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Motivation

Intermittent wetting adjustment
Time correction assumes simple 
“shut off” of leaching

Wetting frequency (Fw)
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Moisture Transport
Full Saturation

Capillary Saturation
Continuous Liquid
Discontinuous Gas

Transition Zone
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Conceptual Model
Moisture exchange w/environment

Evaporation/condensation
Capillary suction
Intermittent wetting (precipitation)

Water content determines  
Gaseous degradation processes      
(oxidation, carbonation)
Constituent diffusion pathways

Current Approach Limitations
Moisture status undefined or 
unknown
Wasteform assumed saturated 

Gas phase reactions limited to 
external surfaces 
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Objectives
Develop a mathematical representation of moisture transport 
for a cementitious matrix

Integrate moisture transport into mass transport models
Coupled Dissolution Diffusion model
Intermittent Mass Transport (IMT) model

Validate IMT mass release
Independent data set
Cycles of wetting and storage (with/without drying)

Compare IMT model results:
Among several wetting/drying scenarios
To current saturated modeling approaches
To simple wetting frequency adjustments
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Model System
Cement-based mortar containing powders of metal oxides

Portland cement 36 wt%
Normal sand 49 wt%
Water 13 wt%
NaCl 1 wt%
PbO 3000 mg Pb/kg
CdO 3000 mg Cd/kg
As2O5 3000 mg As/kg

Cured at high RH for >28 days

Experiments
Controlled drying (vapor-liquid isotherm)
Atmosphere comparison
Intermittent wetting and mass transport
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Water Vapor Transport Experiments
Controlled Drying

2-cm cubes
Dried to constant mass
RH controlled – sat’d salts 

23% LiCl
33% MgCl2
52% KNO2
88% K2CrO4
97% KNO3

Isotherm at end-state

Kinetic drying data
23% RH - parameterized drying 
model (hc, α, n)
Model validated at other RH 
values 

Atmosphere Comparison
4-cm cubes
Dried for 3 months
RH controlled

23% over silica oxide
48%
98% bubbled in water column

CO2 controlled
100% carbon dioxide
0% nitrogen

Carbonation depth using 1% 
phenolphthalein in ethanol

Kinetic drying data
Model validation for larger geometry
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Moisture Transport Model
(Garrabrants and Kosson, Drying Technology, 21, 775-805, 2003)

#1 - Funicular Regime (θ ≥ θcap)
Surface evaporation controls transport rate
Movement of bulk liquid by capillary pressure
Saturation spatially uniform
Relative humidity constant w/ time, space
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Two-Regime Drying Model 
Parameters: θ = saturation [-], H = relative humidity [-]
Liquid-vapor isotherm (θ as a function of H)

Capillary Saturation θcap

RH = 100%

Hamb

Capillary Saturation θcap

RH = 100%

Hamb

Full Saturation

Hamb

Full Saturation

Hamb

η = film mass transfer coefficient [kg/m2 s]
Hsurf = relative humidity at surface [-] 
Hamb = ambient relative humidity [-]
ρliq = liquid phase density [kg/m3]
ε = porosity [-]
θ= saturation [-]
A = matrix surface area [m2]
V = matrix volume [m3]
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#2 - Isothermal Regime (θins ≥ θ)
Pore vapor diffusion controls transport rate
Saturation in equilibrium w/ relative humidity
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Moisture Transport Modeling

Transition Zone (θcap ≥ θ ≥ θins)
Observed diffusivity is a function of humidity
Saturation is provided by a liquid-vapor isotherm
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Controlled Drying Results
Water-Vapor Isotherm

Capillary Saturation
continuous liquid phase, capillary forces

Insular Saturation
discontinuous liquid phase, vapor 

transport

Drying Model Validation
Parameters set using 23% RH
Acceptable estimate at all RH
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Drying Atmosphere Comparison
Carbonation Depth

Phenolphthalein indicator (1%)
Noncarbonated (red)
Carbonated (clear)

Kinetic Drying Data
Inert atmosphere (closed symbols)
Reactive atmosphere (open symbols)

Increased mass - CaCO3
Max mass effect at 48% RH

Note: apparent “carbonation” of C0-H0 sample 
due to spill of KCO3 solution
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Intermittent Wetting and Release

MT001.1 Mass Transfer in 
Monolithic Materials

Tank Leaching in DI Water
Liquid-to-Surface = 10 mL/cm2

Leachate exchange
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Coupled Dissolution-Diffusion (CDD) Model
Sanchez et al., Chem. Engr. Sci., 55, 115-128, 2000
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pH gradients alter trace species release
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Mass transport estimates reflect the 
dynamic chemistry and mineralogy.
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Incorporates drying and CDD mass transport models to simulate IW
scenarios for cementitious matrices

Saturated Leaching
CDD mass transport model

Storage at Constant RH
Moisture transport model

for RH < 100%
Gradient relaxation by

CDD model

Two-regime moisture transport (θ - saturation, H - humidity)

Funicular regime (θ ≥ θcap) Isothermal regime (θ < θcap)

⎥⎦
⎤

⎢⎣
⎡

⋅⋅
−

=
∂
∂

V
AHH

t liq

ambsurf

0

)(
θερ

ηθ
2

2

x
H

D
t
H obs

H ∂
∂

=
∂
∂1=xH xHθθ =

eff
MeD

eff
CaD

obs
HD eff

HD

atm
os
ph
er
e

pH

Ca moving front

Me moving front

obs
HD

Cx=Cx
Sp=0

H ? ??

Cx=Cx
Sp=0

H ? ??H?θ θ

moving front
cap

θ

eff
HD

Cx=Csat
Sp=Sp,0
θ=1

Cx=Cx
Sp=0

θ=θ{H}
eff
CaD

eff
MeD

obs
HD eff

HD

Intermittent Mass Transport (IMT) Model
Garrabrants et al., AIChE Journal, 49, 1317-1333, 2003
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IMT Model Results
Garrabrants et al., J. Haz. Mat., 91, 159-185, 2002
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Site-Specific Comparison 

Nashville, TN

Aiken, SC

Richland, WA

Richland, WA vs. Aiken, SC
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Precipitation and Simulation Data

Data Set IW Cycles/ # Data Wet Days/ Fw RH
Period Data Set Set Loops Data Set [%]

Default Wet 7 days 1 5200 2.1 0.30 100

Default Dry 30 days 1 1200 3 0.10 100

Aiken, SC 5 years 218 20 314 0.17 100

Richland, WA 5 years 48 20 52 0.03 100, 65

Aiken, SC Richland, WA
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Intermittent Mass Transport Model Results

Calcium Cadmium
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100-year Release Estimates

Comparison of model results
IMT model w/ precipitation data

Aiken, SC
Richland, WA

Continuous Leaching
Saturated release under CDD

Simple diffusion model
Saturated (Fw = 1)
30% wetted (Fw = 0.3)
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100-Year Release Estimates

Lead
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Conclusions
Long-term release estimates from cementitious matrices influenced by

Model formulation (percolation, diffusion, CDD, IMT)
Scenario conditions (LSsite, Field pH)
External stresses (carbonation, intermittent wetting)

IMT model approach is useful to describe constituent release for
cementitious materials exposed to intermittent wetting conditions.

Combines pore chemistry with mass transport
Drying as function of isotherm and external relative humidity
Release is function of wetting frequency

Constituent release incorporating intermittent wetting
Refines saturated scenario estimates
Can be based on:

Default scenario
Site-specific precipitation data
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Remaining Issues
Gas Phase Phenomena

Cracking related to expansive pressure (e.g., carbonation, rebar corrosion)
Mechanistic interpretation of carbonation, oxidation
Coupling of moisture and degradation models 

Transport Models
Validation of predicted moisture transport and profiles
Numerical simulations based on measurable parameters 
Integration of durability, degradation, and leaching

Standardization Needs
Degradation testing procedures
Long-term predictions to include degradation evaluation
Regulatory interpretation of leaching

Intermittent wetting conditions
Long-term degradation approaches
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