Effects of Convection on Clouds and Water in the Tropical Tropopause Layer

Leonhard Pfister and Eric Jensen, NASA Ames Research Center

- Why are we interested in Clouds and Water in the Tropical Tropopause Layer?
- What's been done before?
- What is our model formulation how do we treat convection?
- What are the water vapor and cloud distributions, and why?
- What can Aura do for this problem?
- Conclusions

Motivation

- TTL regulates water input to the stratosphere
- Water in the TTL affects cloud distribution and global radiation budget
- How are water vapor and cloud distributions in the TTL maintained?

Background and Previous Work

- Large areas of subvisible cirrus clouds near tropical tropopause (e.g. Wang et al)
- Dehydration due to horizontal motion through cold regions (Holton, Gettelman, Haynes, and others)
- Detailed microphysical modeling (Jensen and Pfister)
 - 40 day back trajectory for 1995-1996 winter from a grid of points in the TTL
 - Evaluate vertical temperature profiles along these back trajectories ("temperature curtains")
 - Initial water vapor imposed and .2-.5 mm/s updraft (clear sky radiation)
 - Use full 1-D microphysical model and time-varying T to calculate clouds and water along each trajectory.
 - Water vapor results show good agreement with HALOE obs (Randel, Rosenlof)

BUT – convection MUST BE important

- Isotopic water ratios cannot be explained solely by slow ascent/horizontal flushing (Kwang et al.; Webster and Heymsfield)
- Convective turnover times are such that convection and slow ascent comparable at tropopause (Dessler, Gettelman et al)
- Evidence that overall cold temperature maintained by convection (Salby, Dessler and Kim, Randel)
- Connection of SVC to convection (Massie, Spang, Pfister)

SO

Convective Formulation

- Use existing temperature curtain trajectories
- Move them through 3-hourly IR brightness Temps from ISCCP
- Adjust brightness temps by 7K
- Calculate cloud top altitude based on brightness temps in neighborhood of curtains
- Change water vapor and clouds based on that cloud top altitude

Sample hydration case

Sample dehydration case

Sample hydration with subsequent nonconvective dehydration

Overall effect on water vapor distribution

Proportions of parcels experiencing convection

Water Distribution

370 K no convective input 20 10 0 -10 -20 Instant anvil ice removal 20 10 0 -10 -20 4-hour anvil ice persistence 20 10 0 -10 -20

Water Distribution

3.0 Tropopause H₂O Mixing Ratio (ppmv)

3.3

3.6

3.9

4.2

4.5

1.8

1.5

2.1

2.4

2.7

Water Distribution

Cloud Distribution

Location and Effects of Convection reaching 365K

Circulation of Convective Parcels reaching 365K

Conclusions

- Effect of direct convective injection on water vapor distribution
 - Significant hydration below temperature minimum (20%)
 - Slight dehydration if instant anvil ice removal assumed
 - 10% hydration if anvil ice persists for 4 hours
 - Convective effects limited by subsequent dehydration
- Convective hydration is reasonably well distributed in tropics
- Cloud enhancement is confined to convective areas
- How can Aura help?
 - Simple water vapor comparison for overall features
 - Convective output water and temperature downstream of clouds
 - Gravity wave temperature perturbations abv T minimum
 - Cloud altitude distributions