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Abstract— Analytical bounds on the performance of con-
catenated codes on a tree structure are obtained. Analytical
results are applied to examples of parallel concatenation of
two codes (turbo codes), serial concatenation of two codes,
hybrid concatenation of three codes, and self concatenated
codes, over AWGN and fading channels. Based on the anal-
ysis, design criteria for the selection of component codes are
presented. Asymptotic results for large interleavers are ex-
tended to MPSK modulations over AWGN and Rayleigh fad-
ing channels. Simulation results are only given for examples
of coded modulation and fading channels.

1. Introduction

Turbo codes proposed by Berrou et al. repre-
sent a recent breakthrough in coding theory [1],
which has stimulated a large amount of new re-
search. These codes areparallel concatenated con-
volutional codes(PCCC) whose encoder is formed
by two (or more)constituentsystematic encoders
joined through one (or more) interleavers. Analyt-
ical performance bounds for PCCC with uniform
interleaver and maximum likelihood receiver were
obtained in [2], and [3] for AWGN channel, and
in [4] for Rayleigh fading channel with binary mod-
ulation.

Parallel concatenated convolutional codes yield
very large coding gains (10-11 dB) at the expense
of bandwidth expansion. Trellis coded modulation
(TCM) proposed by Ungerboeck in 1982 [5] is now
a well-established technique in digital communica-
tions. In essence, it is a technique to obtain signif-
icant coding gains (3-6 dB) sacrificing neither data
rate nor bandwidth. In [6] and references there for
prior work, TCM was merged with PCCC in or-
der to obtain large coding gains and high bandwidth
efficiency. It is called parallel concatenated trel-
lis coded modulation (PCTCM), also addressed as
“turbo TCM”. Later we considered merging TCM
with the recently discoveredserial concatenated
convolutional codes(SCCC) [7]. We refer to the
concatenation of an outer convolutional code with an
inner TCM as serial concatenated TCM (SCTCM).

In this paper we propose a design method for

The research described in this paper was carried out at the Jet
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contract with the National Aeronautics and Space Administration.

turbo trellis coded modulation and serial trellis
coded modulation, over Rayleigh fading channels
for mobile communications. New concatenations
of three codes, calledhybrid concatenated convo-
lutional codes(HCCC), and their special case,self
concatenated codes1 are introduced, analyzed, and
design rules for these codes are presented2.

2. Analytical Bounds on the Performance of
Codes over AWGN and Fading Channels

Consider a linear(n, k) block codeC with code rate
Rc = k/n and minimum distancehm. An upper
bound on the bit-error probability of the block code
C over memoryless binary-input channels, with co-
herent detection, and, using maximum likelihood
decoding, can be obtained as

Pb ≤
n∑

h=dmin

k∑
w=1

w

k
AC
w,h D(RcEb/N0, h) (1)

whereEb/N0 is the signal-to-noise ratio per bit, and
AC
w,h for the block codeC represents the number of

codewords of the block code with output weighth
associated with an input sequence of weightw. AC

w,h
is the input–output weight coefficient (IOWC). The
function D(·) represents the pairwise error proba-
bility which is a monotonic decreasing function of
the signal to noise ratio and the output weighth.
For AWGN channels we haveD(RcEb/N0, h) =
Q(
√

2Rc h Eb/N0). For fading channels, assuming
coherent detection, and perfect Channel State Infor-
mation (CSI) the conditional pairwise error proba-
bility is given by
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The Q function can be represented as [10]
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To obtain the unconditional pairwise error probabil-
ity, we have to average over the joint density function

1A special case of self concatenated codes where the interleaver
is split into two parts corresponding to the original data and its
duplicate, was proposed by Berrou [8]

2A strictly related paper [9] presents the iterative decoding of
various forms of code concatenation discussed in this paper



                    
of fading samples. For simplicity, assume indepen-
dent Rayleigh fading samples. This assumption is
valid if we use an interleaver after the encoder and
a deinterleaver before the decoder. Thus the fading
samplesρi are i.i.d. random variables with Rayleigh
density of the formf (ρ) = 2ρe−ρ

2
. Using (1) ,(2),

(3) and results in [11], by averaging the conditional
bit error rate over fading we obtain

Pb ≤
∫ π

2
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n∑
h=dmin
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w=1

w

kπ
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[
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sin2 θ + Rc
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]h

dθ

(4)
We can further upper bound the above result and
obtain [11]

Pb ≤ 1
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(5)

All these results apply to convolutional codes as
well, if we construct an equivalent block code from
the convolutional code. Obviously results apply also
to concatenated codes including parallel and serial
concatenations and other types of code concatena-
tions discussed in this paper. As soon as we ob-
tain the input–output weight coefficientsAC

w,h for
a particular concatenated code, we can compute its
performance.

2.1. Computation of ACw,h for Concatenated Codes
with Random Interleavers

The average input-output weight coefficientsAC
w,h

for q concatenated codes withq − 1 interleavers
can be obtained by averaging (1) over all possible
interleavers. This average is obtained by replacing
the actuali th interleaver (i = 1,2. . . . ,q − 1), that
performs a permutation of theNi input bits, with an
abstract interleaver calleduniform interleaver [2],
defined as a probabilistic device that maps a given
input word of weightw into all distinct

(
Ni
w

)
permu-

tations of it with equal probabilityp = 1/
(

Ni
w

)
.

For a concatenated code withq codes andq − 1
uniform interleavers, each constituent codeCi ; i ∈
sq = {1,2, . . . ,q} is preceded by a uniform inter-
leaver of sizeNi except sayC1 which is not pre-
ceded by an interleaver, but it is connected to the
input. Define the subsets of the setsq by si =
{i ∈ sq : Ci connected to input}, so = {i ∈ sq :
Ci connected to Channel}, and its complementso.
With the knowledge of theACi

wi ,hi
for the constituent

codes using the concept of uniform interleaver, the
AC
w,h for a concatenated code, with tree structure (see

Fig. 1), can be obtained as

AC
w,h =

∑
hi :i∈so,
6hi=h

∑
hi :i∈so

Aw,h1

∏
i∈sq:i 6=1

ACi
wi ,hi(
Ni

wi

) (6)

Note thatwi = w; i ∈ si , andw j = hi if Ci is
connected toCj by interleaverNi .
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Fig. 1. Example of concatenated codes with tree structuresi =
{1,2,7}, so = {2,4,6,8,9}

2.2. Design of Concatenated Codes

Design of concatenated codes is based on the
asymptotic behavior of the upper bound in (1) af-
ter replacingAC

w,h in (1) with the result obtained in
(6) for large interleavers. The reason for the good
performance of concatenated codes with input block
size ofN symbols is that the normalized coefficients
AC
w,h/N decrease with interleaver size. For a given

signal to noise ratio and large interleavers the max-
imum component ofAC

w,h/N over all input weights
w and output weightsh, is proportional toNαM ,
with corresponding minimum output weighth(αM).
If αM < 0 then for a given SNR the performance
of concatenated code improves as the input block
size is increased. If the input block size increases
then the size of interleavers used in the concatenated
code should also increase. WhenαM < 0 we say we
have “interleaving gain”. The more negative isαM

the more interleaving gain we can obtain. In order
to computeαM we proceed as follows. Consider a
rateR= p/n convolutional codeC with memoryν,
and its equivalent(N/R, N− pν) block code whose
codewords are all sequences of lengthN/R bits of
the convolutional code starting from and ending at
the zero state. By definition, the codewords of the
equivalent block code are concatenations of error
events of the convolutional codes. LetACc

w,h, j be the
input–output weight coefficients given that the con-
volutional code generatesj error events with total
input weightw, and output weighth (see Fig. 2). The
Aw,h, j actually represents the number of sequences
of weighth, input weightw, and the number of con-
catenated error eventsj without any gap between
them, starting at the beginning of the block. ForN
much larger than the memory of the convolutional
code, the coefficientACc

w,h of the equivalent block
code can be approximated by

ACc
w,h ∼

nM∑
j=1

(
N/p

j

)
ACc
w,h, j (7)

wherenM , the largest number of error events con-
catenated in a codeword of weighth and generated
by a weightw input sequence, is a function ofh and
w that depends on the encoder.
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Fig. 2. A code sequence inAC
w,h, j

The largeN assumption permits neglecting the
length of error events compared toN, which also
implies that the number of waysj input sequences
producingj error events can be arranged in a register

of lengthN is
(

N/p
j

)
. The ratioN/p derives from

the fact that the code has ratep/n, and thusN bits
corresponds toN/p input symbols or, equivalently,
trellis steps. We are interested in large interleaver
lengths and thus use for the binomial coefficient the
asymptotic approximation(

N

j

)
∼ N j

j !
(8)

Substitution of this approximation in the previous
equation yields

ACc
w,h ∼

nM∑
j=1

(
N j

j ! pj

)
ACc
w,h, j (9)

Finally, substituting (9) in (6) for each constituent
code, and then the result in (1) gives the bit-error
probability bound in a desired form for design of
concatenated codes, from which we obtain

αM = max
w,h

∑
i∈sq

ji −
∑

i∈sq :i 6=1

wi − 1

 (10)

where ji denotes the number of concatenated error
events for codeCi . Computation ofαM depends
on the concatenated code structure and constituent
codes. Next we obtainAC

w,h using (6), andαM , using
(10), to compute upper bounds, and design rules for
the following concatenated codes.

3. Parallel Concatenated Convolutional Codes

The structure of a parallel concatenated convolu-
tional code (PCCC) or “turbo code” is shown in
Fig. 3. Figure 3 refers to the case of two convo-
lutional codes, codeC1 with rate R1

c = p/q1, and
codeC2 with rateR2

c = p/q2, where the constituent
code inputs are joined by an interleaver of length

N, generating a PCCC,CP, with rateRc = R1
c R2

c

R1
c+R2

c
.

Note thatN is an integer multiple ofp. The input
block lengthk = N, and the output codeword length
n = n1+ n2 as shown in Fig. 3.

3.1. Computation of input–output weight coefficient
(IOWC) ACP

w,h for PCCC (turbo codes)

With the knowledge of theAC1
w,h1

for codeC1, and

AC2
w,h2

for codeC2, using (6), IOWCACP
w,h for PCCC

    C1
Rc

1=p/q1

     C2
Rc

2=p/q2

To modulator
and channel

Input data

interleaver

n1

N

n2

Fig. 3. Parallel Concatenated Convolutional Codes (PCCC).

can be obtained as follows.

ACP
w,h =

∑
h1,h2:

h1+h2=h

ACP
w,h1,h2

=
∑
h1,h2:

h1+h2=h

AC1
w,h1
× AC2

w,h2(
N
w

)
(11)

where ACP
w,h1,h2

is the number of codewords of the
PCCC with output weightsh1,andh2 associated with
an input sequence of weightw.
Example 1.Consider a rate 1/2 PCCC formed by two
identical 4-state convolutional codes: CodeC1 with
rate 2/3 and codeC2 with rate 1/1 (this is obtained by
not sending the systematic bits of the rate 2/3C2 con-
volutional code). The inputs of encoders are joined
by a uniform interleaver of lengthsN = 50,100 and
256. Both codes are systematic and recursive, and
are shown in Fig. 4. Using the previously outlined
analysis for PCCC, we have obtained the bit-error
probability bounds shown in Fig. 4. The perfor-
mance is shown both for AWGN and Rayleigh fad-
ing channels.
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Fading Channels

Using (10) we obtain the following results. If both
convolutional codes are recursive thenαM ≤ −1.
Any other choice of encoders results inαM ≥ 0.
Thus, for allh = h1 + h2, the coefficients of the
exponents inh decrease withN, and we always have
an interleaving gain[2].

Definedi, f,ef f as the minimum weight of code-
words of a recursive codeCi , i = 1,2 generated by
weight-2 input sequences. We call it the effective
free Hamming distance of a recursive convolutional



                  
code. To maximize theinterleaving gain, i.e., min-
imize NαM corresponding to output weighth1(αM),
andh2(αM) we should maximize thedi, f,ef f , i =
1,2. The sumd1, f,ef f + d2, f,ef f represents the ef-
fective free distance of the turbo code. Thus, sub-
stituting the exponentαM into the expression for
bit error rate (5) approximated by keeping only the
term of the summation inh1, andh2 corresponding
to h1 = h1(αM), andh2 = h2(αM), yields

lim
N→∞

Pb(e) ' BN−1

[
1

1+ Rc
Eb
N0

]d1, f,ef f+d2, f,ef f

(12)
whereB is a constant independent ofN.

4. Parallel Concatenated Trellis Coded
Modulation

The basic structure of parallel concatenated trellis
coded modulation is shown in Fig. 5.
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Fig. 5. Block Diagram of the Encoder for Parallel Concatenated
Trellis Coded Modulation.

This structure uses two rate2b
2b+1 constituent convo-

lutional codes. The firstb most significant output
bits of each convolutional code are only connected
to the shift register of the TCM encoder and are not
mapped to the modulation signals. The lastb+ 1
least significant output bits however are mapped to
the modulation signals. This method requires at least
two interleavers. The first interleaver permutes the
b least significant input bits. This interleaver is con-
nected to theb most significant bits of the second
TCM encoder. The second interleaver permutes the
b most significant input bits. This interleaver is then
connected to theb least significant input bits of the
second TCM encoder.

4.1. Design Criteria for PCTCM over Rayleigh
Fading Channels

To extend the asymptotic results we obtained
for binary modulation to M-ary Modulation (e.g.
MPSK), let xi represent the sequence of M-ary
output (complex) symbols{xi, j } of trellis code i
(i = 1,2). Complex symbols have unit average
power. Letx′i represent another sequence of the
output symbols{x′i, j } for i = 1,2. Then the asymp-
totic result in (12) should be modified to

Pb(e) ' BN−1
∏

n1∈η1

[
1

1+ |x1,n1 − x′1,n1
|2Rc

Eb
4N0

]
×

∏
n2∈η2

[
1

1+ |x2,n2 − x′2,n2
|2Rc

Eb
4N0

]
where, fori = 1,2, ηi is the set of allni with the
smallest cardinalitydi, f,ef f such thatxi,ni 6= x′i,ni

.
Thendi, f,ef f represents the minimum (M-ary sym-
bol) Hamming distance of trellis codei (i = 1,2)
corresponding to input Hamming distance 2 between
binary input sequences that producedi, f,ef f . The
di, f,ef f , i = 1,2 is also called the minimum diver-
sity of trellis codei . We note that the asymptotic
result on the bit error rate is inversely proportional
to the product of the squared Euclidean distances
along the error event paths which result indi, f,ef f

i=1,2. Therefore the criterion for optimization of
the component trellis codes is to maximize the min-
imum diversity of the code and then maximize the
product of the squared Euclidean distances which
result in minimum diversity.

4.2. 2 bits/sec/Hz PCTCM with 8PSK for AWGN
and Fading Channels

The code we propose hasb = 2, and employs 8PSK
modulation in connection with two 8-state, rate 4/5
constituent codes. The selected code uses reordered
mapping: Ifb2,b1,b0 represents a binary label for
natural mapping for 8PSK, whereb2 is the MSB and
b0 is the LSB, then the reordered mapping is given by
b2, (b2+b1),b0. The effective Euclidean distance of
this code isδ2

f,ef f = 5.17 (unit-norm constellation
is assumed), using two interleavers.

The structure of this code is shown in Fig. 6, and
its BER for AWGN and Rayleigh fading channels in
Fig. 7. The size of each interleaver is 8192 bits.
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Fig. 6. Parallel Concatenated Trellis Coded Modulation, 8PSK,
2 bits/sec/Hz.

5. Serially Concatenated Convolutional Codes

The structure of a serially concatenated convolu-
tional code (SCCC) is shown in Fig. 8. Figure 8
refers to the case of two convolutional codes, the
outer codeCo with rate Ro

c = q/p, and the inner
codeCi with rate Ri

c = p/m, joined by an inter-
leaver of lengthN bits, generating an SCCCCS
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with rateRc = k/n. Note thatN must be an integer
multiple of p. The input block size isk = Nq/p
and the output block size of SCCC isn = Nm/p.

OUTER
CODE

RATE = q/p

INNER
CODE

RATE = p/m

INTERLEAVER
LENGTH = N

Fig. 8. Serial Concatenated Convolutional Codes (SCCC).

5.1. Computation of input–output weight coeffi-
cient (IOWC) ACS

w,h for SCCC

With the knowledge of theACo
w,l for the outer code,

ACi
l ,h for the inner code, and using (6), the IOWCACS

w,h
for SCCC can be obtained as

ACS
w,h =

N∑
l=0

ACo
w,l × ACi

l ,h(
N
l

) (13)

Example 2. Consider a rate 1/2 SCCC formed by
a 4-state convolutional codeCo with rate 1/2 and
an inner 2-state convolutional codeCi with rate 1/1
(this is obtained by not sending the systematic bits of
the rate 1/2Ci convolutional code). The two codes
are joined by a uniform interleaver. Input blocks of
lengthN = 50,100 and 256 were considered. The
outer code is a nonrecursive code, the inner code
is systematic and recursive, and the generators are
shown in Fig. 9. Using the previously outlined anal-
ysis for SCCC, we have obtained the bit-error prob-
ability bounds shown in Fig. 9. The performance
was obtained both for AWGN and Rayleigh fading
channels. Comparing to Fig. 4, the performance of
SCCC is better than PCCC both over AWGN and
fading channels.

Using (6) we obtainαM and the corresponding
output weighth(αM). If the inner convolutional

code is recursive thenαM = −
⌊

do
f+1

2

⌋
wheredo

f
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is the free (minimum) distance of the outer convo-
lutional code.

The value ofαM shows that the exponents ofN
are always negative integers. Thus, for allh, the
coefficients of the exponents inh decrease withN,
and we always have an “interleaving gain”.

Define di
f,ef f as the minimum weight of code-

words of the inner code generated by weight-2 input
sequences. We obtain a different weighth(αM) for
even and odd values ofdo

f . For evendo
f , the weight

h(αM) associated to the highest exponent ofN is
given by

h(αM) =
do

f d
i
f,ef f

2
(14)

For do
f odd, the value ofh(αM) is given by

h(αM) =
(do

f − 3)di
f,ef f

2
+ h(3)m (15)

whereh(3)m is the minimum weight of sequences of
the inner code generated by a weight-3 input se-
quence.

Thus, substituting the exponentαM into the ex-
pression for bit error rate in (5) approximated by
keeping only the term of the summation inh corre-
sponding toh = h(αM) yields

lim
N→∞

Pb ' BN
−
⌊

do
f
+1

2

⌋[
1

1+ Rc
Eb
N0

]h(αM )

(16)

whereB is a constant independent ofN.

6. Serial Concatenated Trellis Coded
Modulation

The basic structure of serially concatenated trellis
coded modulation is shown in Fig. 10.
We propose a novel method to design serial con-
catenated TCM for Rayleigh fading channels, which
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Fig. 10. Block Diagram of the Encoder for Serial Concatenated
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achievesb bits/sec/Hz, using a rate 2b/(2b+1) non-
recursive binary convolutional encoder with maxi-
mum free Hamming distance as outer code. We
interleave the output of the outer code with a ran-
dom permutation. The interleaved data enters a rate
(2b+ 1)/(2b+ 2) recursive convolutional inner en-
coder. The 2b + 2 output bits are mapped to two
symbols belonging to a 2b+1 level modulation (four
dimensional modulation). In this way, we are using
2b information bits for every two modulation sym-
bol intervals, resulting inb bit/sec/Hz transmission
(when ideal Nyquist pulse shaping is used) or, in
other words,b bits per modulation symbol. For the
AWGN channel the inner code and the mapping are
jointly optimized based on maximizing the effec-
tive Euclidean distance of the inner TCM. The op-
timum 2-state inner trellis code is shown in Fig. 11.
The effective Euclidean distance of this code is 1.76
(for unit norm constellation) and its minimum M-ary
Hamming distance is 1.
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Fig. 11. Optimum 2-state inner trellis encoder for SCTCM with
2×8PSK Modulation.

6.1. Design Criteria for SCTCM over Rayleigh
Fading Channels

To extend the asymptotic results obtained for
binary modulation to to M-ary modulation (e.g.,
MPSK), criteria similar to those discussed for paral-
lel concatenated trellis coded modulation (PCTCM)
are now applied to serial concatenated trellis coded
modulation (SCTCM). The interleaving gain is still
N−b(d

o
f+1)/2c, however now the minimum diversity

is
do

f di
f,ef f

2 for evendo
f , and

(do
f−3)di

f,ef f

2 + h(3)m for odd
do

f , wheredi
f,ef f represents the minimum (M-ary

symbol) Hamming distance of the inner trellis code
corresponding to input Hamming distance 2 between
binary input sequences to the trellis code that pro-
ducedi

f,ef f . Therefore the criterion for optimizing
the inner trellis code in SCTCM is to maximize the
minimum diversity of the code and then maximize
the product of the squared Euclidean distances which

result in minimum diversity. For odddo
f , first we

maximizedi
f,ef f , then among the codes with maxi-

mumdi
f,ef f , we maximizeh(3)m , the minimum (M-ary

symbol) Hamming distance of the inner trellis code
corresponding to input Hamming distance 3 between
binary input sequences to the trellis code that pro-
duceh(3)m . As is seen from the previous results, large
do

f produces large interleaving gain and diversity.

6.2. Design Method for Inner TCM

To illustrate the design methodology we developed
the following example. Let the eight phases of 8PSK
π i /4, i = 0,1, . . . ,7 be denoted by{0, 1, 2, 3, 4, 5,
6, 7}. Consider the 2×8PSK signal setA0 = [(0,0),
(1,3), (2,6), (3,1), (4,4), (5,7), (6,2), (7,5)].
Each element in the set has two components. The
second component is 3 times the first one modulo 8.
Also consider the 2×8PSK signal setB0 = [(0,0),
(1,5), (2,2), (3,7), (4,4), (5,1), (6,6), (7,3)].
Each element in the set has two components. The
second component is 5 times the first one modulo
8. For these sets, the Hamming distance between
elements in each set is 2, and the minimum of the
product of square Euclidean distances is the largest
possible.

The following sets are constructed fromA0 and
B0 as: A2 = A0 + (0,2), A4 = A0 + (0,4), A6 =
A0 + (0,6), A1 = B0 + (0,1), A3 = B0 + (0,3),
A5 = B0 + (0,5), A7 = B0 + (0,7), where ad-
dition is component-wise modulo 8. Map the first
and last 2 bits of input labels to the 8PSK signals as
{00,00,01,01,11,11,10,10} ⇒ {0,1,2,3,4,5,
6,7}.

The fifth bit for the input label is the parity check
bit. Use an even parity check bit for signal sets
A0, A4, A1, A5 and an odd parity check bit for signal
setsA2, A6, A3, A7. This completes the input label
assignments to signal sets.

Now the Hamming distance between input labels
for each setAi i =0,1,2,. . . , 7, is at least 2 and the cor-
responding M-ary Hamming distance between sig-
nal elements in each set is 2. Consider a 4-state trellis
code with full transition. AssignA0, A2, A4, A6, to
the first state, andA1, A3, A5, A7 to the second state,
and permutations of these sets to the third and fourth
states. This completes the input label and 2×8PSK
signal set assignments to the edges of the 4-state
trellis. Therefore the minimum Hamming distance
of the 4-state trellis code is 2. At this point to obtain
a circuit that generates this trellis we need to use an
output label. We used reordered mapping as it was
discussed before to obtain the circuit for the encoder.

The implementation of the 4-state inner trellis
code is shown in Fig. 12. The ROM maps 32 ad-
dresses in the range of 0 to 31 to a single output.
The 32 binary outputs can be summarized in hex as
3A53ACC5.
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Fig. 12. 4-state inner trellis encoder for SCTCM with 2×8PSK
modulation for Rayleigh fading.

7. Simulation of Serial Concatenated Trellis
Coded Modulation with Iterative Decoding

In this section the simulation results for serial con-
catenated TCM, with 2×8PSK over the Rayleigh
fading channel are presented. For SCTCM with
2×8PSK, the outer code is a rate 4/5, 8-state nonre-
cursive convolutional encoder withdo

f = 3, and the
inner code is the 4-state TCM designed for 2×8PSK
in subsection 6.2. The bit error probability vs. bit
signal-to-noise ratioEb/No for various numbers of
iterations is shown in Fig. 13. The performance
of the inner 2-state code in Fig. 11 is also shown
in Fig. 13for the input block of 16384 bits. This
example demonstrates the power and bandwidth ef-
ficiency of SCTCM, over a Rayleigh fading channel
at low BERs.
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8. Hybrid concatenated convolutional codes

The hybrid structure shown in Fig. 14 includes
a parallel convolutional codeCp with rate Rp

c =
k/n1 and equivalent block code representation
(N1/Rp

c , N1), an outer (N1/Ro
c, N1) codeCo with

rateRo
c = k/p, (this code can be a repetition code),

aninner(N2/Ri
c, N2) codeCi with rateRi

c = p/n2,

plus a N1-bit and aN2-bit interleaver. This gives
an HCCC with overall rateRc = k/(n1 + n2). In
special case the outer code can be a repetition code.
Further if the parallel code is rate 1, 1-state code
(no code) we obtain self concatenated code which is
discussed in the next section.
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Fig. 14. A hybrid concatenated code, bounds, simulations.

Using (6) we obtain

ACH
w,h1,h2

=
N2∑

l=0

A
Cp

w,h1
× ACo

w,l × ACi
l ,h2(

N1w

) (
N2
l

) (17)

The coefficientsACH
w,h can be obtained by sum-

ming ACH
w,h1,h2

over allh1, andh2 such thath1+h2 =
h. ACo

w,l is the number of codewords ofCo of weight
l given by the input sequences of weightw. Anal-
ogous definitions apply forA

Cp

w,h1
and ACi

e,h2
. We

have computed the bound in (1) over AWGN for
a specific rate 1/4 HCCC formed by a 4-stateCp

(recursive, systematic,Rp
c = 1/2), where, as in

“turbo codes”, the systematic bits are not transmit-
ted, a 4-stateCo (nonrecursive,R0

c = 1/2), and
a 4-stateCi (recursive, systematic,Ri

c = 2/3),
joined by two interleavers of lengthsN1 = N
and N2 = 2N. The respective generator matrices

are
[

1, 1+D2

1+D+D2

]
,
[

1+ D + D2, 1+ D2
]
, and[

1, 0, (1+ D2)/(1+ D + D2)

0, 1, (1+ D)/(1+ D + D2)

]
. The BER perfor-

mance bounds show a very significant interleaving
gain , i.e., lower values of BER for higher val-
ues of N. At Eb/No = 3 dB, BER is 3×10−5,
8× 10−7, 4× 10−9, 10−10, and 2× 10−11, for
N = 20,40,100,200,300, respectively. Simu-
lation of the proposed iterative decoder produced
BER=10−7 at Eb/No = 0.2 dB, with 15 iterations
andN = 16384, as shown in Fig. 14.

8.1. Design of HCCCs

To evaluateαM , again we use (10). IfCi is nonre-
cursive, andCp orCo are nonrecursive then we have
αM ≥ 0, and interleaving gain is not allowed. IfCi

is nonrecursive, and bothCp andCo are recursive
then we haveαM = −1, and interleaving gain is
allowed, as for “turbo codes”. IfCi is recursive, and



                 
Cp is nonrecursive we haveαM ≤ −

⌊
(do

f + 1)/2
⌋

,

and interleaving gain is allowed, as in serial concate-
nated codes. IfCi is recursive, andCp is recursive

we haveαM ≤ −
⌊
(do

f + 3)/2
⌋

, and interleaving

gain is higher than for serial concatenated codes.
Based on the above analysis, in order to achieve the
highest interleaving gain in HCCCs, we should se-
lect the component codes as follows: a recursiveCi ;
a recursiveCp; Co can be either nonrecursive or re-
cursive but should have largedo

f . Next we consider
the weighth(αM)which is the sum of output weights
of Ci andCp associated to the highest exponent of
N. We haveh(αM) = do

f d
i
f,eff/2+ dp

f,eff, for do
f even,

andh(αM) = (do
f − 3)di

f,eff/2+ h(3)m + dp
f,eff, for do

f

odd, whereh(3)m is the minimum weight of codewords
of Ci generated by a weight 3 input sequence, and
di

f,eff, anddp
f,eff are the effective free distances ofCi

andCp.

9. Self-Concatenated Code

Consider a self concatenated code as shown in
Fig. 15. This code can be considered as special case
of hybrid concatenated code when the outer code is
rate 1/p repetition code, and parallel code is a rate
1, 1-state code (no code). Since one nontrivial code
is used we call it self concatenated code.
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Fig. 15. A self concatenated code.

For a rate 1/p repetition code and itsN concate-

nation we haveACr
w,l =

(
N
w

)
; l = wp , and zero

otherwise. Using (1), and (6) we can obtain

Pb ≤
N p/Ri

c∑
h=dmin

N∑
w=1

w

N

(
N
w

)
AC

pw,h(
pN
pw

) Q(

√
2RcEb

N0
(h+ w))

(18)
Using (10) we obtainαM = maxw,h{w+ j−pw−1},
where j is number of concatenated error events in
codeC. If the interleaver is split intop parts corre-
sponding to the original data and itsp−1 duplicates,
the code will be equivalent to multiple turbo codes.
The case ofp = 2, with structured interleaver which
does not require trellis termination was proposed by
Berrou [8] with good performance for short blocks.

9.1. The Maximum Exponent of N

For a nonrecursive convolutional encoder, we have
j ≤ pw. In this caseαM ≥ 0. Thus we haveno
interleaving gain. However, for recursive convo-
lutional encoderC, the minimum weight of input
sequences generating error events is 2. As a conse-
quence, an input sequence of weightpw can gen-

erate at mostj = b pw
2 c error events. In this case

the exponent ofN is negative. Thus, we have an
interleaving gain. For p = 2, the maximum expo-
nent ofN is−1, and the minimum output weight is
h+w = df,ef f +1. Forp = 3, the maximum expo-
nent ofN is−2, and the minimum output weight is
h+ w = h(3)m + 1. However, ifh = h(3)m = ∞ then
the minimum output weight ish+w = 3df,ef f +2.

10. Conclusions

General analytical upper bounds and design rules
for concatenated codes with interleavers over AWGN,
and Rayleigh fading channels were presented.
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