaches include abstracting other plan information, such as probabilistic conditions
and effects and classes of resources and states (e.g. location regions and sub-regions). More work
is also needed to understand how and when to communicate summary information in a distributed
planning system.

Acknowledgments

The authors wish to thank Pradeep Pappachan, Gregg Rabideau, and Russell Knight for help with
implementation. We also thank our anonymous reviewers for their many valuable suggestions. This
work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration, and at the University of Michigan
supported in part by DARPA (F30602-98-2-0142).

Appendix A: Algorithms for Computing Interval Relations

The algorithms for determining whether the defined relations hold between summary conditions
for plans inP use a point algebra constraint table (Vilain & Kautz, 1986). This point algebra
table is constructed for the interval endpoints corresponding to the executions of the plans inP;
a row and column for bothp− ≡ ts(e) (start endpoint of executione of p) and p+ ≡ t f (e) (finish
endpoint) are added for each planp ∈ P. Each cell of the table gives a time point constraint of
the row to the column that can be<, ≤, =, ≥, >, 6=, <=>, or empty. <=> means that the

506

ABSTRACT REASONING FORPLANNING AND COORDINATION

p− p+ p′− p′+

p− = < < <
p+ > = > >

p′− > < = <

p′+ > < > =

Table 1: Point algebra table forp containsp′

p− p+ p′− p′+

p− = < ≤ <
p+ > = <=> <=>

p′− ≥ <=> = <

p′+ > <=> > =

Table 2: Point algebra table forp− before or atp′−

points are unconstrained. If a cell is empty, then there are no allowed temporal relations, indicating
inconsistency. Table 1 shows a point algebra table for plansp andp′ where they are constrained such
that p’s execution contains that ofp′. Table 2 shows a table where just the start ofp is constrained
to be earlier than the start ofp′. Both are transitive closures of these constraint relations. Table 1
can be computed from Table 2 by constrainingp+ < p′+ (by putting< in the cell of rowp+ and
column p′+) and then computing the transitive closure, anO(n2) algorithm forn points (Vilain &
Kautz, 1986). After the transitive closure is computed, the constraints of any point on any other
point can be looked up in constant time.

Similarly, the constraints inorder for P can be added to the table, and the transitive closure can
be computed to get all constraints entailed from those inorder. This only needs to be done once for
anyP andorder to determineachieveandclobberrelationships defined in the next section.

We determine that a planq in p’s subplans is temporally orderedalways-[f irst,last] if and only
if [q−, q+] is constrained [before, after] or equal to all other points in the point algebra table for
p’s subplans. This is done by looking at each entry in the row for [q−, q+] and checking to see
that the constraint is [<, >], =, or [≤, ≥]. If this is not the case, thenq is not-always-[f irst,last].
q is always-not-[f irst,last] if and only if in the row for [q−, q+] there is an entry with the [>, <]
constraint; otherwise, it issometimes-[f irst,last].

An interval i0 is coveredby a set of intervalsI = {i1, i2, . . . , ik} if and only no interval can be
found that intersectsi0 and intersects nothing inI . Our particular covering problem describes the
intervals in terms of a partial order over endpoints, so we represent these intervals in a point algebra
table. An algorithm for the covering problem is to check to see ifi0 is covered by looking at all
pairs of intervals to see if they overlap.i0 is not covered if (1) either no intervals inI meet either
i−0 or i+0 , (2) there are any intervals that have an endpoint that is contained only byi0 and do not
meet the opposite endpoint of another interval inI or an endpoint ofi0, or (3) there are no intervals
overlappingi0. Otherwise,i0 is covered. Examples are given in Figure 34.

507

CLEMENT, DURFEE, & BARRETT

B
=

=

Aa)

C

=

=

b)

c)

D

E

F

G

H
I

Figure 34: a) Interval A is covered by B, C, and D. b) E is not covered by F, G, and H. c) I is not
covered.

Appendix B: Algorithms for Must/May Asserting Summary Conditions

Here we describe algorithms for determining temporal plan relationships based on summary infor-
mation. They are used to build other algorithms that determine whether plan must or may achieve,
clobber, or undo the condition of another under particular ordering constraints.

The definitions and algorithms throughout this section are given within the context of a set of
plansP with a corresponding set of summary informationPsum, a set of ordering constraintsorder,
and a set of historiesH including all histories whereE(h) only includes an executione of each
plan inP ande’s subexecutions, andE(h) satisfies all constraints inorder. They are all concerned
with the ordering of plan execution intervals and the timing of conditions. By themselves, they do
not have anything to do with whether conditions may need to be met or must be met for a plan
execution.

First, in order to determine whether abstract plan executions can achieve, clobber, or undo
conditions of others, an agent needs to be able to reason about how summary conditions are asserted
and required to be met. Ultimately, the agent needs to be able to determine whether a partial ordering
of abstract plans can succeed, so it may be the case that an agent’s action fails to assert a summary
condition that is required by the action of another agent. Therefore, we formalize what it means
for an action toattemptto assert a summary condition and torequire that a summary condition be
met. These definitions rely on linking the summary condition of a plan to theCHiP conditions it
summarizes in the subplans of the plan’s decompositions. Thus, we first define what it means for a
summary condition tosummarizethese conditions.

Definition 14 A summary condition csummarizesa condition` in condition setconds
of plan p iff c was added by the procedure for deriving summary information to a
summary condition set of p′; ` = `(c); and either c was added for̀ in a condition
set conds of p= p′, or c was added for a summary condition of a subplan of p′ that
summarizes̀ in conds of p.

For example,at(bin1, A) is a precondition of thestart moveplan for moving part A from bin1
to machine M1 (as given in Section 2.2). When deriving the summary conditions forstart move,

508

ABSTRACT REASONING FORPLANNING AND COORDINATION

at(bin1, A) is added to the summary preconditions. Thus, the summary preconditionat(bin1,
A)MuF summarizesat(bin1, A) in the preconditions ofstart move.

Definition 15 An execution e of prequiresa summary conditionc to be met att iff c is
a summary condition in p’s summary information; there is a condition` in a condition
set conds of p′ that is summarized by c; if f irst(c), t = ts(e); if last(c), t = t f (e);
if always(c), t is within (ts(e), t f (e)); and if sometimes(c), there is an execution of
a subplan of p in d(e) that requires a summary condition c′ to be met at t, and c′

summarizes̀ in conds of p′.

So, basically, an execution requires a summary condition to be met whenever the conditions it
summarizes are required. The execution ofbuild G has a summary preconditionat(A,M1 tray1).
This execution requires this summary condition to be met atts(build G) becauseat(A, M1 tray1) is
a precondition ofbuild G’s first subplan that is summarized bybuild G’s summary precondition.

Definition 16 An execution e of pattempts to asserta summary conditionc at t iff c is
a summary condition in p’s summary information; there is a condition` in a condition
set conds of p′ that is summarized by c;¬ f irst(c); if always(c), t is in the smallest
interval after ts(e) and before the start or end of any other execution that follows ts(e);
if last(c), t = t f (e); and if sometimes(c), there is an execution of a subplan of p in d(e)
that attempts to assert a summary condition c′ at t; and c′ summarizes̀ in conds of p′.

We say that an execution “attempts” to assert a summary condition because asserting a condition
can fail due to a simultaneous assertion of the negation of the condition. Like the example above
for requiring a summary condition, the executions ofbuild G, produceG on M1, andproduceH
all assert summary postconditions that M1 becomes available att f (build G).

In order for agents to determine potential interactions among their abstract plans (such as clob-
bering or achieving), they need to reason about when a summary condition is asserted by one plan in
relation to when it is asserted or required by another. Based on interval or point algebra constraints
over a set of abstract plans, an agent specifically would need to be able to determine whether a plan
would assert a summary conditionbeforeor by the time another plan requires or asserts a summary
condition on the same state variable. In addition, to reason about clobbering inconditions, an agent
would need to determine if a summary condition would be asserted during the time a summary in-
conditionc was required (assertedin c). Agents also need to detect when a summary postcondition
would be asserted at the same time as another summary postconditionc (assertedwhen c).

We do not consider cases where executions attempt to assert a summary in- or postcondition
at the same time an incondition is asserted because in these cases, clobber relations are already
detected because executions always require the summary inconditions that they attempt to assert.
For example, ifequipM1 attempted to assert the incondition that M1 was unavailable at the same
time thatbuild G attempted to assert the postcondition that M1 was available, the incondition would
be clobbered by the postcondition.

In the case that the ordering constraints allow for alternative synchronizations of the abstract
plans, the assertions of summary conditions may come in different orders. Therefore, we formalize
must-assertandmay-assertto determine when these relationships must or may occur respectively.
As mentioned at the beginning of Section 9, this use of “must” and “may” is based only on dis-
junctive orderings and not on theexistenceof summary conditions in different decompositions. For

509

CLEMENT, DURFEE, & BARRETT

p′ must-assertc′ by c p′ must-assertc′ beforec
order must impose order must impose

c′ ∈ post(p′) c∈ pre(p) these constraints these constraints
last f irst

1 T T p′+ ≤ p− p′+ < p−

2 T F p′+ ≤ p− p′+ < p−

3 F ? p′+ ≤ p− p′+ < p−

4 ? ? p′+ ≤ p− p′+ < p−

c′ ∈ in(p′)
always

5 T T p′− < p− p′− < p−

6 T F p′− ≤ p− p′− ≤ p−

7 F ? f alse f alse
c′ ∈ post(p′) c∈ in(p)

last always
8 T ? p′+ ≤ p− p′+ ≤ p−

9 F ? p′+ ≤ p− p′+ ≤ p−

c′ ∈ in(p′)
always

10 T ? p′− ≤ p− p′− < p−

11 F ? f alse f alse
c′ ∈ post(p′) c∈ post(p)

last last
12 T T p′+ ≤ p+ p′+ < p+

13 T F p′+ ≤ p− p′+ ≤ p−

14 F T p′+ ≤ p+ p′+ ≤ p+

15 F F p′+ ≤ p− p′+ ≤ p−

c′ ∈ in(p′)
always

16 T T p′− < p+ p′− < p+

17 T F p′− ≤ p− p′− ≤ p−

18 F T f alse f alse
19 F F f alse f alse

Table 3: Table formust-assert by/beforealgorithm

the following definitions and algorithms of must- and may-assert, we assumec andc′ are summary
conditions of plans inP.

Definition 17 p′ ∈ P must-assertc′ [by, before] c iff for all histories h∈ H and all t
where e is the top-level execution in E(h) of some p∈ P that requires c to be met at t,
and e′ is the top-level execution of p′ in E(h), there is a t′ where e′ attempts to assert c′

at t′, and [t′ ≤ t, t′ < t].

The must-assert algorithm is described in Table 3.p′ must-assertc′ by c iff order entails the
relationship given for the row corresponding to the type and timing of the two conditions. Rows of
the table indicate the timing of both summary conditions and the constraints thatorder must dictate
for must-assert to be true. ’T’ and ’F’ in the table indicate whether the timing in the column is true
or false for the condition. ’?’ means that timing doesn’t matter for that condition in this case. For
example, row 9 says that for the case wherec′ is asometimes(¬last) postcondition ofp′, andc is
an incondition ofp with any timing,order must require that the end ofp′ be before or at the start
of p in order forp′ to must-assertc′ by the timec is asserted or required.

510

ABSTRACT REASONING FORPLANNING AND COORDINATION

p′ may-assertc′ by c p′ may-assertc′ beforec
order cannot impose order cannot impose

c′ ∈ post(p′) c∈ pre(p) these constraints these constraints
last f irst

1 T T p′+ > p− p′+ ≥ p−

2 T F p′+ ≥ p+ p′+ ≥ p+

3 F T p′− ≥ p− p′− ≥ p−

4 F F p′− ≥ p+ p′− ≥ p+

c′ ∈ in(p′)
always

5 ? T p′− ≥ p− p′− ≥ p−

6 ? F p′− ≥ p+ p′− ≥ p+

c′ ∈ post(p′) c∈ in(p)
last always

7 T T p′+ > p− p′+ > p−

8 T F p′+ ≥ p+ p′+ ≥ p+

9 F T p′− ≥ p− p′− ≥ p−

10 F F p′− ≥ p+ p′− ≥ p+

c′ ∈ in(p′)
always

11 ? T p′− > p− p′− ≥ p−

12 ? F p′− ≥ p+ p′− ≥ p+

c′ ∈ post(p′) c∈ post(p)
last last

13 T T p′+ > p+ p′+ ≥ p+

14 T F p′+ ≥ p+ p′+ ≥ p+

15 F T p′− ≥ p+ p′− ≥ p+

16 F F p′− ≥ p+ p′− ≥ p+

c′ ∈ in(p′)
always

17 ? T p′− ≥ p+ p′− ≥ p+

18 ? F p′− ≥ p+ p′− ≥ p+

Table 4: Table formay-assert by/beforealgorithm

p′ must-assertc′ in c p′ may-assertc′ in c
order must impose order cannot impose

c′ ∈ post(p′) c∈ in(p) these constraints c′ ∈ post(p′) c∈ in(p) these constraints
last always last always

1 T T p′+ > p− andp′+ < p+ T T p′+ ≤ p− or p′+ ≥ p+

2 T F f alse T F p′+ ≤ p− or p′+ ≥ p+

3 F T p′− ≥ p− andp′+ ≤ p+ F T p′+ ≤ p− or p′− ≥ p+

4 F F f alse F F p′+ ≤ p− or p′− ≥ p+

c′ ∈ in(p′) c′ ∈ in(p′)
always always

5 T T p′− ≥ p− andp′− < p+ T T p′+ ≤ p− or p′− ≥ p+

6 T F f alse T F p′+ ≤ p− or p′− ≥ p+

7 F T f alse F T p′+ ≤ p− or p′− ≥ p+

8 F F f alse F F p′+ ≤ p− or p′− ≥ p+

Table 5: Table formust/may-assert inalgorithm

511

CLEMENT, DURFEE, & BARRETT

p′ must-assertc′ whenc p′ may-assertc′ whenc
order must impose order cannot impose

c′ ∈ post(p′) c∈ post(p) these constraints c′ ∈ post(p′) c∈ post(p) these constraints
last last last last

1 T T p′+ = p+ T T p′+ 6= p+

2 T F f alse T F p′+ ≤ p− or p′+ ≥ p+

3 F T f alse F T p′+ ≤ p+ or p′− ≥ p+

4 F F f alse F F p′+ ≤ p− or p′− ≥ p+

Table 6: Table formust/may-assert whenalgorithm

The definitions and algorithms for the other assert relationships are similar. Tables 4-6 describe
the logic for the other algorithms. Formayrelationships, the algorithm returns true iff none of the
corresponding ordering constraints in the table are imposed by (can be deduced from)order.

We illustrate these relationships for the example in Figure 8. In Figure 8a the agents’ plans
are unordered with respect to each other. Part G is produced either on machine M1 or M2 de-
pending on potential decompositions of theproduceG plan. produceG must-assert c′ = must,
last available(G) beforec = must, f irst available(G) in the summary preconditions ofmoveG
because no matter how the plans are decomposed (for all executions and all histories of the plans
under the ordering constraints in the figure), the execution ofproduceG attempts to assertc′ be-
fore the execution ofmoveG requiresc to be met. The algorithm verifies this by finding that the
end ofproduceG is ordered before the start ofmoveG (row 1 in Table 3). It is also the case that
equipM2 tool may-assert c′ = must, last ¬available(M2) by c = may, sometimes available(M2)
in the summary preconditions ofproduceG because the two plans are unordered with respect to
each other, and in some historyequipM2 tool can precedeproduceG. The algorithm finds that
this is true sinceequipM2 is not constrained to start after the start ofproduceG (row 2 in Table 4).

In Figure 8b,movetool may-assert c′ = must, last f ree(transport1) inc = may, sometimes
¬ f ree(transport1) inproduceG’s summary inconditions because in some historymovetool at-
tempts to assertc′ during the time thatproduceG is using transport1 to move part A to machine
M2. In addition,equipM2 tool must-assert c′ = must, last ¬available(M2) whenc = may, last
available(M2) in produceG’s summary postconditions becauseequipM2 tool attempts to assert
c′ at the same time thatproduceG requiresc to be met. The end of Section 3.3 gives other examples.

References

Allen, J., Kautz, H., Pelavin, R., & Tenenberg, J. (1991).Reasoning about plans. Morgan Kauf-
mann.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals.Communications of the ACM,
26(11), 832–843.

Allen, J. F., & Koomen, J. A. (1983). Planning using a temporal world model. InProceedings of
the International Joint Conference on Artificial Intelligence, pp. 741–747.

Bock, C. (1996). Unified process specification language: Requirements for modeling process. Tech.
rep. NISTIR 5910, National Institute of Standards and Technology.

Castillo, L., Fdez-Olivares, J., Garcı́a-Ṕerez, O., & Palao, F. (2006). Efficiently handling temporal
knowledge in an HTN planner. In16th International Conference on Automated Planning and

512

ABSTRACT REASONING FORPLANNING AND COORDINATION

Scheduling (ICAPS-06), pp. 63–72. AAAI.

Chien, S., Knight, R., Stechert, A., Sherwood, R., & Rabideau, G. (2000a). Using iterative repair to
improve the responsiveness of planning and scheduling. InProceedings of the International
Conference on AI Planning and Scheduling, pp. 300–307.

Chien, S., Rabideu, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T., Smith, B.,
Fisher, F., Barrett, T., Stebbins, G., & Tran, D. (2000b). Automating space mission operations
using automated planning and scheduling. InProc. SpaceOps.

Clement, B. (2002).Abstract Reasoning for Multiagent Coordination and Planning. Ph.D. thesis,
University of Michigan, Ann Arbor.

Clement, B., & Durfee, E. (1999). Top-down search for coordinating the hierarchical plans of
multiple agents. InProceedings of the International Conference on Autonomous Agents.

Corkill, D. (1979). Hierarchical planning in a distributed environment. InProceedings of the
International Joint Conference on Artificial Intelligence, pp. 168–175.

Cox, J. S., & Durfee, E. H. (2003). Discovering and exploiting synergy between hierarchical plan-
ning agents. InProceedings of the International Joint Conference on Autonomous Agents and
MultiAgent Systems, pp. 281–288.

Currie, K., & Tate, A. (1991). O-Plan: The open planning architecture.Artificial Intelligence, 52,
49–86.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks.Artificial Intelligence, 49,
61–95.

Decker, K. (1995).Environment centered analysis and design of coordination mechanisms. Ph.D.
thesis, University of Massachusetts.

desJardins, M., & Wolverton, M. (1999). Coordinating a distributed planning system.AI Magazine,
20(4), 45–53.

Drabble, B., & Tate, A. (1994). The use of optimistic and pessimistic resource profiles to inform
search in an activity based planner. InArtificial Intelligence Planning Systems, pp. 243–248.

Durfee, E. H., & Montgomery, T. A. (1991). Coordination as distributed search in a hierarchical
behavior space.IEEE Transactions of Systems, Man and Cybernetics, 21(6), 1363–1378.

Emerson, E., & Halpern, J. Y. (1985). Decision procedures and expressiveness in the temporal logic
of branching time.Journal of Computer and System Sciences, 30(1), 1–24.

Ephrati, E., & Rosenschein, J. (1994). Divide and conquer in multi-agent planning. InProceedings
of the National Conference on Artificial Intelligence, pp. 375–380.

Erol, K., Hendler, J., & Nau, D. (1994a). Semantics for hierarchical task-network planning. Tech.
rep. CS-TR-3239, University of Maryland.

Erol, K., Nau, D., & Hendler, J. (1994b). UMCP: A sound and complete planning procedure for
hierarchical task-network planning.. InProceedings of the International Conference on AI
Planning and Scheduling.

Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995).Reasoning about knowledge. MIT Press.

Firby, J. (1989).Adaptive Execution in Complex Dynamic Domains. Ph.D. thesis, Yale University.

513

CLEMENT, DURFEE, & BARRETT

Georgeff, M. P. (1983). Communication and interaction in multiagent planning. InProceedings of
the National Conference on Artificial Intelligence, pp. 125–129.

Georgeff, M. P. (1984). A theory of action for multiagent planning. InProceedings of the National
Conference on Artificial Intelligence, pp. 121–125.

Georgeff, M. P., & Lansky, A. (1986). Procedural knowledge.Proceedings of IEEE, 74(10), 1383–
1398.

Giunchiglia, F., & Traverso, P. (1999). Planning as model checking. InProceedings of the 5th
European Conference on Planning, pp. 1–20, London, UK. Springer-Verlag.

Glabbeek, R. v. (1997). Notes on the methodology of CCS and CSP.Theoretical Computer Science,
177(2), 329–349. Originally appeared as Report CS-R8624, CWI, Amsterdam, 1986.

Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action.Artificial Intelligence,
86, 269–358.

Huber, M. (1999). JAM: A BDI-theoretic mobile agent architecture. InProceedings of the Interna-
tional Conference on Autonomous Agents, pp. 236–243.

Knight, R., Rabideau, G., & Chien, S. (2000). Computing valid intervals for collections of activi-
ties with shared states and resources. InProceedings of the International Conference on AI
Planning and Scheduling, pp. 600–610.

Knoblock, C. (1991). Search reduction in hierarchical problem solving. InProceedings of the
National Conference on Artificial Intelligence, pp. 686–691.

Korf, R. (1987). Planning as search: A quantitative approach.Artificial Intelligence, 33, 65–88.

Laborie, P., & Ghallab, M. (1995). Planning with sharable resource constraints. InProceedings of
the International Joint Conference on Artificial Intelligence, pp. 1643–1649.

Lansky, A. (1990). Localized search for controlling automated reasoning. InProceedings of the
DARPA Workshop on Innovative Approaches to Planning, Scheduling and Control, pp. 115–
125.

Lee, J., Huber, M. J., Durfee, E. H., & Kenny, P. G. (1994). UMPRS: An implementation of the
procedural reasoning system for multirobot applications. InProceedings of the AIAA/NASA
Conference on Intelligent Robotics in Field, Factory, Service, and Space, pp. 842–849.

McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. InProceedings of the
National Conference on Artificial Intelligence, pp. 634–639.

Muscettola, N. (1994). HSTS: Integrating planning scheduling.Intelligent Scheduling, 169–212.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu, D., & Yaman, F. (2003). SHOP2: An
HTN planning system.Journal of Artificial Intelligence Research, 20, 379–404.

Pappachan, P. (2001).Coordinating Plan Execution in Dynamic Multiagent Environments. Ph.D.
thesis, University of Michigan, Ann Arbor.

Pratt, V. R. (1976). Semantical considerations on floyd-hoare logic. In17th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 109–121.

Rao, A. S., & Georgeff, M. P. (1995). BDI-agents: From theory to practice. InProceedings of the
International Conference on Multi-Agent Systems, San Francisco.

514

ABSTRACT REASONING FORPLANNING AND COORDINATION

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces.Artificial Intelligence, 5(2),
115–135.

Sacerdoti, E. D. (1977).A Structure for Plans and Behavior. Elsevier-North Holland.

Schlenoff, C., Knutilla, A., & Ray, S. (2006). Interprocess communication in the process specifica-
tion language. Tech. rep. NISTIR 7348, National Institute of Standards and Technology.

Tate, A. (1977). Generating project networks. InProceedings of the International Joint Conference
on Artificial Intelligence, pp. 888–893.

Thangarajah, J., Padgham, L., & Winikoff, M. (2003). Detecting & avoiding interference between
goals in intelligent agents. InProceedings of the International Joint Conference on Artificial
Intelligence, pp. 721–726.

Tsuneto, R., Hendler, J., & Nau, D. (1997). Space-size minimization in refinement planning. In
Proceedings of the European Conference on Planning.

Tsuneto, R., Hendler, J., & Nau, D. (1998). Analyzing external conditions to improve the efficiency
of HTN planning. InProceedings of the National Conference on Artificial Intelligence, pp.
913–920.

Vilain, & Kautz, H. (1986). Constraint propagation algorithms for temporal reasoning. InProceed-
ings of the National Conference on Artificial Intelligence, pp. 377–382.

Weld, D. (1994). An introduction to least commitment planning.AI Magazine, 15(4), 27–61.

Wilkins, D. E. (1990). Can AI planners solve practical problems?.Computational Intelligence,
6(4), 232–246.

Wolverton, M., & desJardins, M. (1998). Controlling communication in distributed planning using
irrelevance reasoning. InProceedings of the National Conference on Artificial Intelligence,
pp. 868–874.

Yang, Q. (1990). Formalizing planning knowledge for hierarchical planning.Computational Intel-
ligence, 6(1), 12–24.

Yang, Q. (Ed.). (1997).Intelligent Planning: A Decomposition and Abstraction Based Approach.
Springer.

Young, M., Pollack, M., & Moore, J. (1994). Decomposition and causality in partial-order planning.
In Proceedings of the International Conference on AI Planning and Scheduling, pp. 188–193.

515

