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Abstract—Contusive spinal cord injury (SCI) results in a
complex lesion that includes cellular and axonal loss, micro-
glia and macrophage activation, and demyelination. These
changes result in permanent neurological deficits in people
with SCI and in high financial costs to society. Unlike the
peripheral nervous system (PNS), in which axonal regeneration
can occur, axonal regeneration in the central nervous system
(CNS) is extremely limited. This limited regeneration is
thought to result from a lack of a permissive environment and
from active inhibitory molecules that are present in the CNS
but minimal in the PNS. Currently, cell transplantation
approaches are among several experimental strategies being
investigated for the treatment of SCI. In the olfactory system, a
specialized glial cell called the olfactory ensheathing cell
(OEC) has been shown to improve functional outcome when
transplanted into rodents with SCI, and clinical studies trans-
planting OECs into patients with SCI are ongoing in China,
Portugal, and other sites. Yet, a number of controversial issues
related to OEC biology and transplantation must be addressed
to understand the rationale and expectations for OEC cell ther-
apy approaches in SCI. This review provides information on
these issues for spinal cord medicine clinicians.
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INTRODUCTION

More than 11,000 traumatic spinal cord injuries
(SCIs) are estimated to occur in the United States each
year [1]. Unfortunately, aside from good medical man-
agement, no generally accepted interventional therapies
are available. While neurogenesis has long been thought
to occur only during embryogenesis, recent advances in
cell biology have identified progenitor cells for neurons
and glia in the adult nervous system. These discoveries
have given rise to the concept that a cell-based therapy
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might be developed for patients with SCI (see Reier [2]
for an overview). Unlike Parkinson’s disease, where the
rationale for transplantation therapy is to replace neurons
that produce dopamine, a primary objective of spinal
cord repair is to regenerate long axonal tracts and remye-
linate axons. Thus, while neurons may die at the injury
site, neurogenesis of these segmental neurons is consid-
ered less important than establishment of new functional
axonal links to intact spinal cord circuits below and
above the level of injury.

A number of myelinating cells and their precursors
have been shown to remyelinate spinal cord axons after
transplantation [3]. Neural progenitor cells, which can
differentiate into neurons and glia, can be isolated from
the adult mammalian dentate gyrus [4], the subventricu-
lar zone (SVZ) that lines the lateral ventricles [5–7], and
the spinal cord [8] and have been used to remyelinate
axons. Importantly, neural progenitor cells isolated from
adult human brain can differentiate into neurons and glia
[9–11]. Remyelination results when neural progenitors,
prepared from biopsy of the SVZ under ultrasound guid-
ance in the nonhuman primate, are transplanted into the
demyelinated spinal cord of the same animal [12]. More-
over, neural precursor cells have been prepared from a
number of peripheral tissues, such as bone marrow [13],
skin, and peripheral blood [14], and active investigation
of their potential therapeutic effects in central nervous
system (CNS) repair is ongoing. A concern with multi-
potent “stem cells” is that upon transplantation, they
might differentiate into ectopic tissues. For example,
bone marrow-derived mesenchymal stem cells can poten-
tially differentiate into cartilage when transplanted into
the spinal cord. Clearly, establishing appropriate differen-
tiation methods in vitro to prevent undesirable in vivo
differentiation is essential when a cell type is being con-
sidered for clinical transplantation studies.

A unique cell within the olfactory system is a spe-
cialized glial cell called the olfactory ensheathing cell
(OEC). The OEC has attracted much recent attention and
is currently being used in clinical studies in patients with
SCI. Within the nasal cavity (olfactory mucosa [OM]),
olfactory receptor neurons (ORNs) are replaced by a resi-
dent population of stem cells [15]. The axons of the
ORNs will regenerate through the olfactory nerve and
enter the olfactory bulb (OB) of the CNS, where they will
make new synaptic contacts [16–17]. Neurogenesis of the
ORNs is unique, as is regeneration of peripheral axons
that can successfully navigate entry into the CNS and

establish appropriate functional circuits. Current thinking
is that OECs serve as glial guides for the regeneration of
ORN axons [18–20]. This guidance property of OECs led
to the suggestion that isolation and transplantation of
these cells could promote axonal regeneration in the
injured spinal cord. The present review discusses the
biology of the OEC, OEC transplantation studies in ani-
mal models of SCI and demyelination, and ongoing clini-
cal studies in which OECs are being transplanted into
patients with SCI.

UNIQUE REGENERATIVE PROPERTIES WITHIN
OLFACTORY SYSTEM

Two important neurogenic zones are related to the
olfactory system: the neural epithelium in the OM in the
periphery and the SVZ in the CNS (Figure 1). ORNs are

Figure 1.
Basic organization of olfactory system and two important neurogenic
zones in adult: subventricular zone (SVZ) and olfactory epithelium
(OE). Neural precursor cells in SVZ migrate to olfactory bulb (OB)
through rostral migratory stream (RMS) in brain. New olfactory
receptor neurons are generated in OE and issue axons that grow into
OB to terminate in glomerular layer of OB. These axons are nonmy-
elinated and grow through glial “tunnels” formed by olfactory
ensheathing cells (OECs). OECs bridge periphery and central ner-
vous system and are distributed in outer nerve layer (ONL) of OB.
CP = cribriform plate, LP = lamina propria.
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continually replaced by a stem cell population in the OM,
and neural precursor cells in the SVZ migrate through the
rostral migratory stream (RMS) to the OB, where they
differentiate into interneurons [21]. The cells that migrate
from the SVZ through the RMS are neurogenic cells
(“adult stem cells”) that have been harvested for trans-
plantation studies. The reason that neurogenesis is so
prominent in the olfactory system is unknown. Given the
importance of olfaction for mammalian survival and the
potential damage to ORNs from noxious environmental
influences, the neurogenic properties of the system may
be conserved for survival of the species.

In the peripheral nerve, Schwann cells form basal
lamina tubes (bands of Büngner) through which regenera-
ting axons grow. Within the olfactory nerve, the OECs
form cellular channels or tunnels through which large
numbers of small-caliber nonmyelinated axons distribute
through the olfactory nerve into the outer nerve layer
(ONL) of the OB and extend into the olfactory glomeruli,
where they make synapses (Figure 1) [19]. OECs in the
ONL are thought to provide a permissive environment
that allows entry of ORN axons into the CNS. OECs’
unique property of bridging the peripheral nervous system
(PNS) and CNS and providing a channel for peripheral
axonal growth into the CNS led to the suggestion that
these cells may be therapeutic if transplanted into
transected spinal cord tracts [18–19].

ISOLATION OF OLFACTORY ENSHEATHING 
CELLS FROM OLFACTORY BULB AND
OLFACTORY MUCOSA

OECs develop from the olfactory placode and subse-
quently migrate into the olfactory nerve and OB. This
developmental origin contrasts to that of Schwann cells,
which arise from the neural crest. From their origin in the
OM to their termination in the glomeruli of the OB, the
nonmyelinated olfactory nerves are associated with
OECs, which surround large numbers of contiguous
axons [19,22–24]. The olfactory nerve and the ONL of
the OB are enriched in OECs, which have p75 nerve
growth-factor receptors (p75NGFRs).

Initial studies have transplanted OECs obtained from
OBs into injured spinal cord and demonstrated functional
improvement. OECs are present throughout the course of
the olfactory nerves and can be harvested at the OM and
the OB. Cultures of OECs from the OB [25–26] and the

OM have been described in a number of studies [27]. Lu
and colleagues have demonstrated the reparative effects
of mucosal-derived cells after intraspinal transplantation
[28]. The majority of OECs used in studies on SCI regen-
eration have been from primary cultures obtained from
the rat OB or OM [28–29].

Methods have been developed to purify OECs. OECs
have been obtained from embryonic tissue [30], in which
the nerve fiber layer is only loosely attached to the mar-
ginal zone of the primordial OB [31], thus reducing possi-
ble contamination by other OB cell types. Fluorescence-
activated cell sorting for O4-positive cells from neonatal
tissue has been performed [32]. OEC selection from adult
rats has also been performed with the use of immunopan-
ning [33] or magnetic beads against p75NGFR [34].
These methods result in varying degrees of OEC purity
and yield. Mixed cultures of OEC and highly purified
OEC cultures have been extensively tested as possible
therapeutic tools in experimental SCI research [35]. While
some studies purified and maintained these cells in cul-
ture, other studies used acutely prepared cell suspensions
from the OB, which were then transplanted into either SCI
models [36] or demyelinated lesion models [37].

TRANSPLANTATION OF OLFACTORY
ENSHEATHING CELLS INTO EXPERIMENTAL
DEMYELINATED SPINAL CORD LESIONS

In the olfactory nerve, OECs surround large numbers
of nonmyelinated axons and normally do not form mye-
lin [38]. However, Franklin et al. first demonstrated that
OECs derived from a cell line can form Schwann cell-
like myelin, which has the classic signet ring configura-
tion [39]. Subsequently, remyelination by OEC trans-
plants from a variety of species including humans has
been reported [37,40–43]. OECs have also been shown to
produce myelin when transplanted into the nonhuman
primate spinal cord [42].

Green fluorescent protein (GFP)-OECs, or OECs pre-
pared from GFP transgenic rats, were transplanted into a
chemically induced demyelinating lesion in the rat dorsal
funiculus (Figure 2). These cells have a reporter gene to
express GFP in their cytoplasm for cell identification [43].
In the sagittal section of the spinal cord shown in
Figure 2(a), the transplanted cells (green) are distributing
within the demyelinated lesion. Demyelinated fibers from
a spinal cord with a chemically induced demyelinated
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lesion without transplantation are shown in Figure 2(b).
When OECs were transplanted into the demyelinated
lesion, numerous myelinated axons were observed 3 weeks
later (Figure 2(c)). Immunoelectron microscopy, in which
an antibody for GFP is used to identify the transplanted
cells on the ultrastructural level (Figure 2(d)–(e)), clearly
indicates that transplanted OECs can form myelin [44].

However, some investigators have argued that OECs
are not the myelinating cells in the just-mentioned studies
but that contaminating Schwann cells are responsible for
the remyelination [45]. These investigators suggest that
OECs, but not Schwann cells, express calponin, a muscle
fiber actin-binding protein [46], and that many cells in
OEC culture preparations are p75-positive and calponin-
negative, thus suggesting that OEC cultures were con-
taminated by Schwann cells. Franklin et al.’s study in
which they used an OEC line and achieved remyelination
provides a strong counterargument to the theory that
Schwann-cell contamination accounts for remyelination
by OECs [39]. A recent study demonstrated that calponin
was present in the olfactory fibroblast meningeal cells
but not in the adult OECs [47], thus strengthening the
argument that OECs can form myelin.

An important aspect of remyelination is that it restores
rapid impulse conduction. This restoration is achieved by
the high resistance and low capacitance that myelin con-
fers to the axonal membrane and by proper distribution
of specific subtypes of sodium and potassium channels
[48]. In myelinated axons, voltage-gated sodium channels
(Navs) are aggregated in high density at nodes of Ranvier,
while Shaker-type voltage-gated potassium channels
(Kv1s) are clustered within juxtaparanodal regions and
separated from nodal Navs by septatelike paranodal junc-
tions [49–51]. Of the seven Nav isoforms expressed in
nervous tissue [52], Nav1.6 is the predominant Nav at
mature nodes of Ranvier in both the PNS and CNS [53–
54], following a transition from Nav1.2, which is present
along premyelinated axons and at immature nodes
[53,55–57]. The clustering of Navs [58–59] and the transi-
tion from Nav1.2 to Nav1.6 [53,57] at nodes has been
shown to critically depend on the axon interacting with
myelinating glial cells, with both oligodendrocytes [60]
and Schwann cells [61]. Thus, determining whether axons
remyelinated by OECs respond by establishing appropri-
ate mature nodal ion channel organization is critical.

We examined spinal cord dorsal funicular axons that
were remyelinated by transplanted GFP-OECs to facili-
tate their identification. We demonstrated that GFP-OECs
form compact myelin and establish ultrastructurally intact

Figure 2.
Histological evidence that transplanted olfactory ensheathing cells
(OECs) remyelinate central nervous system axons. (a) Sagittal frozen
section through chemically demyelinated rat dorsal-column lesion
illustrating distribution of transplanted green fluorescent protein
(GFP)-expressing rat OECs. Transplanted cells are primarily confined
to lesion site. Dashed line demarcates lesion boundary. Inset corre-
sponds to boxed area in (a) and shows alignment of OECs with dor-
sal-column axons. (b) Demyelinated axons in spinal cord dorsal
funiculus without OEC transplantation. Note large dark macrophages
in addition to demyelinated axons. (c) Semithin coronal plastic sec-
tion of spinal cord white matter 3 weeks after OEC transplantation
showing peripheral-like myelinated axon profiles within lesion. Inset
shows red PO-positive myelin rings associated with green trans-
planted cell, indicating that transplanted cells produce peripheral-like
myelin protein. (d)–(e) Immunoelectron micrographs of GFP-OEC
transplanted lesions stained with anti-GFP antibody showing that
GFP donor cells produce compact myelin. Boxed area in (d) is magni-
fied in (e). Note dense reaction product indicating GFP presence and
basal lamina associated with myelinating axon on right. Scale bars:
(a) 1 mm, inset = 20 µm; (b) 10 µm; (c) 10 µm; (d) 2 µm; (e) 0.4 µm.
Modified from Sasaki M, Lankford KL, Zemedkun M, Kocsis JD.
Identified olfactory ensheathing cells transplanted into the transected
dorsal funiculus bridge the lesion and form myelin. J Neurosci.
2004;24(39):8485–93. [PMID: 15456822]
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nodes of Ranvier [62]. Nav1.6 is the predominant Nav at
these remyelinated nodes (Figure 3(a)–(h)), and Kv1.2 is
aggregated in remyelinated juxtaparanodal domains.
These observations, coupled with improved conduction
velocity of the remyelinated axons (Figure 3(i)–(m)),
indicate that a relatively mature pattern of ion channel
organization is recapitulated within spinal cord axons
remyelinated by transplanted OECs.

TRANSPLANTATION OF OLFACTORY
ENSHEATHING CELLS INTO EXPERIMENTAL
SPINAL CORD TRANSECTION LESIONS

Local sprouting can occur after axonal transection in
the mammalian spinal cord, but the axons do not regener-
ate for an appreciable distance. However, experimental
approaches have been reported to improve elongative
regeneration of axons in the transected mammalian spinal

cord. These approaches include blockade of inhibitory
proteins on glial cells and introduction of neurotrophic
factor-enhanced peripheral nerve bridges. In a large num-
ber of recent studies, OECs have been transplanted into
injured spinal cord and significant functional recovery
has been reported [28–29,33,63]. The precise mecha-
nisms accounting for this functional recovery are com-
plex and include promotion of axonal regeneration,
remyelination, neuroprotection, and induction of neovas-
cularization. We should point out that in one study, func-
tional improvement was not observed following OEC
transplantation but was observed following Schwann cell
transplantation [64]. Moreover, other investigators have
not found unique migratory properties of OECs [65] and
one report questioned the efficacy of transplantation of
lamina propria into complete spinal cord transection [66].

OECs transplanted into the dorsal hemisected spinal
cord survive and integrate into the lesion (Figure 4).
Figure 4(a) shows a sagittal section of the spinal cord

Figure 3.
Histological and electrophysiological evidence of mature node formation 3 weeks after olfactory ensheathing cell (OEC) transplantation into
chemically demyelinated lesion. (a)–(h) Nodes of Ranvier associated with green fluorescent protein (GFP)-OECs (green) double-stained with
contactin-associated protein (Caspr) (blue, stains in paranodal regions) and either (a)–(d) voltage-gated sodium channel (Nav) 1.6 (red), com-
monly associated with mature nodes, or (e)–(h) Nav1.2 (red), commonly associated with nonmyelinated axons or early stages in node formation.
Merged images ((d) and (h)) show that Nav1.6 is clustered at Caspr-delimited nodes, while Nav1.2 is absent. (i)–(l) Compound action potentials
recorded across lesioned area from (i) normal control spinal cord, (j) demyelinated lesion without cell transplantation, and (k)–(l) two OEC trans-
planted lesions. (m) Conduction velocities of normal, demyelinated only, and demyelinated and OEC-transplanted spinal cords (n = 6 each
group). Conduction velocities for demyelinated axons significantly differ from both normal control and OEC-transplanted spinal cords (*p <
0.005). Scale bar is 10 µm for all photographs. Modified from Sasaki M, Lankford KL, Zemedkun M, Kocsis JD. Identified olfactory ensheathing
cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. J Neurosci. 2004;24(39):8485–93. [PMID: 15456822]
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spanning the transection site 4 weeks after transplanta-
tion of GFP-expressing OECs. Note that the green cells
have integrated across the transection site (Figure 4(a)).
Examination of the lesion site after transplantation in
coronal section from semithin plastic embedded sections
indicates groups of myelinated axons (Figure 4(b)). A
higher power image (Figure 4(c)) shows that these
groups of myelinated axons are surrounded by a cellular
element. This configuration of myelinated regenerated
axons inside of a cellular channel or bridge is unique to
transplantation of OECs and is not observed after trans-
plantation of Schwann cells [36].

Raisman proposes that two populations of cells are
present in OEC preparations derived from the OB: a
fibroblast-like cell, or A-cell, and a Schwannlike cell, or
S-cell [35]. He proposes that the A-cell forms the sur-
rounding cell and that the S-cells can form myelin on the
regenerated axons. Moreover, the A-cell appears to form a
channel across the lesion zone through which regenerat-
ing axons can grow. The myelin at this position in the
lesion is primarily peripheral-like [36,63]. Endogenous
Schwann cells can invade SCI sites and form myelin, and
while OECs contribute to the remyelination, endogenous
Schwann cells also likely contribute.

OECs can produce several molecules that may pro-
mote axonal regeneration and neuronal survival. These
molecules include neurotrophic factors such as nerve
growth factor (NGF), brain-derived neurotrophic factor
(BDNF), and glial cell line-derived neurotrophic factor
[20,67–69]. OECs have been shown to decrease spinal
cord lesion size, possibly because of a local neuroprotec-
tive effect by neurotrophin release.

A recent study examined the effects of OEC trans-
plantation into the dorsal transected spinal cord, which
transects the dorsal corticospinal tract on apoptosis and
neuronal death in the primary motor cortex (M1) [44].
Transection alone results in considerable apoptosis and
atrophy of M1 pyramidal neurons [70]. We found that the
number of apoptotic M1 neurons after corticospinal tract
transection and OEC transplantation was reduced by
about half at 1 week. Moreover, the number of surviving
M1 pyramidal neurons was considerably increased at
4 weeks posttransection if OECs were transplanted. Inter-
estingly, BDNF levels in the spinal cord transplant site
were increased, suggesting that BDNF may have played a
neuroprotective role in preserving the transected cortical
neurons [44]. Thus, in addition to axonal regeneration and
remyelination, OECs may provide trophic support for
both local and remote neuronal survival.

POSSIBLE CONTRIBUTION OF OLFACTORY 
ENSHEATHING CELL TRANSPLANTATION TO 
PERIPHERAL NERVE REPAIR

Unlike the CNS, regeneration can occur in the PNS.
The Schwann cells in the distal segment of a cut nerve
dissociate from the degenerating axons, upregulate
p75NGFR, and express NGF [71]. The axons in the proxi-
mal nerve stump sprout and regenerate through Schwann

Figure 4.
Distribution and organization of olfactory ensheathing cells (OECs)
transplanted into transection lesion. (a) Sagittal frozen section show-
ing distribution of green fluorescent protein-OECs within and beyond
transected lesion. (b)–(c) Semithin coronal plastic sections within
lesioned area showing clusters of myelinated axons, which was char-
acteristic of OECs transplanted in transected lesions. (b) Low magni-
fication image showing many axon clusters. (c) Boxed area in
(b) enlarged to show detail of individual axon cluster apparently sur-
rounded by another cell. Scale bars: (a) 250 µm, (b) 30 µm, (c) 6 µm.
Modified from Sasaki M, Lankford KL, Zemedkun M, Kocsis JD.
Identified olfactory ensheathing cells transplanted into the transected
dorsal funiculus bridge the lesion and form myelin. J Neurosci.
2004;24(39):8485–93. [PMID: 15456822]
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cell-enriched basal lamina tubes and can reestablish func-
tional connections in peripheral targets such as skin and
muscle; various degrees of functional recovery can occur.
However, issues such as navigation of axons across a
complex nerve injury site and appropriate targeting to
peripheral end structures are major clinical concerns.

OEC transplantation has also been considered for
enhancing repair of peripheral nerve fibers. The rationale
is that OECs may provide a scaffold for the regenerating
axons, as well as trophic factors and directional cues [72].
Transplantation of OECs into axotomized facial nerve has
been shown to enhance axonal sprouting [72–73] and pro-
mote the recovery of vibrissae motor performance [74].
Choi and Raisman demonstrated that the rate of eye clo-
sure increased after OEC transplantation in a facial nerve
lesion model but that aberrant nerve branching was
unchanged [75]. Schwann cells [76] and OECs [77] trans-
planted into transected sciatic nerve integrate into the
injury site and form peripheral myelin on the regenerated
axons. Moreover, the nodes of Ranvier of the regenerated
axons myelinated by the transplanted cells express the
appropriate sodium channel (Nav1.6). Whether these
engrafted cells accelerate or improve functional outcome
after nerve injury is yet to be determined [77].

ONGOING CLINICAL STUDIES USING
OLFACTORY ENSHEATHING CELLS IN
SPINAL CORD INJURY

Several groups are conducting or planning clinical
studies on OEC transplantation into patients with SCI
[78–80]. Feron and colleagues have conducted a phase I
safety study using suspensions of OECs cultured from
biopsied tissue from the patients’ own OM, thus reducing
immune rejection [81]. They reported no adverse effects
at 12 months posttransplantation but no neurological
improvement. Lima and colleagues (Egas Moniz Hospi-
tal, Lisbon, Portugal) described a treatment in which they
packed the cavity of the SCI site with acutely prepared
minced OM tissue, which includes many cell types,
including stem cells and OECs. They reported that the
OM autograft transplantation was safe and potentially
beneficial, but efficacy was not clearly established [82].

In studies by Huang and colleagues (Chaoyang Hos-
pital, Beijing, China), several hundred patients have
received transplants of cultures from human embryonic
OBs obtained from 14 to 16 fetuses [83–85]. Some func-

tional improvement was reported as early as 1 day after
transplantation. Surely such an early effect is not the
result of axonal regeneration or remyelination. One
should note that the Lima et al. and Huang et al. studies
did not include control studies [78,84].

Dobkin et al. independently studied seven patients
with chronic SCI who were undergoing surgery by the
Huang group in Beijing [84]. For assessment, they used
magnetic resonance imaging, the protocol of the Ameri-
can Spinal Injury Association for change in disability, and
a detailed history of the perioperative course. They con-
cluded that the phenotype and fate of the cells referred to
as OECs are unknown and that perioperative morbidity
and lack of functional benefit were very serious short-
comings. They also emphasized a lack of attempt to meet
international standards for safety and efficacy. On the
basis of their observations, they urge physicians not to
recommend this procedure to patients at this time.

Assessing the efficacy of therapeutic interventions in
SCI including cell therapy approaches is difficult because
some “spontaneous” functional improvement occurs in
most patients with SCI [86]. Moreover, the surgical inter-
vention necessary for transplanting cells can alone lead to
modest functional improvement. Issues related to assess-
ment methods of patients with SCI in clinical studies are
currently being discussed, with an emphasis on assessing
the degree of an individual patient’s functional recovery
[87]. Clearly, the complexity of SCI and the difficulty in
accurately assessing functional recovery will be chal-
lenges for all interventional clinical studies for SCI.

While reconstruction of appropriate spinal circuits by
cell-based therapies is the ultimate long-term goal of cell
transplantation research, laboratory work to date suggests
that more immediate therapeutic benefits will come from
neuroprotective effects and remyelination. Moreover, the
most extensive functional recovery in animal models of
SCI with cell transplantation is for treatment of acute and
subacute SCI. Early intervention may reduce scar forma-
tion and secondary cell death by causing the release of
appropriate trophic factors by engrafted cells. Moreover,
angiogenic factors released by transplanted cells could
cause neovascularization, which would be critical for tis-
sue preservation. Some demyelination in patients with
long-term (a decade) SCI has been reported [88]. If long-
term SCI patients preserve some long tract axons in the
spinal cord that were demyelinated, remyelination of
these tracts by cell transplantation could cause some func-
tional improvement. An important remaining challenge
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for cell-based therapies in SCI is determination of the
optimal cell type, method of delivery, and timing of cellu-
lar intervention.

CONCLUSIONS

OECs are unique glial cells that support axonal
growth of olfactory nerve fibers into the OB of the CNS.
They form cellular “channels” through which axons can
grow, produce a number of neurotrophic factors, and
under special conditions, can form peripheral-like myelin
on axons. In experimental SCI models, including transec-
tion and contusion injuries, transplantation of OECs
within a week after injury can improve functional recov-
ery. Some functional improvement was reported when
OECs were transplanted several months after injury.
While the precise mechanisms for the therapeutic effects
of OECs are not fully understood, several studies indicate
that facilitation of axonal regrowth, remyelination, and
neuroprotection may contribute. Clinical studies using
OECs in SCI are ongoing, but efficacy has not as yet
been established in these initial studies [84]. To date, the
clinical studies have been performed in patients with
chronic SCI, but experimental studies suggest that OECs
are most effective in acute and possibly subacute SCI.
Evaluating the therapeutic potential of OECs in acute
SCI will be important in future clinical studies.
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