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ABSTRACT

A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent
heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is
described. The algorithm searches a large database of cloud-radiative model simulations to find cloud
profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties
of these radiatively consistent profiles are then composited to obtain best estimates of the observed prop-
erties. The revised algorithm is supported by an expanded and more physically consistent database of
cloud-radiative model simulations. The algorithm also features a better quantification of the convective and
nonconvective contributions to total rainfall, a new geographic database, and an improved representation
of background radiances in rain-free regions. Bias and random error estimates are derived from applications
of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and
from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high
(low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to
represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM
Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range
from approximately 50% at 1 mm h�1 to 20% at 14 mm h�1. Errors in collocated spaceborne radar rain-rate
estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error
in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day�1) in comparison
with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain
rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in
latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates
to 6%–15% at 5 mm day�1, with proportionate reductions in latent heating sampling errors.

1. Introduction

Over the last decade, diagnostics of time-/space-
averaged satellite rainfall estimates have helped to

create a better picture of the earth’s climate and its
variability (e.g., Rasmussen and Arkin 1993; Xie and
Arkin 1997; Curtis and Adler 2000; Adler et al. 2003).
These studies have relied upon remote sensing
of precipitation from infrared, passive microwave,
and spaceborne radar measurements, culminating in
the Tropical Rainfall Measuring Mission (TRMM;
1997–present). Moreover, it has been amply demon-
strated that precipitation measurements from space
have had a beneficial impact on general circula-
tion model assimilations and numerical weather predic-
tion model forecasts using data assimilation methods
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(e.g., Hou et al. 2000, 2001, 2004; Krishnamurti et al.
2001).

Toward a better understanding of how precipitation
processes affect the atmosphere, the next logical step is
to consider the convective and stratiform partitioning
of total precipitation, because this partitioning is linked
to the organization of convective systems and the dis-
tributions of vertical motion and latent heat release in
the atmosphere (Houze 1989). Latent heating is a
driver of atmospheric circulations, from the scale of
individual convective elements to the scales of the Had-
ley and Walker circulations; therefore, knowledge of
the 4D distribution of latent heating gained from satel-
lite observations can be used to study these circulations
and to help quantify the diabatic heating component of
the atmospheric energy budget. In a series of studies,
Yang and Smith (1999a,b, 2000) demonstrated that it is
possible to estimate latent heating profiles from Special
Sensor Microwave Imager (SSM/I) satellite observa-
tions. Only a limited number of studies have utilized
satellite estimates of convective/stratiform proportion
and latent heating in numerical model assimilation ex-
periments. However, the significant improvement of
numerical model assimilations and forecasts utilizing
even approximate satellite rain-rate estimates has
spurred interest in new experiments in which satellite
convective/stratiform rain proportion and latent heat-
ing rates would be assimilated.

One of the primary objectives of TRMM is to gain a
better understanding of the three-dimensional distribu-
tion and evolution of atmospheric latent heating in the
Tropics; see Simpson et al. (1988). The TRMM polar-
orbiting satellite observatory is fitted with passive and
active microwave sensors that provide measurements of
the horizontal and vertical structure of precipitation in
the atmosphere with relatively high spatial sampling
(minimum footprint spacing �5 km). The aim of the
present study is to examine the potential for estimating
consistent precipitation and latent heating rates based
upon passive microwave observations from the TRMM
Microwave Imager (TMI). The heritage of this study is
an investigation in which a Bayesian estimation method
was applied to measurements from the Special Sensor
Microwave Imager to estimate the surface rainfall rate,
convective rainfall proportion, and latent heating rates
(Olson et al. 1999). In the previous study it was dem-
onstrated that in addition to measured microwave ra-
diances, empirical estimates of the convective fraction
of precipitation within the nominal satellite footprint
were required to retrieve reasonably unambiguous es-
timates of surface rainfall rate and latent heating. One
reason for the positive impact of convective fraction
information is that it provides a measure of the hori-

zontal inhomogeneity of the rain field within the satel-
lite footprint, which is critical for establishing the link
between footprint-averaged rain-rate and upwelling mi-
crowave radiances. The convective fraction is also an
indicator of the vertical motion and latent heating pro-
file. For example, a large convective fraction at the
scale of the sensor footprint (�10 km) is correlated
with stronger upward motion and positive latent heat-
ing through the depth of the cloud layer, while a large
fraction of nonconvective (stratiform) rain generally in-
dicates weak mesoscale ascent and heating in the upper
troposphere with descent and evaporative cooling at
lower altitudes; see Houze (1989).

The objectives of the present study are to improve
and extend the Bayesian estimation method described
in Kummerow et al. (2001; version 5) in order to pro-
vide consistent estimates of precipitation and latent
heating, based upon passive microwave observations
from the TMI over ocean. The technique is applied
only over ocean surfaces because any vertical structure
information contained in TMI observations is compro-
mised by the strong microwave emission from land sur-
faces; that is, microwave emission/absorption by liquid
precipitation cannot be easily distinguished from varia-
tions in land emission. The method is improved by (a)
expanding the algorithm’s cloud-radiative model data-
base to include a greater diversity of precipitation sys-
tems, (b) making basic adjustments to the ice precipi-
tation microphysics in the cloud-resolving model
(CRM) simulations of the algorithm’s database to pro-
duce more realistic graupel and snow distributions, (c)
including the effects of mixed-phase precipitation in the
cloud-resolving model simulations, (d) utilizing consis-
tent definitions of convective rain and total rain area in
the context of cloud-resolving model simulations and
satellite observations, (e) including a new geographic
database to better separate ocean, coast, and land ar-
eas, and (f) establishing a more consistent microwave
radiance “background” in rain-free areas. The combi-
nation of these changes leads to passive microwave es-
timates of precipitation that have greater consistency
with independent radar estimates and latent heating
distributions that have more fidelity with climatological
distributions; see Yang et al. (2006, hereinafter Part II).
The resulting Bayesian estimation method is at the
heart of the current TRMM facility algorithm (2A12,
version 6) for estimating precipitation-related param-
eters from TMI observations.

In section 2, the characteristics of the TMI observa-
tions and the basic estimation method are briefly re-
viewed, with modifications for improved parameter es-
timation described in section 3. Synthetic retrieval stud-
ies, in which the algorithm is applied to microwave
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radiances synthesized from cloud-resolving model
simulations, are used to estimate the biases and random
errors in retrieved parameters. Estimates of random
errors resulting from incomplete information in the mi-
crowave data can also be derived from the Bayesian
(algorithm based) method. Both synthetic retrievals
and the algorithm-based method are described and ap-
plied in section 4. The general capability of the micro-
wave algorithm is demonstrated through applications to
TMI observations from July 2000 over the tropical and
subtropical oceans. Monthly mean estimates of precipi-
tation and latent heating and their uncertainties, includ-
ing errors resulting from infrequent sampling, are ex-
amined. The paper concludes with a brief summary and
reflections on the direction of future work (section 5).

As described, this Part I of the two-part series pro-
vides a review of the changes introduced into the ver-
sion-6 TMI algorithm and the theoretical “modeling” of
uncertainties based upon the algorithm. In Part II, es-
timates of algorithm errors at various scales are ob-
tained directly from comparisons with independent ob-
servations, and these error estimates are compared with
the modeled uncertainties derived in Part I. Remote
sensing estimates of rain rate and latent heating, and
knowledge of their uncertainties, are important for cur-
rent and future applications in data assimilation and
climate analysis.

2. Data and basic method

a. TRMM observations

The analyses presented in this study are based upon
observations, both synthesized and actual, from the
TMI. The TMI is one of five sensors aboard the TRMM
satellite observatory, which was launched into low-
Earth orbit in November 1997 to provide data on the
characteristics of convection in the Tropics and sub-
tropics (35°S–35°N). The TMI is a scanning passive mi-
crowave radiometer with dual-polarization channels at
10.65, 19.35, 37, and 85.5 GHz, and a vertical polariza-
tion channel at 21.3 GHz; see Table 1. The lower-
frequency channels are primarily sensitive to the verti-
cal path integral of liquid precipitation in the atmo-
sphere. The channels become increasingly sensitive to
the vertical path integral of ice-phase precipitation as
the channel frequency increases, while the range of sen-
sitivity to rain decreases. Because of these sensitivities,
the TMI has a crude precipitation-profiling capability,
which is somewhat compromised by limited spatial
resolution at the lower frequencies. In addition to the
information provided by TMI on vertical precipitation
structure, horizontal structure information can be
gleaned from variations of precipitation signatures in

the swath imagery or by deconvolution of the multi-
resolution observations, as in Petty (1994b). The along-
track sampling resolution of all TMI channels is about
14 km; the cross-track sampling is 4.5 (85.5 GHz) and 9
(remaining channels) km.

Another TRMM instrument, the precipitation radar
(PR), measures precipitation backscatter at 13.8 GHz
near nadir and is thus used to infer profiles of precipi-
tation water content; see Table 1. The PR’s 215-km-
wide swath is centered within the TMI’s 760-km swath,
providing coincident coverage within the PR swath.
The PR’s greater range resolution (0.25 km) and hori-
zontal sampling resolution (4.3 km) with respect to the
TMI lead to more structural detail in retrieved precipi-
tation fields, and therefore precipitation estimates from
the PR are used as a comparative reference in the cur-
rent study.

b. Estimation of cloud properties from TMI

The TMI retrieval algorithm (2A12, version 6) is
based upon a Bayesian technique described in Kum-
merow et al. (1996, 2001) with an extension to latent
heating estimation by Olson et al. (1999). In the algo-
rithm, CRM simulations, coupled to a radiative transfer
code, are used to generate a large supporting database
of simulated precipitation/latent heating vertical pro-
files and corresponding upwelling microwave radi-
ances. Given a set of observed multichannel microwave
radiances from a particular sensor, the entire database
of simulated radiances is scanned; the “retrieved” pro-
file is a composite of those profiles in the database that
correspond to simulated radiances consistent with the
observed radiances. Formally, a TMI estimate of profile
parameters Ê[x] is given by

TABLE 1. Characteristics of the TMI and PR. The horizontal
resolution specifications of the PR are at nadir view. H: horizon-
tal; V: vertical.

TMI

Channel frequency
(GHz)/polarizations

Horizontal
resolution (km) Noise (K)

10.65/H, V 37 � 63 0.6
19.35/H, V 18 � 30 0.5
21.3/V 18 � 23 0.7
37.0/H, V 9 � 16 0.3
85.5/H, V 5 � 7 0.7

PR

Frequency (GHz)

Horizontal resolution
at surface/range
resolution (km)

Uncertainty
resulting from
sampling (dB)

13.8 4.3/0.25 0.7
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Ê�x� � �
k

xk

exp��0.5�Is	xk
 � Io�T	SI � OI

�1�Is	xk
 � Io� � C�

M̂
, 	1


where the model profile vector xk contains all of the
parameters, including the surface rain rate, convective
rain rate, liquid-/ice-phase precipitation, and latent
heating profiles, corresponding to the simulated radi-
ance indices IS(xk). The radiance indices, constructed
from radiances at the different radiometer channel fre-
quencies/polarizations, are the normalized polarization
and scattering indices defined by Petty (1994a). Simi-
larly defined, IO is a vector of sensor-observed radiance
indices. Respectively, SI and OI are error covariance
matrices of the simulated and observed microwave ra-
diance indices, and M̂ is a normalization factor.

Additional information regarding the observed pro-
file, such as estimates of the area fractions of rain and
convective rain within the nominal satellite footprint
(14 km � 14 km for TMI), is included in the constraint
term C,

C � �0.5�fs	xk
 � fo�T	Sf � Of

�1�fs	xk
 � fo�.

	2


Here, fS is a vector of simulated constraint parameters,
and fO is a vector of corresponding observed param-
eters; Sf and Of are error covariance matrices of the
simulated and observed constraint parameters, respec-
tively. A description of the rain area and convective
rain area constraint parameters is deferred to section 3.
Only the diagonal terms of the error covariance matri-
ces, SI, OI, Sf , and Of , are specified as in the version-5
TMI algorithm; see Kummerow et al. (2001).

The summation in (1) is over all simulated profiles/
radiance indices in the supporting cloud-radiative
model database. In principle, any cloud property rep-
resented in the supporting cloud-radiative model simu-
lations can be estimated using (1) to the extent that
there is sufficient sensitivity of the passive microwave
observations to variations in that property. In this way,
estimates of surface rainfall rate, convective rain pro-
portion, and profiles of precipitation and latent heating
can be made with different degrees of accuracy.

Because, in general, multichannel passive microwave
observations contain limited information regarding pre-
cipitation and related cloud parameters, there are, in
fact, a distribution of these parameters that are consis-
tent with any set of observations at a given footprint
location. The expression (1) gives the mean of this dis-
tribution, but it is also possible to calculate the variance
of the distribution for any single estimated parameter x
using

�̂2�x� � Ê�	x � Ê�x�
2�, 	3


which yields a measure of the uncertainty in the esti-
mate of x because of the limited information content of
the observations.

The uncertainty represented by (3) would exist even
if the cloud-radiative model simulations in the algo-
rithm’s supporting database and the radiometer ob-
servations were error free. Therefore, although (3) ac-
counts for random errors resulting from the limited
information content of the observations, additional un-
certainties in estimates resulting from errors in cloud-
radiative modeling may occur. Because true validation
of precipitation-related quantities using independent
observations is difficult, (3) at least provides a lower
bound on the random error of algorithm estimates—a
basic “building block” for estimates of the random er-
ror in the derived products (described in section 4).

3. Modifications of the TMI algorithm

In the development of the version-6 TMI facility al-
gorithm, several modifications are included to allow for
latent heating estimation. These modifications lead to
not only improved physical models that better repre-
sent the relationships between cloud properties and up-
welling microwave radiances at the TMI frequencies,
but also a better extraction of information from the
TMI observations to isolate the dependencies of the
observations on the cloud properties that are estimated.
Although the main driver for these modifications is the
estimation of latent heating, the improved sensitivity of
the algorithm leads to estimates of the surface rainfall
rate with generally less bias with respect to independent
estimates; see Part II.

a. Greater diversity in the supporting
cloud-radiative model database

In version 5 of the TMI algorithm, the Bayesian es-
timation method was supported by cloud simulations
corresponding to only three different observed environ-
ments in the Tropics and subtropics for ocean applica-
tions. These simulations are replaced by the six simu-
lations listed in Table 2. Four of the new simulations are
performed using the Goddard Cumulus Ensemble
(GCE) model, which is a three-dimensional, nonhydro-
static cloud-resolving model described in Tao and
Simpson (1993) and Tao (2003a). Among the physical
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parameterizations in this model is a description of cloud
microphysical processes based upon Lin et al. (1983),
with additional processes derived from Rutledge and
Hobbs (1984). Bulk water contents of cloud liquid, rain,
cloud ice, snow, and graupel are calculated prognosti-
cally. This single-moment microphysical scheme used in
the GCE model is called the “3ICE” scheme.

GCE short-term simulations of mesoscale convective
systems are usually initiated with a spreading cool pool
within a fixed environment obtained from rawinsonde
data. However, the longer-term evolution of cloud sys-
tems can be simulated by nudging toward environ-
mental conditions using observed large-scale advec-
tive tendencies of temperature and humidity and ob-
served horizontal momentum (Johnson et al. 2002).
The 19–26 December Tropical Ocean and Global At-
mosphere Coupled Ocean–Atmosphere Response Ex-
periment (TOGA COARE) simulation listed in Table
2 was performed in this manner. The utility of the
longer-term simulations is that a greater spectrum of
convective system types can be represented because of
changing environmental conditions in the model, and
these varied systems can be extracted for algorithm ap-
plications by sampling the simulations over time. In the
present study, less organized convection, not available
from the cool-pool–forced simulations, is drawn from
three periods on 23 December of the TOGA COARE
simulation.

Although convective systems up to the scale of squall
lines can be successfully simulated using the GCE
model, the evolution of convection embedded in larger-
scale systems requires a model that can represent scale
interaction. For this purpose, the fifth-generation Penn-
sylvania State University–National Center for Atmo-
spheric Research Mesoscale Model (MM5; see Dudhia
1993) is utilized, but the microphysical scheme used in
the MM5 simulations is again the 3ICE scheme, which
has been incorporated into MM5; see Tao (2003b).
MM5 simulations nested to �2 km resolutions are re-

quired to capture the cloud and precipitation spatial
structures necessary for the proper calculation of mi-
crowave radiative transfer through the simulated struc-
tures. Using nested grids, MM5 simulations of the inner
core of Hurricane Bob (1991) and the warm and cold
frontal regions of wintertime and summertime extra-
tropical cyclones are performed.

Although the simulations listed in Table 2 represent
only a small fraction of systems that might be observed
by the TMI, inclusion of these simulations in the Bayes-
ian method’s supporting database leads to much greater
diversity in candidate precipitation and latent heating
profiles than in earlier algorithm implementations.

b. Adjustment of cloud-resolving model ice
microphysics

Prior to this study, a significant shortcoming of simu-
lations based upon the 3ICE microphysics were distri-
butions of graupel that extended widely over stratiform
precipitation regions, far from any convective updrafts.
These graupel distributions were considered erroneous
because graupel grows primarily through the accretion
of liquid water, which is generally confined to regions
close to convective updrafts.

To correct this problem within the constraints of the
3ICE bulk microphysical parameterization, the effi-
ciency for collection of snow by graupel is set to zero at
model grid points where concentrations of cloud liquid
water and rain are negligible. Although this correction
is an oversimplification, it avoids the difficulty of refor-
mulating the snow–graupel collection kernel and is sup-
ported by evidence that the collection efficiency of
“dry” ice particles is relatively small; see Pruppacher
and Klett (1997) for a general discussion. The correc-
tion also improves the distributions of microwave scat-
tering by ice-phase precipitation, because excessive
scattering by graupel, previously noted in simulations
of stratiform regions, is eliminated.

c. Inclusion of the effects of mixed-phase
precipitation in CRM simulations

In the CRM simulations listed in Table 2, the melting
of ice-phase hydrometeors is simplified, such that any
meltwater is immediately categorized as rain; that is,
there is no explicit representation of mixed-phase pre-
cipitation in these simulations. To account for the ef-
fects of mixed-phase precipitation, the 1D parameter-
ization for melting precipitation described in Olson et
al. (2001a,b) is applied to all stratiform grid points in
the CRM simulations of the algorithm’s supporting da-
tabase. The parameterization is a steady-state model
that simulates the evolution of the spectra of melting

TABLE 2. Cloud-resolving model simulations that currently sup-
port the version-6 TMI algorithm. Locations of simulations are
often indicated by the field campaign from which environmental
forcing data were obtained.

Classification Description Model

Tropical cyclone Hurricane Bob, 1991 MM5
Tropical squall line GATE, 12 Sep 1974 GCE
Tropical squall line TOGA COARE,

22 Feb 1993
GCE

Tropical convection TOGA COARE,
19–26 Dec 1992

GCE

Extratropical cyclone North Atlantic, 6 Dec 1992 MM5
Extratropical cyclone North Atlantic, 23 Jul 1999 MM5
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snow and graupel particles, given their initial spectra
just above the freezing level as simulated by the CRM.
The concentrations and electromagnetic properties of
the melting particles are computed, replacing those of
the original CRM.

d. Definition of cloud and precipitation properties
in simulated footprints

As described in section 2, any cloud/precipitation
properties x simulated by the CRM’s can potentially be
retrieved from the TMI data using (1). The specific
choice of cloud/precipitation properties and their reso-
lution is somewhat arbitrary, however. Given the
sample spacing of the TMI sensor along track (13.9
km), a 14 km � 14 km nominal “footprint” is selected
for the resolution of the version-6 algorithm products.

Simulated properties such as the surface rainfall rate,
cloud and precipitation water contents, and latent heat-
ing are horizontally averaged over 14 km � 14 km areas
in the CRM domains to represent properties at product
resolution. Cloud latent heating is defined as Q1 � QR,
the apparent heat source less the contribution from ra-
diative heating/cooling; see Yanai et al. (1973). Eddy
heat flux convergence contributions to Q1 � QR are
defined relative to a 55-km-resolution mean state.

The classification of convective and nonconvective
grid points in the CRM simulations is required not only
for determining convective and stratiform rain propor-
tions, which are estimated using the TMI algorithm, but
also for determining the area coverage of convection,
which, incorporated into (2), is used to constrain algo-
rithm estimates. The new convective/nonconvective
classification of CRM grid points in version 6 is based
upon an evaluation of the vertical structure of model-
simulated mass fluxes, inspired by the partitioning
method of Xu (1995). Using this convective/noncon-
vective classification, the area fraction of convection
within the simulated footprints (14 km � 14 km) is
calculated. In addition to the convective area fraction,
the area fraction of total rainfall rate, defined as the
area within each simulated 14 km � 14 km footprint
where the model gridpoint values of surface rainfall
rate exceed 0.3 mm h�1, is also calculated. The area
fractions of convection and total rainfall are compared
with empirical estimates derived from the TMI data in
the algorithm’s constraint term, (2). The convective
contributions to surface rainfall rate and Q1 � QR

within each simulated footprint are also computed and
included in the vector x of parameters to be estimated.

e. New geographic database

Crucial to the operation of the algorithm is the cor-
rect classification of the earth’s surface within the sat-

ellite footprint as predominantly ocean, coast, or land.
Previously, the definition of “coast” was based on a
threshold applied to the distance to the nearest land (if
over water) or water (if over land). This definition has
the drawback that a rather large area of open water
centered on even a very small island will be classified as
coast, preventing the utilization of the more appropri-
ate ocean algorithm for this case. Additionally, large
areas of interior land are classified as coast because of
the presence of nearby rivers and lakes.

A revised geographic database is therefore devel-
oped based on the minimum radius of a circle encom-
passing a specified minimum fraction of the opposite
surface type. The starting point of the geographic da-
tabase is the U.S. Navy’s 1/6° � 1/6° global “elevation”
dataset, which includes a terrain classification of each
grid point. For each 1/6° grid point over water, the
radius R of a circle centered on that location is in-
creased until the circle encompasses 5% land area. The
final radius is then recorded at that grid point as the
effective distance from significant land contamination.
For points over land, a similar procedure is used, except
that the threshold for water coverage is set to 20%. A
grid point over land is then classified as coast if R is less
than 50 km; points over water are classified as ocean if
R is less than 30 km.

The above thresholds for land/water fraction and for
radius R are determined subjectively, based on exami-
nation of TMI images and rain-rate estimates in coastal
areas. The intent is to classify as few grid points as
possible as coast, while still ensuring that TMI foot-
prints centered over locations classified as ocean and
land would not experience operationally significant
contamination by the opposite surface type.

f. Calculation of the “background” rain-free
radiance field

In this study, the TMI algorithm is applied to ocean
locations, and therefore the radiance indices [IS and IO

in (1)] are the normalized polarization and scattering
indices described by Petty (1994a). These indices were
developed to isolate the microwave signal resulting
from precipitation particles from variations in radiances
because of varying ocean surface emissivity, sea surface
temperature, and atmospheric water vapor, and also to
decouple the brightness temperature effects of micro-
wave attenuation from those resulting from scattering.
Both indices depend upon reasonable estimates of
“background” radiances in the absence of clouds or
precipitation.

In version 5, the background radiances were esti-
mated from actual radiances at nearby locations
deemed to be relatively free of rain and cloud. Unfor-
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tunately, the criteria used for determining such points
were unreliable and, in any case, even the existence of
cloud-free pixels could not be guaranteed within any
reasonable radius. Consequently, estimates of back-
ground radiances were commonly too warm and too
depolarized, by as much as 10 K or more.

In version 6, an improved method is implemented
based on direct TMI estimates of column water vapor V
and ocean surface wind speed U, both of which are
possible even in cloudy areas as long as precipitation
contamination is not severe. This method greatly in-
creases the fraction of the ocean area for which reliable
local estimates of background radiances can be made;
these are then interpolated spatially into the relatively
small areas for which precipitation contamination is sig-
nificant. The basic procedure is outlined by Petty
(1994a). The net result of the revision is that fields of
background radiances are both smoother and signifi-
cantly more realistic than those obtained using the ver-
sion-5 method.

The radiance indices in the cloud-radiative model
simulations of the algorithm’s database are determined
by evaluating the true background radiance field. That
is, upwelling radiances at each model grid point are
calculated with all cloud and precipitation water con-
tents set to zero.

g. Reformulation of the convective/nonconvective
rain area constraint

The changes in the version-6 TMI algorithm that
have the greatest impact on estimates of cloud latent
heating profiles are those related to the estimation of
the parameters describing the convective coverage
from TMI observations, and the evaluation of the same
parameters in the CRM simulations. In previous ver-
sions of the TMI algorithm, only estimates of the area
fraction of convection within the nominal TMI foot-
print were used as a constraint in (2). In version 6, the
area fractions of both convective rain and total rain are
estimated, and these are included in (2).

As in version 5, the area fraction of convective rain
within the TMI footprint in version 6 is computed as a

minimum variance estimate, combining convective
fraction estimates from both TMI polarization signa-
tures and image texture (see Olson et al. 2001c);

fconv � � fpol

�pol
2 �

ftex

�tex
2 ��� 1

�pol
2 �

1

�tex
2 �. 	4


Here, fpol is the convective-fraction estimate based
upon TMI polarization data, ftex is the estimate based
upon image texture information, and tex and pol are
the uncertainties corresponding to these estimates.

In version 6, the polarization-based estimate of con-
vective area fraction fpol is given by (8) in Olson et al.
(2001c), but with a slight along-scan filtering to accom-
modate the nominal footprint dimensions (14 km � 14
km) of the version-6 algorithm. A statistical adjustment
of fpol is applied based upon synthetic radiance data to
make it consistent with cloud model–based convective
fractions. The error variance 2

pol of polarization-based
convective fraction estimates is given by (16) in Olson
et al. (2001c), propagated through the same along-scan
filter and statistical adjustment.

The polarization-based convective fraction estimate
is reliable only if significant scattering by precipitation-
sized ice is observed. If not, then microwave image tex-
ture and liquid precipitation emission signatures must
be used to identify convection. In the present study, if
the 85-GHz scattering index S85 (from Petty 1994a) is
less than 40 K, then an alternative texture-based esti-
mate of convective fraction is calculated. In estimating
the convective fraction based upon texture information,
three indices are used to first decide whether or not
convection might be present in the TMI footprint—(a)
P37grad, the maximum difference between the normal-
ized polarization at 37 GHz (Petty 1994a) and the nor-
malized polarizations of neighboring footprints, (b)
wpol, a “probability of convection” based upon the spa-
tial distribution of fpol, and (c) P37max, the maximum
second spatial derivative of 37-GHz normalized polar-
ization in any direction.

The texture-based area fraction of convection within
the footprint is estimated using the normalized polar-
ization difference at 37 GHz, as follows:

ftex � �1 � P37, for S85 � 40 K and
�	P37grad � 0.2 and wpol � 0.1
 or P37max � 0.3�

0, otherwise. (5)

For optically thick precipitation regions partially filling
a radiometer footprint, 1 � P37 is approximately equal
to the area fraction of precipitation within the footprint
(Petty 1994a). However, even if convection is indi-

cated by the index tests on the right-hand side of (5),
not all of the rain within the footprint is necessarily
convective. Therefore, a statistical adjustment of ftex is
applied based upon synthetic radiance data to make it
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consistent with model-generated convective fractions.
If a texture-based convective fraction estimate is al-
lowed by (5), then the error variance 2

tex of the esti-
mate is assigned a value of 0.2 based upon previous
work by Hong et al. (1999).

It has been demonstrated that algorithm constraints
on convective rain area lead to more accurate passive
microwave estimates of precipitation and latent heating
(Olson et al. 1999); however, the relative proportions of
convective and stratiform rain flux are more closely
related to vertical latent heating structure (see Tao et
al. 1993). Although microwave radiometric signatures
cannot be interpreted in terms of convective/stratiform
rain flux directly, the area proportions of convective
and stratiform precipitation coverage can be inferred if,
in addition to convective area coverage, the total rain
coverage can be estimated. Therefore, precipitation-
related quantities retrieved from TMI data are also
constrained by estimates of the total rain area within
the nominal footprint. Following Petty (1994a), the to-
tal rain area fraction in the plane-parallel limit is first
approximated by

frain � 1 � P37, 	6


and then adjusted using synthetic data.
Estimates of convective area fraction and total rain

fraction are incorporated into the constraint term [(2)]
of the Bayesian method.

4. Error estimates

Errors in retrieved precipitation-related parameters
can be estimated from (a) comparisons of TMI-re-
trieved parameters with independent data, (b) algo-
rithm applications to synthetic data, and (c) the algo-
rithm itself, drawing upon information provided by the
Bayesian formulation. Because independent estimates
of rain rate from ground-based radars or rain gauges
may contain considerable random error, it is not always
possible to distinguish these errors from algorithm er-
rors. Therefore, alternatives (b) and (c) are explored
here to independently estimate errors that are intrinsic
to the algorithm and to provide a basis for the devel-
opment of error models. Evaluation of TMI surface
rain-rate, convective rain-rate, and Q1 � QR estimates
using independent, ground-based observations is per-
formed in Part II of this series.

a. Synthetic data

TMI observations are synthesized using the same
procedure utilized to create the algorithm’s supporting
database (see section 3a). A subset of the cloud-

resolving model simulations listed in Table 2, but sepa-
rate from the simulations used in the algorithm’s data-
base, are set aside to represent “true” fields of cloud,
precipitation, and latent heating. The subset consists of
3D model volumes at two time periods each from the
Hurricane Bob, Global Atmospheric Research Pro-
gram (GARP) Atlantic Tropical Experiment (GATE)
12 September simulation, and the TOGA COARE 22
February and 19–26 December simulations. Upwelling
radiances at the TMI frequencies/polarizations are cal-
culated using Eddington’s second approximation, and
these radiances are convolved by functions approximat-
ing the TMI antenna patterns to synthesize radiances as
they might be measured by TMI. Because the polariza-
tion of scattered radiances at 85.5 GHz is used in the
TMI algorithm (section 3g), but not calculated using
the Eddington method, the empirical function [Olson et
al. 2001c; their (10)] is utilized to simulate the polariza-
tion of scattered radiances. A nominal level of Gauss-
ian-distributed noise, with a standard deviation of 1 K,
is added to the convolved radiances to simulate sensor
noise.

The TMI algorithm is applied to the synthesized mi-
crowave radiances, and the estimated parameters are
compared with the “true” parameters from the corre-
sponding model simulations. Although footprint-scale
(14 km) estimates of precipitation and latent heating
may be of interest in studies of storm structure, appli-
cations such as global data assimilation generally re-
quire lower-resolution estimates. Figure 1 illustrates
the impact of averaging on the random error of TMI
surface rain-rate and Q1 � QR estimates. The top pan-
els are comparisons of true and estimated parameters at
footprint scale. True and estimated parameters in the
middle panels have been averaged to 28-km resolution,
and parameters in the bottom panels have been aver-
aged to 56-km resolution. Note that although the mag-
nitudes of rain-rate and Q1 � QR estimates are dimin-
ished by averaging, the scatter of estimates relative to
the variance of values is reduced. The correlation coef-
ficient of rain rate increases from 0.88 to 0.92 and 0.95
as the averaging area is increased.

Although random errors in rain-rate and Q1 � QR

estimates decrease as the effective resolution of the es-
timates decreases, systematic errors remain. The gen-
eral trend of these errors is illustrated in Figs. 2 and 3.
Plotted in the upper panel of Fig. 2 are rain-rate-
weighted histograms of both the true and estimated
rain rates at footprint resolution (14 km), derived from
applications of the TMI algorithm to the synthetic data.
The weighting of the histogram by rain rate in each
histogram bin (1 mm h�1 bin interval) yields the rela-
tive contribution of the rain rate (along the abscissa in
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the figure) to the mean rain rate. Although there are
obvious differences between the histograms of true and
estimated rain rates, there are no apparent systematic
differences.

In the lower panel of Fig. 2, the bias-weighted histo-

gram of true rain rates is plotted. Here, the plotted
points can be interpreted as the contributions of the
differences between estimated and true rain rates to the
total bias, binned in 1 mm h�1 intervals of the true rain
rate (plotted on the abscissa). The Bayesian formula-

FIG. 1. Scatterplots of estimated vs (left) true rain rate and (right) Q1 � QR at 3-km altitude at (top)
footprint scale (14 km) and at (middle) 28- and (bottom) 56-km resolution, based upon applications of
the microwave radiometer algorithm to synthetic radiance data.
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tion of the TMI algorithm is designed to yield an unbi-
ased rain-rate estimate given a set of observations, and
the total bias is only 0.016 mm h�1, or 0.9% of the true
mean rain rate. However, significant biases may occur
for certain subpopulations. It may be noted from Fig. 2
that lower rain rates tend to be overestimated while
higher rain rates are underestimated. The trend of
over-/underestimation is a consequence of the ambigu-
ity of the input radiance data, which do not uniquely
specify a particular rain rate. Given this ambiguity, the
algorithm provides a rain estimate that is roughly the
“average” of all rain rates in the supporting database
that are consistent with the input observations. In the
range of lower rain rates, the algorithm averages light
rains in the database consistent with the input observa-
tions, but the distribution of these light rains is limited
by the physical constraint that rain rate must be greater
than or equal to zero. The algorithm’s averaging over
this asymmetric distribution leads to a positive bias of
the rain-rate estimate. In the range of higher rain rates,
the algorithm’s average of rains consistent with the in-
put observations tends to favor less intense rain rates,

which occur more frequently than rains of greater in-
tensity in the supporting database. The result is a nega-
tive bias of rain estimates in this range.

An analysis of Q1 � QR estimates based upon syn-
thetic data leads to similar bias trends. Presented in the
panels of Fig. 3 are the contributions to the mean esti-
mated and true Q1 � QR, as well as the contributions to
the bias of Q1 � QR, in bin intervals of 2 K h�1 along

FIG. 2. (top) Contributions of estimated and true rain rates to
their mean values, and (bottom) contribution of estimated minus
true rain rates to the total bias, plotted vs the true rain rate, based
upon applications of the microwave radiometer algorithm to syn-
thetic radiance data.

FIG. 3. Contributions of (top) estimated and (middle) true Q1 �
QR to their mean values at different altitudes, plotted as functions
of the estimated and true Q1 � QR, respectively. (bottom) The
contribution of estimated minus true Q1 � QR to the total bias is
plotted as a function of the true Q1 � QR at different altitudes.
Estimates are based upon applications of the microwave radiom-
eter algorithm to synthetic radiance data.
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the abscissa and at all altitudes where algorithm esti-
mates are made (0–18 km). Note from the mean con-
tribution plots that the range of estimated Q1 � QR

values is more limited than the true range. The contri-
butions to Q1 � QR bias indicate overestimation of
weak heating rates, while stronger heating and cooling
rates are systematically underestimated. A conse-
quence of these bias trends is illustrated in Fig. 4. Plot-
ted in the figure are the mean vertical profiles of Q1 �
QR and the convective and nonconvective contributions
to Q1 � QR from applications of the algorithm to the
synthetic Hurricane Bob data (see Table 2). For com-
parison, the true mean Q1 � QR profiles from Hurri-
cane Bob are also plotted, and in each case the Q1 �
QR profiles have been normalized by the mean rain rate
to help isolate differences in profile shape. Because the
domain of the Bob simulation covers only the inner
core of the storm, strong convective heating is expected
to dominate the vertical profile of Q1 � QR, and indeed
this is indicated by the true mean profiles. The under-
estimation of extreme heating by the algorithm, how-
ever, leads to a low bias of estimated convective and
total Q1 � QR in the lower troposphere. Mean rain
rates are similarly underestimated.

In the foregoing examples, deficient information con-
tained in upwelling microwave radiances was shown to
lead not only to significant random errors at the scale of
microwave footprints, but also to biases in estimates of
rain rate and latent heating. It should be noted that

these biases occur in spite of the fact that the physical
models incorporated in the algorithm are consistent
with the true precipitation/heating distributions and ra-
diative transfer calculations utilized in the creation of
the synthetic data. In applications of the TMI algorithm
to actual TMI radiance data, errors in the physical mod-
els will lead to additional error. However, the focus of
the present work is on the random error associated with
nonspecific information in the microwave data, and
how this error propagates to time/space averages of
TMI estimates. Described in the next subsection are
methods for extracting information from the TMI algo-
rithm itself to help estimate random errors in specific
applications of the algorithm.

b. Algorithm-based methods

In section 2b, the Bayesian formulation of the TMI
algorithm was used to derive an estimate of the random
error (3) in footprint-scale-retrieved parameters result-
ing from deficient information contained in the micro-
wave radiance data. Although additional random error
in TMI estimates can result from errors in the algo-
rithm’s supporting database of cloud-radiative model
simulations, relation (3) provides a useful “building
block” for the derivation of errors in time–space aver-
age precipitation or latent heating estimates.

The general magnitude of errors in footprint-scale
rain-rate estimates is illustrated by Fig. 5, which is
based upon applications of (1) and (3) to seven orbits of

FIG. 4. Vertical profiles of the mean (left) estimated and (right) true Q1 � QR, based upon applications of the microwave radiometer
algorithm to synthetic radiances, derived from a cloud-radiative model simulation of Hurricane Bob (1991). Plotted are the mean
convective, nonconvective, and total Q1 � QR profiles over the entire simulation domain. Mean estimated and true surface rain rates
are also indicated.
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TMI observations (ocean footprints only) spanning the
month of July 2000. Note that the errors resulting from
deficiencies in radiance information increase with esti-
mated rainfall rate, while percentage (relative) errors
decrease. For example, the random error in a 1 mm h�1

rain-rate estimate is approximately 100%, but the error
decreases to about 60% at 20 mm h�1. These results are
similar to the findings previously reported by Bauer et
al. (2002), who described algorithm-based errors from
the version-5 TMI algorithm applied to observations of
Supertyphoon Paka. The value of these error estimates
is that they reflect not only the dependence of errors on
rain intensity but also the dependence on other envi-
ronmental conditions specific to a given radiometer ob-
servation. Note from Fig. 5 that the range of errors
corresponding to a given rain-rate estimate increases as
the rain intensity increases.

c. Errors in instantaneous half-degree rain rates

It was noted previously that in applications such as
data assimilation, TMI estimates at footprint resolution
(14 km) are not generally required. In such applica-
tions, estimates at 0.5° or 1.0° spatial resolution are
consistent with the grid resolution of a prospective
analysis. In this subsection, the algorithm-based esti-
mates of footprint-scale error are propagated to 0.5°
resolution and are compared with TMI–PR differences.

If the simple spatial average of N TMI footprint-scale
estimates over a given area is

x �
1
N �

i�1

N

xi, 	7


then the error variance of the spatial average is

�x
2 �

1

N2 �
i�1

N

�
j�1

N

�i �j rij, 	8


where i and j are the errors of the ith and jth foot-
print-scale estimates, respectively, and rij is the corre-
lation of the errors of the estimates. Note that although
the TMI footprints are nearly contiguous, there is
greater spatial sampling cross track than down track in
the instrument swath, which could result in additional
random error in the spatial average.

Given the algorithm-based estimates of footprint-
scale random error given by (3), the error variance of
the spatial average [(8)] can be evaluated if the spatial
correlation of errors r can be estimated. In Bauer et al.
(2002), it was assumed that the correlation of errors
could be approximated by the correlation of retrieved
parameters themselves. In the current study, the syn-
thetic precipitation and radiance data are used to evalu-
ate not only the correlation of surface rain rates, but
also the correlation of rain-rate errors, which are de-
rived from applications of the TMI algorithm to the
synthetic radiances (see section 4a). Presented in Fig. 6
are correlations of surface rain rate and rain-rate error,
plotted as functions of footprint separation distance.
The correlations, given by the short- and long-dashed
curves in the figure, are based upon all possible foot-
print pairs in the synthetic data, such that each pair is
contained in the same 55 km � 55 km rectangular box.
Note that although both curves exhibit the familiar
quasi-exponential decrease in correlation with footprint
separation distance (e.g., Bell et al. 1990, their Fig. 3),
the correlation of errors decreases much more rapidly
with distance than the correlation of rain rates.

Furthermore, if the synthetic data are also stratified
by the average estimated rain rate in each 55 km � 55
km box, an additional set of error correlation curves is
produced. Although there are insufficient synthetic
data to determine the dependence of error correlation
on box-averaged rain rate, the mean correlation and
standard deviation values, also plotted in Fig. 6, indi-
cate a relatively distinct family of curves. The mean
error correlation, conditioned on box-averaged rain
rate, decreases even more rapidly with footprint sepa-

FIG. 5. Algorithm-based estimates of random error in footprint-
scale rain rates based upon microwave radiometer algorithm ap-
plications to a subset of July 2000 TMI observations.
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ration distance than does the unconditional error cor-
relation.

If the mean correlation function based upon the rain-
fall-stratified data is incorporated in (8), and the foot-
print-scale uncertainties are derived from (3), then (8)
can be evaluated from applications of the TMI algo-
rithm to the radiance data. As a test of (8), the algo-
rithm is applied to all over-ocean TMI observations
from the month of July 2000. The TMI half-degree in-
stantaneous rain rates and their estimated errors are
then collocated with half-degree instantaneous PR rain
rates; only TMI–PR pairs for which both instruments
observed at least 90% of the same half-degree box are
included in the analysis. The TMI–PR pairs are then
binned by the PR half-degree rain rate in 1 mm h�1

intervals. Based upon the TMI–PR pairs in each rain
interval, the mean half-degree TMI rain-rate error from
(8) is plotted against the mean half-degree PR rain rate
(see Fig. 7). For comparison, the standard deviation of
the TMI–PR differences is also plotted for each rain-
rate interval.

In comparing the half-degree-resolution TMI rain-
rate random errors in Fig. 7 with the errors at footprint
scale (Fig. 5), it is apparent that in both cases, errors
increase with increasing rain rate, but percentage errors
decrease with rain rate. It is difficult to compare the

plots in a quantitative way, because the distribution of
rain rates narrows with increasing averaging area; how-
ever, the minimum percentage error at half-degree reso-
lution is �20%, as compared with �60% at footprint
scale. Therefore, averaging appears to significantly re-
duce the random error of rain estimates, even consid-
ering the footprint-scale error spatial correlations that
would tend to limit such a reduction. The larger mini-
mum percentage error of �40%, reported by Bauer et
al. (2002) for version-5 TMI estimates averaged to 60-
km resolution, is due to the greater error correlations
assumed in that study. Bauer et al. (2002) assumed that
rain-rate and error correlations were equal, leading to a
likely overestimate of error correlations.

Based upon applications of the algorithm to TMI ob-
servations over ocean from July 2000, random errors in
instantaneous 0.5° rain-rate estimates range from
roughly 50% at 1 mm h�1, to about 20% at 14 mm h�1.
TMI errors also appear to explain about 60%–80% of
the variance of the TMI–PR differences; see Fig. 7. The
residual 20%–40% is likely because of random errors in
PR rain estimates and differences in spatial sampling of
half-degree boxes by the TMI and PR. This implies that
the standard deviation of PR random errors (plus spa-
tial sampling differences) is roughly 50%–80% of the
TMI error standard deviation.

FIG. 6. Correlations of estimated rain rates and rain-rate errors
for TMI footprints separated by distances plotted on the abscissa.
The solid curve indicates the mean error correlation (at the speci-
fied distance) for data stratified by instantaneous mean rain rate
in 0.5° � 0.5° grid boxes; bars indicate the standard deviation of
correlations at the specified distance. Please see text for a com-
plete description.

FIG. 7. Estimated mean random errors in TMI instantaneous
rain rates at 0.5° resolution, plotted vs collocated PR rain-rate
estimates (dashed line). The TMI–PR random deviation is plotted
for comparison (solid line). The statistics are based upon TMI and
PR observations over the ocean from July 2000.
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d. Random errors in monthly mean 2.5°-resolution
estimates

In applications of satellite rain-rate and latent heat-
ing estimates to large-scale analysis or climate studies,
data are often averaged to coarse spatial resolution and
then over monthly or longer time periods (e.g., Xie and
Arkin 1997; Adler et al. 2003). As the basis of a pre-
liminary analysis of the uncertainties in longer time-/
space-averaged precipitation/heating estimates, the
random errors in monthly mean 2.5°-resolution TMI-
derived estimates are examined in this subsection. Also,
as in previous work (Bell et al. 1990; Li et al. 1998; Bell
and Kundu 2000, hereinafter BK00), it will be assumed
that the errors resulting from the infrequent sampling
of low-Earth-orbiting sensors, such as TMI, are inde-
pendent of algorithm errors. It follows that the total
error variance of the time-averaged estimate is equal to
the sum of the algorithm and sampling error variances,

��P�
2 � �alg

2 � �samp
2 , 	9


where P is the instantaneous area-averaged rain rate in
a 2.5° � 2.5° box, and the brackets � � indicate a monthly
average. The accumulated algorithm error variance 2

alg

over the period of a month is evaluated using (8), but in
this case the summations are extended over all foot-
print-scale rain estimates in a given 2.5° � 2.5° box over
the month.

Regarding the sampling error 2
samp, it is assumed

that the estimate of the monthly mean rain rate over a
given 2.5° � 2.5° box is the area-weighted average,

�P� �
1
S �

i�1

M �Ai

A �Pi, 	10


where the “effective number of visits” S is given by

S � �
i�1

M �Ai

A �. 	11


Here, A is the area enclosed by the 2.5° � 2.5° box, Ai

and Pi are the area of observation within the box and
the mean estimated rain rate within that area, respec-
tively, on the ith overpass, and the summations are over
all full or partial observations of the box during the
month.

The error in �P� resulting from the relatively infre-
quent sampling of rainfall by low-Earth-orbiting satel-
lite radiometers has been studied by several investiga-
tors, for example, Laughlin (1981), Shin and North
(1988), Bell et al. (1990), Kedem et al. (1990), Oki and
Sumi (1994), Huffman (1997), Li et al. (1998), and
Steiner et al. (2003). Investigations by Bell and Kundu

(1996) and BK00 have demonstrated the applicability
of a relatively simple analytical model to the sampling
problem. Incorporating the uniform sampling approxi-
mation of Laughlin (1981) in this model, BK00 derived
an expression for the percentage sampling error in
monthly mean estimates samp/�P� in terms of the vari-
ance of the 2.5° instantaneous rain estimates 2

A, the
autocorrelation time �A of instantaneous box-averaged
rain rates P, separated by an interval T/S, where the
period of observation T (1 month) divided by the ef-
fective number of satellite visits S has been used to
approximate the sampling time interval (�t) in the
original expression from BK00 [see (2.22) and (2.23) in
BK00].

Based upon a limited number of radar and rain gauge
studies, BK00 argued that the percentage sampling er-
ror varied approximately as �P��1/2, but with a coeffi-
cient of proportionality that varied with geographic lo-
cation. In the present study, the BK00 expression for
the percentage error in monthly estimates is evaluated
with the help of the TMI rain-rate estimates them-
selves. The monthly mean rain rate is estimated using
(10), while S is given by (11), and 2

A is approximated
by the variance of the instantaneous 2.5° TMI rain es-
timates. The autocorrelation time �A is typically much
shorter (several hours) than the effective sampling time
interval T/S of a single low-Earth-orbiting sensor (�1
day), and so the autocorrelation time cannot be esti-
mated from the sensor observation time series. As an
alternative, the expression from Bell et al. (1990) that
was derived from GATE radar observations,

�A � 0.394	�A
0.525, 	12


is employed, where �A is in hours and A is in squared
kilometers. BK00 reported autocorrelation times as
short as 4 h over 2.5° � 2.5° boxes during TOGA
COARE, while autocorrelation times as long as 8 h (14
h) over 5° � 5° boxes in southern Japan during winter
(summer) were found by Oki and Sumi (1994). There-
fore, the autocorrelation time associated with a specific
region is dependent not only on box area but also the
climatology of rain systems in that region, and the use
of (12) is an obvious simplification.

Shown in the left panels of Fig. 8 are estimates of the
monthly mean surface rain rate, convective rain pro-
portion, and Q1 � QR at 7- and 3-km altitudes, based
upon all TMI over-ocean observations from July 2000.
The main features seen in the surface rain map corre-
spond to those seen in global climatologies (e.g., Adler
et al. 2003). Note the relative minima of convective
proportion along the intertropical convergence zone
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(ITCZ) and in the more intense rain regions of the
western Pacific and Indian Ocean. These relative
minima indicate a significant contribution to the total
rainfall by organized mesoscale convective systems, as
described by Rickenbach and Rutledge (1998) in their
analysis of radar observations from the TOGA
COARE field campaign (located in the western Pacific
warm-pool region).

Latent heating distributions, to first order, follow the
patterns of surface rain rate, because the vertically in-
tegrated heating is approximately equal to L� P, where
L� is the latent heat of vaporization and P is the pre-
cipitation rate. Note that in the more intense rain re-
gions, the heating at 7-km altitude exceeds that at 3 km.
Where organized mesoscale convective systems pro-
duce a large proportion of the rainfall, the contribution
of stratiform rains to total rainfall is significant, and the
altitude of maximum latent heating rate is generally

elevated; see Lin and Johnson (1996). However, in re-
gions of weaker rains in the Northern Hemisphere, the
rain spectrum is predominantly convective, and the
heating at 3 km is often greater than that at 7 km. In the
northern fringe of the Southern Hemisphere storm
tracks, large baroclinic systems dominate and largely
stratiform rains produce a characteristic weak heating
at upper levels and evaporative cooling below.

Presented in Fig. 9 is a comparison of algorithm and
sampling errors plotted as functions of the monthly,
2.5°-resolution rain-rate estimates. Although algorithm
random errors are not entirely negligible at the monthly
scale at the prescribed resolution, they are relatively
small—less than 6% of the monthly total for rain rates
greater than 5 mm day�1. Because of the small algo-
rithm random error contribution to the monthly rain
error, the remainder of this section will focus on sam-
pling errors. Note, however, that it has so far been as-

FIG. 8. (left) Monthly mean 2.5°-resolution (top) surface rain rates, (middle) convective rain proportions, and (bottom) Q1 � QR at
altitudes of 7 and 3 km, derived from algorithm applications to TMI observations over ocean from July 2000. (right) Corresponding
sampling errors in monthly mean 2.5° estimates.
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FIG. 9. Estimated percentage errors in (top left) monthly mean 2.5°-resolution surface rain rates and (bottom
left) Q1 � QR at 7-km altitude resulting from algorithm random errors and incomplete temporal sampling, plotted
vs their estimated values. Monthly statistics are based upon applications of the microwave radiometer algorithm to
TMI observations over ocean from July 2000. Also plotted are (top right) algorithm and sampling errors in
June–August 2000 mean surface rain rates and (bottom right) Q1 � QR at 7-km altitude at 2.5° resolution.

MAY 2006 O L S O N E T A L . 717



sumed in this theoretical development that algorithm
errors are random with zero mean; in Part II, algorithm
errors are shown to have an additional systematic com-
ponent that is significant.

Distributions of sampling error in monthly, 2.5°-
resolution surface rain rates, convective rain propor-
tions, and Q1 � QR at 7- and 3-km altitudes are pro-
vided in the right panels of Fig. 8. The sampling error of
surface rain rates is computed using BK00 [their (2.22),
(2.23)]; the sampling errors of convective rain rate and
Q1 � QR are calculated by substituting the variances of
these quantities for 2

A in BK00’s expression and as-
suming that their autocorrelation times are the same as
the rain-rate autocorrelation time. Note that the sam-
pling errors for rain rate and Q1 � QR closely follow the
patterns of rain rate and heating rate; however, the
percentage errors decrease with increasing rain rate
(see Fig. 9). This behavior of the sampling error was
noted by Chang et al. (1993), BK00, and others. The
range of sampling error is roughly 8%–35% at a rain
rate of 5 mm day�1, and it tapers to about 12% at 20
mm day�1. The large spread of sampling error at low
rain rates is mainly because of geographic variations of
the variance of rain rates and the frequency of sampling
by the TMI; even though rain rates are relatively low at
higher latitudes, the generally low rain-rate variance
and relatively high sampling rate tend to reduce per-
centage errors, according to (2.22) and (2.23) of BK00.
Convective rain proportion—the ratio of the convective
and total rain rate—has a different sampling error dis-
tribution, with lowest errors in regions of high rain rate
(see Fig. 8). Aside from variations in sampling error
resulting from error contributions from rain rate and
convective rain-rate estimates, taking the ratio of the
two quantities introduces an approximate �P��1 depen-
dence of convective rain proportion sampling error on
rain rate. Errors in monthly latent heating estimates
follow the same trends as rain-rate errors, although
they are proportionately greater, in general (see lower
panels of Fig. 9). Also, latent heating algorithm errors
cannot be neglected in relation to sampling errors.

Sampling error can be reduced further by taking
longer-term averages of the satellite estimates. Shown
in the right-hand panels of Fig. 9 are the algorithm and
sampling random errors of estimated June–August
2000 average rain rates and Q1 � QR at 7-km altitude.
Even considering the reduction of the variance of
3-month-averaged rain rates relative to the 1-month av-
erages, a significant reduction of sampling error in the
3-month averages is evident, with a range of 6%–15%
at an average rain rate of 5 mm day�1. Latent heating
errors are similarly reduced.

5. Summary and concluding remarks

A revision of the TRMM facility precipitation algo-
rithm for applications to TMI observations (version 6)
is described. The primary objective is to adapt this al-
gorithm for the estimation of consistent convective rain
proportion and cloud latent heating (Q1 � QR) profiles,
in addition to surface rainfall rate and precipitation
profiles. The extension and generalization of the algo-
rithm are accomplished by (a) increasing the diversity
of cloud-radiative model simulations supporting the al-
gorithm, (b) adjusting the cloud-resolving model micro-
physics to produce more realistic graupel and snow dis-
tributions, (c) including the effects of mixed-phase pre-
cipitation in nonconvective regions of the cloud-
resolving model simulations, (d) utilizing consistent
definitions of convective rain area and total rain area in
the context of cloud-resolving model simulations and
satellite observations, (e) including a new geographic
database to better separate ocean, coast, and land ar-
eas, and (f) establishing a more consistent microwave
radiance “background” in rain-free regions from pas-
sive microwave observations. Uncertainties in retrieved
parameters are estimated by applying the algorithm to
synthetic radiance data based upon a subset of cloud-
radiative model simulations and through construction,
starting with algorithm-based error estimates and
propagating these to coarser time and space resolu-
tions. Synthetic data applications indicate suppression
of random errors with averaging, although systematic
overestimation (underestimation) of the lowest (high-
est) rain intensities and latent heating rates is also in-
dicated. Biases are attributed to the relatively small
precipitation/heating “signal” in passive microwave ob-
servations at both extremes.

The propagation of algorithm-based random errors is
computed to provide baseline uncertainties in two rel-
evant products—an instantaneous 0.5°-resolution prod-
uct suitable for data assimilation applications, and a
monthly 2.5° product required for large-scale analyses
or climate studies. Based upon applications of the al-
gorithm to TMI observations over ocean from July
2000, random errors in instantaneous 0.5° rain-rate es-
timates ranged from roughly 50% at 1 mm h�1, to about
20% at 14 mm h�1. Errors in collocated PR estimates
are roughly 50%–80% of the TMI errors at this reso-
lution. Random errors in monthly 2.5° rain-rate and
heating estimates are due to the combination of algo-
rithm and sampling errors. Sampling errors are esti-
mated using the Laughlin (1981) model, in which the
variance of rain rate or heating rate over the month is
supplied by the TMI estimates themselves. Although
rain-rate algorithm errors are not negligible (up to 6%
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at a rain rate of 5 mm day�1), sampling errors dominate
at this time–space resolution. Sampling errors range
from 8% to 35% at 5 mm day�1, but decrease with
increasing rain rate. Sampling errors in latent heating
rates follow the same trend. Averaging over 3 months
reduces the rain-rate sampling error to a range of 6%–
15% at 5 mm day�1. Latent heating errors are similarly
reduced.

It should be stressed that the algorithm-based error
estimates described in this study represent only that
portion of the random error associated with lack of
precipitation or latent heating–specific information in
the passive microwave observations. Two other sources
of uncertainty are the systematic errors in the cloud-
radiative model simulations that form the supporting
database of the current algorithm and the lack of rep-
resentativeness of the database for algorithm applica-
tions to a given region, climate regime, or atmospheric
state, in general. Nevertheless, the comparisons of the
algorithm-based error estimates and TMI–PR devia-
tions suggest that algorithm random errors make up a
significant portion of the total error at shorter time and
space scales. As time and space averaging of the micro-
wave precipitation/heating estimates increase, random
errors resulting from the lack of information in the ra-
diance data or insufficient sampling will decrease, ex-
posing systematic errors associated with the cloud-
radiative model database.

Errors in precipitation and latent heating estimates
are examined further in Part II of this study, in which
version-6 and version-5 TMI estimates are compared
with independent ground-based observations, as well as
those from the PR.
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