U.S. DEPARTMENT OF THE INTERIOR
 BUREAU OF LAND MANAGEMENT

 MONTANA/DAKOTAS STATE OFFICE

 MONTANA/DAKOTAS STATE OFFICE

 A GUIDE TO INTERPRETING THE

 A GUIDE TO INTERPRETING THE

 GEOGRAPHIC COORDINATE DATA BASE

 GEOGRAPHIC COORDINATE DATA BASE

 GCDB

 GCDB}

10/23/96

5001 Southgate Drive

BILLINGS, MONTANA 59102

Introduction

This User's Guide has been compiled in order to give the novice user an introduction to corner identification used in the Geographic Coordinate Data Base (GCDB), and to familiarize the user with the output files created by the Public Land Survey System (PLSS), Geographic Measurement Management (GMM), and their functionality.

The GCDB has been developed in order to render the most dependable coordinates available for the US Public Land Survey System (PLSS) corners. The Montana/DAKOTAS State Office has the responsibility of producing the GCDB for those states which fall within our administrative jurisdiction. Those states are North Dakota, South Dakota and Montana. At present, portions of Montana and North Dakota have been produced, but a collection plan for South Dakota has yet to be compiled. The data contained in the GCDB has been collected with a 98% level of accuracy.

To satisfy the need for an accurate and complete set of coordinates of PLSS corners, a system of computer programs, GMM, has been utilized to:
1.Compute the geographic coordinates of PLSS corners using official cadastral survey record data.
2.Provide an estimate of the approximate relative position coordinate dependability.

Where State Plane Coordinates (SPC) are used, the coordinates and associated reliability are expressed in feet. GCDB also produces Universal Transverse Mercator (UTM) coordinates, stored in the .UTM file. The coordinates and their reliability are in meters. They are not a reflection of true (absolute) coordinate reliability but rather reflect the integrity of the survey information used.

CAVEAT

The geographic coordinates, and their by-products, were generated from either Public land Survey System Coordinate Computational Software (PCCS) or geographic coordinate data base measurement management (GMM) software, using official Public Land Survey System (PLSS) records (and when deemed necessary, State, County, and private survey records) or digitized coordinates from various cartographic and photographic products. Except where a corner monument has been used as a first or second order control point and the results are of public record, the coordinate values used by GCDB are established with varying reliability based on the source material and method of data input. These coordinate values will be updated as better data and
methodology are available. Graphic representations using these values depict the most probable township configuration and may change as a result of such updates.

The geographic coordinates and their associated products have NO legal significance. These coordinates can not be used as a substitue for a legal boundary survey. They can be used for record keeping, mapping, graphics and planning purposes only.

No warranty is made by the Bureau of Land Management for use of the data for purposes not intended by BLM.

For Additional information concerning the GCDB, contact
the GCDB staff at the Montana State Office, (406) 255-2722

GMM Corner Identification

GMM uses a six-digit, fixed length, numerically logical point identification code for all PLSS corners. The following diagram illustrates the point ID scheme used for breaking down a standard township into 36 individual sections:

4 6	${ }^{d}$ 5	${ }^{4}$ 4	告 3	2	4 1	xXX700 数娄 XXX 600
	8	9	${\stackrel{4}{4} \stackrel{3}{4}_{4}}_{10}$	 11	$\$$ 12	$\stackrel{3}{4}_{4}^{4}$
						$\mathrm{XXX5} 00$
18	${ }^{d}$ 17	${ }_{4}^{4}$ 16	先 15	${ }_{4}^{4}$	$\$$ 13	$\stackrel{y y y y}{4}_{4}^{4}$
						XXX400
$\stackrel{4}{4}_{19}$	$\stackrel{d}{4}$ 20	${ }^{4}$ 21	$\stackrel{4}{4}$ 22	4 23	4 24	沙
						XXX300
${ }_{6}^{6}$ $\stackrel{4}{4} 30^{3}$	d 29	${ }_{4}^{4}$ 28	范 4 27	4 4 26	$\$$ 25	水溦 $\mathrm{XXX2} 00$
6 ${ }_{31}$	${ }_{4}^{4}$ 32	数荧 33	先 34	35	${ }_{4}$	訃第 XXX100
4趽	d_{3} 4	4 ${ }_{4}^{4}$	4 $\stackrel{4}{4}$	$\stackrel{4}{4}_{6_{4}}$	$\stackrel{9}{6}_{4}^{4}$	㬺 $\stackrel{4}{3}$

The User will note that a grid，of seven North－South，and seven East－West lines has been constructed．The prefixes of the North－South lines begin with the number 100，on the western most line，beginning with section 31，and increase in 100 unit increments as the lines proceed easterly，to the eastern most line，which is identified by the prefix of 700 on the east boundary of section 36 ．

Secondly，note that the seven East－West lines begin with a suffix of 100，at the southern most line in the township，beginning with sections 31 through 36 ，and increasing in 100 unit increments，to the northern most line，which is identified by the suffix of 700 ，in sections 1 through 6.

Subdivision Point Identification

The previous set of point IDs can be utilized to define the four corners of specific sections within a township，but a further dissection is necessary if all PLSS corners are to be identified which were created in the subdivision of
and $1 / 16$ corners created in the subdivision of a standard section. Section 31 will be used to demonstrate this strategy.

The user will notice that the $1 / 4$ section corners are located between their respective section corners and that the $1 / 16$ section corners are between their respective subdivided corners. Also note how the corner's prefix and suffix correlates with its own position.

Special Point Identification

The previous section dealt with Standard, Rectangular point Ids. GCDB also identifies PLSS corners which fall outside the rectangular survey system.

Non-Rectangular surveys, as the term is used in GCDB, include river meanders, small holding claims, grant boundaries, reservation boundaries, mineral surveys, homestead entry surveys, tracts, etc. These non-rectangular surveys have been broken down into four categories:

1. Special Surveys
2. Boundaries/Mileposts
3. Mineral Surveys

4. Meanders

The following list identifies Prefix point Ids used to describe these non-rectangular surveys:

1. 711 - 799 Boundaries with Mileposts
2. 800 - 836 Meanders
3. 837-899 Tracts
4. 900 - 999 Mineral Surveys, Homestead Entries, etc.

GMM Files

GMM files can be divided into two major groups, survey computation data and attribution data.
The following list describe the files which are included for each Township requested and a brief description of the contents thereof:

SURVEY COMPUTATION DATA
.ADD -Additional computation definitions (used in section subdivision)
.CON -Control stations used in analysis (* = Control available but not used)
. COR -State Plane Coordinates (SPC) file in NAD-27
.DEF -Defines Project parameters
.GEO -Geographic coordinate file
.IRR -Irregular section subdivision information
.INT -Intersections of special surveys, contains polygons
. LSA -Formatted data file, used in analysis
.PGC -Geographic coordinates and reliability values

```
.RAW -Raw (plat) data file with source document id code
.SD -File containing error estimates used in analysis
.SID -Source document id (Source, Date, Survey type, Surveyor)
.UTM -Universal Transverse Mercator (UTM) coordinates (meters)
ATTRIBUTION DATA
.AN -Polygon identifiers and data
.IID -Polygon identification with point identifiers
.LOT -Government lot locations and and record acreage
.LX -Point specific data, latitude, longitude, reliabilities and UTM data
.LXN -Lines file, can be converted to/from LX file
.NOT -Identifies lines and or points not displayed in graphic mode
.RPO -Identifies non standard polygon
SURVEY COMPUTATION DATA FILES
ADD File
The ADD file is populated as shown below. It consists of eight columns, the first of which is
the TYPE OF COMPUTATION, a code that identifies a traverse proportion, an intersect, or an add
line. The second, third, and fourth columns consist of the POINT IDs. The second column is the
point being computed. The third and fourth columns identify the line along which the second
column point ID is being computed. Column four can also consist of a quadrant, 1 through 4, for
a bearing used in the computation. The fifth column is used to identify the DIRECTION OF THE
LINE (bearing) used in the computation. The sixth column is the COMPUTATION BEARING CODE used
to determine how the line for the computation is being used, such as the straight line or mean
bearing. The seventh and eighth columns consist of the PROPORTIONAL DISTANCES that are used in
the computation.
1 120250 120240 120260 . 00000 1 . 000 . 000
1 130260 120260 140260 .00000 1 .000 . 000
1 140250 140260 140240 .00000 1 .000 . 000
1 130240 140240 120240 .00000 1 .000 .000
2 130250 120250 140250 .00000 1 .000 . 000
2 0 130240 130260 .00000 1 . 000 . 000
1 140210 140200 140220 .00000 1 .000 .000 (PROPORTIONAL DISTS)
1 150220 140220 160220 .00000 1
```

```
1 160210 160220 160200 .00000 1 (COMPUTATION BEARING CODE)
1 150200 160200 140200 .00000
2 150210 140210 160210 .00000 (DIRECTION OF LINE)
2 0 150200 150220
1 140230 140220 140240 (POINT IDs)
1
1 (TYPE OF COMPUTATION)
CON File
```

Geographic CONtrol used for GCDB is derived from a variety of sources. The CON file stores the control available in the creation of the data set. If available at creation but not used it will be marked with a * in column 1. Since control from various sources will have varying weight the reliability columns here show the relative weight of each particular control point. Digitized points from USGS Quadrangles (1:24,000 maps) have a reliability of 30 to 40 feet.

```
01/05/95 0080N 0370E 20 CONTROL
```

ORIGIN
100100462356.52781081647 .95053300 .0004040
100197462447.48011081646 .33813300 .0004040
100200462448.33341081646 .28113475 .0004040
100300462539.56001081647 .22043505 .0004040
100397462631.35951081647 .78303300 .0004040
100400462631.73731081647 .81113396 .0004040
100497462721.65441081649 .27993300 .0004040
100500462723.92781081649 .29743273 .0004040
100600462816.08421081645 .83513143 .0004040
167700462931.17261081526 .89763300 .0004040
200200462447.69871081516 .99303300 .0004040
200400462631.16121081517 .78823300 .0004040
200400462631.77351081517 .79693363 .0004040
199401462631.77351081517 .79693363 .0004040 (Reliability)
200600462814.60961081517 .58493300 .000
200600462816.15351081517 .65873319 .000 (Elevation)

```
199601 462816.1535 1081517.6587
300300 462539.2434 1081402.1587 (Longitude)
300700 462932.0377
400100 462355.7663 (Latitude)
4 0 0 5 0 0
500100 (Point ID)
DEF File
The .DEF file contains the project parameters and variables. These include items such as the
datum, project elevation, error estimates, etc.
Y (Switch indicates if a projection has been defined, Yes or No)
8 5 \text { MONTANA SOUTH LAMBERT (Defines projection table number, state and projection)}
1
2
2700.000 ( Project elevation in feet)
N (Switch which indicates if elevations are read from the project
.LEV file, Yes or No)
.100 1000.0 (Default for distance error estimates. The first number is an actual value and the
second number is a parts per million value)
4.0 (Default for angle error estimates)
120.0 (Default for bearing error estimates)
30.000 (Default for control N error estimate)
30.000 (Default for control E error estimate)
Y
.000
.0
. }
Y (Switch indicates if error ellipses are to be computed, Yes or No)
N (Switch indicates to readjust with robusted error estimates, Yes or No)
```

N

```
Y (Switch indicates if unique error estimates are to read from the project .SD file)
```

T06NR37E (Project Name, Township and Range)
20 (Meridian code)
MT (State)

```
13 (UTM Zone Number)
```

RAW File

This is the raw (record) data on which GMM performs computations. It is created by abstracting survey records.

Record one of the file contains the Township header which identifies the data set by township, range, meridian (a number code), state. Record two is not utilized by the GMM software, but is included in this file structure to ensure compatibility with earlier systems. For your purposes, this record contains no usable information.

Below the 999999 (line 3) are a series of lines which are the raw data. The fields are from and to point Ids, ground distance (in chains), quadrant code, geodetic mean bearings (DDMMSS.ss) and source document id (SID).

T08NR28E 20 MT
111110.0000 .0003200 .00011

999999
10010010014040.0004 . 012892
10014010016021.2004 . 012892
10016010019718.8004 .012892
1001971002001.2004 .012892
10020010023738.8004 .012892
1006001006032.110124000 .012897
10060310064037.935124000 .012897
1006401006435.115124000 .012897
10064310066014.905124000 .012897
1006601006676.595124000 .012897
10066710067013.425124000 .012897 (SID)
10066710067013.425124000 .0 (bearing $\left.240^{\prime} 00^{\prime \prime}\right)$
10066710067013.4251 (quadrant code)
10066710067013.425 (distance ch.)

The Source IDentifier number (SID) file contains information about the surveys used for the township. The .SID file begins with the letter S in column one indicating the SID number. This is followed with error estimates to be applied to every line of data from this specific survey. The lines following, indicated with the letter C in column one, are "comments" about the particular survey. The first line of comments is a structured metadata line which contains: Source Agency Name, Date Approved, Survey Type, and Surveyor(s) Name. Any subsequent comment lines contain unstructured comments about the survey or record.

Special SID NOTE:

The SID number found in the RAW file is also used to indicate curve data. This data is categorized into two main themes, Circular Curves and Spiral Curves. The circular curves are further divided into Tangent Curves and Non-Tangent Curves. Tangentcy is determined from the way the preceding line segment transitions into the curve and the following line segment transitions from the curve. Refer to the appendix for a detailed explanation of this subject.

```
S12907 .100 1500.0 480.0 30.000 30.000
C GLO 07-MAY-1913 O RILEY,HJ/LYMAN,RY/KESTER,TP
C T8NR28E COMPLETION SURVEY
S12903 .100 10000.0 3600.0 30.000 30.000 (Reliability)
C GLO 13-MAR-1894 O GALLAHER,PM
C 1892 PARTIAL SUBDIVISION
S12892 .100 50000.0 18000.0 (Error Estimate Arc Seconds)
C GLO 26-MAY-1884 O THOMPSON,JP
C 1884 SUBDIVISION
```

S12897 . 100 1500.0 (Error Estimate: Constant + PPM)
C GLO 07-MAY-1913 D RILEY,HJ
C 1913 RESURVEY PORTION EAST BDY T8NR27E
S11219 (SID Identifier Number)
C GLO 11-NOV-1909 O RILEY,HJ
S14390. 100 1000.0 240.030 .00030 .000
C BLM 12-NOV-1979 D LARUE, J (Agency, Date, Survey Type, Surveyor)

ATTRIBUTION DATA FILES

PGC File

This is the final geographic coordinate file created by the GMM process. This file provides Latitude, Longitude, elevation and reliability for each point ID.

01/05/95 0080N 0370E 20 CONTROL

ORIGIN 462700.0000 1081230.0000 3300.000 00
100100462356.06731081647 .95873300 .0005962
100140462421.58891081647 .32523300 .000181308
100160462435.24851081647 .14913300 .000138233
100197462447.37671081647 .01073300 .0003840
100200462448.15591081647 .04603300 .0003739
100237462513.25351081647 .31933300 .000216372
100297462539.12171081647 .61003300 .0002325
100300462539.75351081647 .61583300 .0002325
100337462605.15791081647 .84743300 .0002324
100397462631.1941 1081648.0847 3300.000 2122
100400462631.82591081648 .10093300 .0002122
100437462656.33371081648 .82683300 .0002223
100497462721.47261081649 .57393300 .0002122
100500462724.06221081649 .40063300 .0002122
100537462749.48331081647 .78183300 .0002223
100600462816.1211 1081646.0900 3300.000 2222
100603462817.4941 1081645.9974 3300.000 2222
100640462842.17581081644 .30823300 .0002224
100643462845.50401081644 .08333300 .0002224
100660462855.20221081643 .42553300 .0002224
100667462859.49341081643 .13543300 .0002224
100670462908.22861081642 .54333300 .0002224

```
100677 462913.4828 1081642.1879 3300.000 22 24
100680 462921.2550 1081641.6613 3300.000 22 24
100700 462930.2700 1081641.0500 3300.000 22 24
200100 462357.0310 1081516.6074 3300.000 61 63
200140 462422.5835 1081516.3184 3300.000 61 63
200200 462448.1359 1081516.0294 3300.000 38 39
200240 462513.9506 1081516.4913 3300.000 38 39
200300 462539.7653 1081516.9531 3300.000 23 25
200340 462605.4820 1081517.3462 3300.000 23 24
199340 462605.8207 1081517.3512 3300.000 [Reliability]
200400 462631.1986 1081517.7390 3300.000
199401 462631.8760 1081517.7490 [Project Elev.]
200440 462657.0535 1081517.6789
199440 462657.9459 [Longitude]
200500 462722.9082
199501 [Latitude]
```


200540

[Point ID]

```
LXN File
The .LXN file contains topology (lines) information. The file begins with record one which identifies the township, range, meridian, and state. Record two, "ORIGIN" line, contains nonessential data. The following line which contains a single element (39 in this case) indicates that 39 points (nodes) are connected in the following arc. The following line is a variable length record that has been wrapped in this example to show all of the 39 nodes on that arc. Please note that the actual data file does not contain this wrap.
```

```
T08NR28E 20 MT
```

T08NR28E 20 MT
ORIGIN 462700.0000 1081230.0000 714408.535147616.55
3 9
1001001001201001401001601001971002001002201002371002401002
60100297100300100320100337100340100360100397100400100420100437100
44010046010049710050010052010053710054010056010060010060310062010
0640100643100660100667100670100677100680100700

```
```

24
1191991202001202201202401202601203001203201203401203601204
00120420120440120460120500120520120540120560120600120620120640120 660120670120680120700
5
120100120120120140120160119199
2 7
1401001401201401401401601402001402201402401402601403001403
20140340140360140400140420140440140460140500140520140540140560140
600140620140640140660140670140680140700
2 7
1601001601201601401601601602001602201602401602601603001603
20160340160360160400160420160440160460160500160520160540160560160
600160620160640160660160670160680160700
999999 (End of File Marker)
LX File
This file contains point specific data. Township, Range, Meridian, State, and Date, are on line
one. The "ORIGIN" line contains Latitude and Longitude (NAD-27) and UTM Coordinates.
T08NR28E 20 MT
ORIGIN 462700.0000 1081230.0000 714408.535147616.55
100100 462356.4696 1081647.1314 3300.00 60 63 1 1 2 709118.02 5141760.78
[UTM Coordinates]
100120 462409.1129 1081647.0847 3300.00 180 306 1 1 3
[Pen Instructions]
100140 462421.7562 1081647.0380 3300.00 180 306
[Reliability in feet]
100160 462435.3496 1081647.0121 3300.00
[Average Elevation of Twp.]
100197 462447.4258 1081646.9918
[Latitude and Longitude NAD-27]

```
100200

\section*{[Point ID]}
```

100220 462501.0909 1081647.1960 3300.00 37 38 1 1 3 709048.01 5143755.17
100237 462513.2758 1081647.3569 3300.00 214 369 1 1 3 709031.63 5144131.12
100240 462513.9761 1081647.3665 3300.00 37 38 1 1 3 709030.68 5144152.73
100260 462526.8613 1081647.5420 3300.00 37 38 1 1 3 709013.25 5144550.28
100297 462539.1147 1081647.7089 3300.00 23 25 1 1 3 708996.67 5144928.34
GCDB Data Access Procedures

```
1. Members of the public ask the Public Room for GCDB data by Township and Range.
2. Instruct customer of GCDB user guide.
3. After determining the necessary data being requested, either hard copy or diskette of GCDB data, the public room employee will phone GCDB section.
4. Public room rep. will tell GCDB personnel which files are wanted and what medium (diskette, paper copy or tape) and wait while GCDB personnel check the availability and size of requested information.
5. GCDB personnel will supply the public room employee with the number of pages to be printed for hard copy requests such as manuals or printed data. The cost of digital data for "micro" computers (PC) has been established at \(\$ 8.00\) administrative fee, plus research time at \(\$ 18.60 / \mathrm{hr} ., \mathrm{plus}\) the cost of the media (diskette, tape, CD-ROM), plus postage. The Public Room is responsible for billing and collecting these fees. The Public Room will accept VISA and Master Charge and phone orders. No data will be released before payment has been made. GCDB is responsible for assuring that the data is wanted at the established rates.
6. For "walk-in" data requests, the Public room representative will fill out 1370-44 form for cost recovery and will have the customer pay for the requested information at the cashier's window. The Customer will then be directed to the GCDB section with receipt in hand indicating payment has been made. They will have the opportunity to ask any questions and be supplied with the appropriate media or hard copy.
7. If the information requested is larger than a 5 township area, the public room employee will inform the customer that a waiting period of 3 working days is necessary before the information will be available. The information can be mailed or picked up when ready.

\section*{Special Note}

The GCDB data can be found on the InterNet at:

This is the prefered method for public access to this data and there is no charge for using this method.

\section*{APPENDIX}

The curve elements that will be populated on the target system for LRIS (Land and Resources Information System) are:
1. Curve Line Long Chord Distance Measure - a straight line connecting the beginning point of curvature and the ending point of curvature.
2. Curve Line Long Chord Distance Unit of Measure Code - the units of measure with which a curve long chord measurement is taken.
3. Curve Line Long Chord Direction Measure - the azimuth or bearing of the long chord for a curve.
4. Curve Line Long Chord Direction Quadrant Code - the quadrant of the direction when it is a bearing.
5. Curve Line Long Chord Direction Unit of Measure Code - the unit of measure for direction (example Degrees-Minutes-Seconds DdMmSs.sss)
6. Curve Line Direction of Concavity Code - the direction of concavity of a curve relative to the long chord direction.
7. Curve Line Type Code - the code that identifies the type of curve (domain values are CIR for circular curve, PAR for parabolic curve, and SPI for spiral curve).
8. Curve Line Spiral Length Measure - the nominal distance around a spiral curve segment.
9. Curve Line Spiral Length Unit of Measure - the units of measure used for the distance measurement for a spiral curve.
10. Curve Line Radius Beginning Point Distance Measure - the length of the radius at the beginning point of a curve.
11. Curve Line Radius Ending Point Distance Measure - the length of the radius at the ending point of a curve.
12. Curve Line Radius Distance Unit of Measure Code - the units of measure with which the radius, at either the beginning or ending points of an appropriate curve, is measured.

The above curve elements, not collected, will be derived during the GCDB Data Conversion process. All examples in this document that refer to measurements of a curve (circular and spiral) do not represent actual values and are present only to show how the information is to be collected.

\section*{Curve Elements for PCCS or GMM Computed Townships}
1. Circular curves being collected by either the Long Chord (LC), Radius (R), or a series of sub-chords along the arc of a circular curve.
2. Spiral curves.

All curves have a distinct Source/Survey Identifier (SID) so multiple curves from the same source document can be uniquely identified

\section*{Tangent Curves}

A tangent curve is defined as: An arc that is tangent to two line segments, the beginning of the curve ( \(B C\) ), more commonly known as the point of curvature, and the end of the curve (EC), more commonly known as the point of tangency.

For the Long Chord (LC) identified in the RAW DATA file, an extension is added to the distinct SID for the curve in the following manner:
/TCnnLC, where TC represents a Tangent Curve and nn is the number of the curve identified in the RAW DATA file, (should start with 1 and increment by 1, for a maximum of 99, for each new tangent curve encountered within a township) and LC is the curve element.

The LC of the Tangent Curve must be connected in the RAW DATA file to the line segments leading into the \(B C\) and out of the EC.

Example of a tangent curve collected in the RAW DATA file.
8370108370204.7503283145 .0100049 (Line segment into BC)
8370208370302.5302614815 .0 100049/TC01LC (Long Chord)
8370308370404.1503264145 .0100049 (Line segment from EC)
8370408370506.7604632945 .0100049

GCDB collects curve elements 1, 3, and 4. Curve elements 2, 5, 6, 7, 10, 11, and 12, along with the element Line Geometry Type Code, will be derived during data conversion.

\section*{Nontangent Curve}

A nontangent Curve is defined as a curve that is not tangent at the \(B C\) and/or EC. For nontangent curves with the LC identified in the RAW DATA file, an extension is added to the distinct SID for the curve in the following manner:
/CnnLC, where C represents a nontangent circular curve and nn is the number of the curve identified in the RAW DATA file, (should start with 1 and increment by 1, for a maximum of 99, for each new circular curve encountered within a township) and LC is the curve element.

Additional elements are added to collect enough curve information for LRIS. Immediately following the LC line segment in the RAW DATA file the line segment depicting the radius line from the \(B C\) to the Radius Point (RP) is added.
/R, where \(R\) is the radius line segment from the \(B C\) to the RP.

GCDB collects curve elements 1, 3, 4, 10, and 11. Curve elements 2, 5, 6, 7, and 12 along with the element Line Geometry Type Code will be derived during data conversion.

Example of a nontangent circular curve collected in the RAW data file.
8370108370204.7503283145 .0100049 (Line segment into BC)
8370208370302.5302614815 .0 100049/C01LC (Long Chord)
8370208370254.5001612815 .0 100049/R (Radius from BC to RP)
8370308370404.1503264145 .0100049 (Line segment from EC)
8370408370506.7604632945 .0100049

Note: Colorado collected curves through the RP, and therefore only needs to add the LC to the data conversion input RAW file.

Moving of circular curve elements during Data Conversion from the RAW file to the SID file.

The curve elements (collected and derived) will be located in the SID file as shown in the example below. This will include the original line segments of the curve used for computations and the line segments added to collect additional curve elements. This process will occur during the data conversion process.

Example of circular curve elements collected in the . SID file:

S100049/C01 0.100 30000.0 10800.0 25.000 25.000

C/* (retained comments from original .SID file)

C/** (structured comments from original .SID file)

CRV/ 1234.567 A 4898989.9 H L CIR CRV

CRV/ 1234.5673595959 .9 A

CRV/ 837020837030837025

Breakdown of the circular curve element definitions in the .SID file:

CRV/ 1234.567 A 4 898989.9 H L CIR CRV
\(\{--\}\{-----\}\{-----\}\{-\}\{-\}\)

123456789

1 - Designates a curve in the SID file
2 - Curve Line Long Chord Distance Measure

3 - Curve Line Long Chord Distance Unit of Measure Code
(Chains - Ground)

4 - Curve Line Long Cord Direction Quadrant

5 - Curve Line Long Chord Direction Measurement

6 - Curve Line Long Chord Direction Unit of Measure Code
(Degree- Minutes-Seconds)

7 - Curve Line Direction of Concavity

8 - Curve Line Type Code

9 - Line Geometry Type Code

CRV/ 1234.567 3595959.9 A
\(\{------\}\{-----\}\)

1234
```

2 - Quadrant of Radius from the BC to the RP

```
3 - Bearing of the Radius from the BC to the RP
4 - Curve Line Radius Distance Unit of Measure Code (Chains - Ground)
CRV/ 837020837030837025
\(\{----\}\{----\}\{----\}\)
123
1 - Beginning of Curve Point ID
2 - End of Curve Point ID
3 - Radius Point ID (Colorado Only)
Example of a circular curve (tangent and nontangent) in the TOWNSHIP.RAW file after conversion:
8370108370204.7503283145 .0100049 (Line segment into BC)
8370208370302.5302614815 .0 100049/C01LC (Long Chord)
8370308370404.1503264145 .0100049 (Line segment from EC)
8370408370506.7604632945 .0100049
Example of a Colorado circular curve in the TOWNSHIP.RAW file after conversion:
8370108370204.7503283145 .0 100049(Line segment into BC)
8370208370302.5302614815 .0 100049/C01R (Radius BC to RP)
8370308370354.5001612815 .0 100049/C01R (Radius RP to EC)
8370358370404.1503264145 .0100049 (Line segment from EC)
8370408370506.7604632945 .0100049

\section*{Curves portrayed by subchords along the arc of the curve.}

A curve portrayed by subchords is defined as: A curve that has two or more subchords. No restriction is placed on the number or length of the subchords. Subchords must be identified in the RAW DATA file with an extension to the SID in the following manner:
/Vnn, where \(V\) identifies the line segment as a sub-chord, and nn represents the number, (start with 1 and increment by 1, for a maximum of 99, for each new sub-chord within the RAW DATA file).

Curves portrayed by subchords must have the following line segments added to the RAW DATA file: the LC as the record immediately preceding the subchords and the radius from the BC to the RP as the record immediately following the subchords. The LC and Radius must have the SID
```

extension as defined previously for a nontangent curve.

```
GCDB State Offices must collect curve elements 1, 3, 4, 10, and 11. Curve elements 2, 5, 6, 7,
and 12 along with the element Line Geometry Type Code will be derived during data conversion.
Example of subchords collected in the RAW DATA file before conversion:
8370108370204.7503283145 .0100049 (Line segment into BC)
8370208370302.5302614815 .0 100049/C01LC (Long Chord)
8370208370210.5002333333 .0 100049/V01 (Subchord 1)
8370218370220.5002433333 .0 100049/V02 (Subchord 2)
8370228370301.5402533333 .0 100049/V03 (Subchord 3)
8370208370254.5001612815 .0 100049/R (Radius BC to RP)
8370308370404.1503264145 .0100049 (Line segment from EC)
8370408370506.7604632945 .0100049
Example of curve elements in the .SID file for curves collected by subchords:
S100049/C01 0.100 30000.0 10800.0 25.00025 .000
C/* (retained comments from original .SID file)
C/** (structured comments from original .SID file)
CRV/ 1234.567 A 4 898989.9 H L CIR CRV
CRV/ 1234.567 3595959.9 ARV/ 837020837030837025
Breakdown of the curve element definitions in the . SID file for curves collected by subchords:
CRV/ 1234.567 A 4 898989.9 H L CIR CRV
\(\{--\}\{-----\}\{-----\}\left\{\begin{array}{l}\text { \{-\} }\{-\}\end{array}\right.\)
123456789
1 - Designates a curve in the SID file
2 - Curve Line Long Chord Distance Measure
3 - Curve Line Long Chord Distance Unit of Measure Code
(Chains - Ground)
4 - Curve Line Long Cord Direction Quadrant
5 - Curve Line Long Chord Direction Measurement
```

6 - Curve Line Long Chord Direction Unit of Measure Code
(Degree- Minutes-Seconds DdMmSs.sss)
7 - Curve Line Direction of Concavity
8 - Curve Line Type Code
9 - Line Geometry Type Code
CRV/ 1234.567 3 595959.9 A
{------} {-------}
1234
1 - Curve Line Radius Beginning Point Distance Measure
2 - Quadrant of Radius from the BC to the RP
3 - Bearing of the Radius from the BC to the RP
4 - Curve Line Radius Distance Unit of Measure Code (Chains - Ground)
CRV/ 837020 837030 837025
{----} {----} {----}
123
1 - Beginning of Curve Point ID
2 - End of Curve Point ID
3 - Radius Point ID (Colorado Only)
Example of subchords collected in the RAW DATA file after conversion:
837010 837020 4.750 3 283145.0 100049 (Line segment into BC)
837020 837021 0.500 2 333333.0 100049/V01 (Subchord 1)
837021 837022 0.500 2 433333.0 100049/V02 (Subchord 2)
837022 837030 1.540 2 533333.0 100049/V03 (Subchord 3)
837030 837040 4.150 3 264145.0 100049(Line segment from EC)
837040 837050 6.760 4 632945.0 100049

```

\section*{Spiral Curves}

Spiral curves should be identified in the RAW DATA file with an extension to the SID in the following manner:
/SnnLC, where \(S\) represents Spiral curve and \(n n\) is the number of the spiral curve identified in the RAW DATA file (should start with 1 and increment by 1 to a maximum of 99 for each new spiral curve encountered within a township) and LC is the chord (distance from the beginning to the end of the spiral curve).
/SnnR\#, where Snn matches the same value from the chord, and \(R\) is the radius line segment and \(\#\) is equal to:
1. When the radius of the spiral to curve occurs at the beginning of the spiral curve.
2. When the radius of the spiral to curve occurs at the end of the spiral curve.

Note: For a spiral curve the spiral to curve radius is a known value while the tangent to spiral radius has an infinite value. The value of 1 and 2 above is intended to portray the radius of the spiral to curve. This will depend on the direction of the traverse and if the spiral to curve radius is at the beginning or end of the spiral curve.

Example of a spiral curve collected in the RAW file:
8360908370004.7503283145 .0100049 (Line Segment into Spiral)
8370008370100.5004452619 .0 100049/S01LC (Spiral Curve Chord)
8370108370154.5001612815 .0 100049/S01R2 (Spiral to Curve Radius)
8370008370100.65000 .0 100049/S01LS (Length of Spiral)
8370108370202.5302614815 .0 100049/C01LC (Circular Curve Long Chord)
8370108370154.5001612815 .0 100049/R (Circular Curve Radius)
8370208370300.5003 001515.0 100049/S02LC (Spiral Curve Chord)
8370208370254.5002351515 .0 100049/S02R1 (Spiral to Curve Radius)
8370208370300.65000 .0 100049/S02LS (Length of Spiral)
8370408370504.1503264145 .0100049 (Line Segment from Spiral)
8370508370606.7604632945 .0100049

Example of spiral curve elements added to the .SID file.:

S100049/S01 0.100 30000.0 10800.0 25.000 25.000

C/* (retained comments from original .SID file)

C/** (structured comments from original .SID file)

CRV/ 1234.567 A 4 898989.9 H L SPI CRV

CRV/ 1234.567 3 595959.9 A 2 1234.567 A
1 - Designates a curve in the SID file
2 - Curve Line Long Chord Distance Measure
3 - Curve Line Long Chord Distance Unit of Measure Code
(Chains - Ground)
4 - Curve Line Long Cord Direction Quadrant
5 - Curve Line Long Chord Direction Measurement
6 - Curve Line Long Chord Direction Unit of Measure Code
(Degree- Minutes-Seconds DdMmSs.sss)
7 - Curve Line Direction of Concavity
8 - Curve Line Type Code
9 - Line Geometry Type Code
CRV/ 1234.567 3 595959.9 A 2 1234.567 A Spiral to Curve Radius and \(\{--\}\{-----\}\{-----\}\{----\)
-\} Length
1234567
1 - Designates a curve in the SID file
2 - Curve Line Radius Distance Measure
3 - Quadrant of the Spiral to Curve Radius
4 - Bearing of the Spiral to Curve Radius
5 - Curve Line Radius Distance Unit of Measure Code (Chains- Ground)
6 - Spiral to Curve Radius Code
7 - Curve Line Spiral Length Measure
8 - Curve Line Spiral Length Unit of Measure Code (Chains- Ground)
CRV/ 837000837010837015
```

{----} {----} {----}
123
1 - Beginning of Spiral Curve Point ID
2 - End of Spiral Curve Point ID
3 - Spiral to Curve Radius Point ID
Example of a spiral curve in the RAW file after conversion.
836090 837000 4.750 3 283145.0 100049 (Line Segment into Spiral)
837000 837010 0.500 4 452619.0 100049/S01LC (Spiral Curve Chord)
837010 837020 2.530 2 614815.0 100049/C01LC (Circular Curve Long Chord)
837020 837030 0.500 3 001515.0 100049/S02LC (Spiral Curve Chord)
837030 837040 4.150 3 264145.0 100049 (Line Segment from Spiral)
837040 837050 6.7604632945.0 100049
NOTE:
The above reference to Data Conversion is a process where the GCDB data, produced on a DOS PC
platform, is converted in preparation for use on a UNIX platform. The additional curve data
derived through data conversion will not normally be available until all data has been
converted and ported to the UNIX platform.

```
```

