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Abstract
This paper extends the utility-based welfare criterion developed by Rotemberg and Wood-
ford (1997) and Woodford (2003) to a model with endogenous capital accumulation. The
welfare criterion obtained for this model shares several features with the corresponding
expressions that have been derived in simpler models without capital accumulation. In
particular, a criterion can be specified such that welfare losses depend solely on quadratic
functions of the model’s variables, thus confirming that policy should be oriented toward
stabilization of macroeconomic aggregates, rather than toward attaining particular levels
of those aggregates. That said, an important difference that obtains in this case is that
the composition of output directly affects welfare in the endogenous-capital model—a
result that is not present in standard treatments.
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1 Introduction

Over the past two decades, considerable progress has been made in developing more rig-

orous methods with which to analyze monetary policy. The first important advance came

twenty years ago, with the development of microfounded macromodels whose coefficients

were directly related to deep structural parameters. These models had substantial potential

application to policy analysis, since their microfounded structure rendered them immune to

the Lucas critique, which had limited the usefulness of the previous generation of (reduced-

form) macromodels for policy evaluation. Later, once nominal rigidities were added to mi-

crofounded models, the way was opened for the analysis of monetary policy in a structural

setup. The development of microfounded macromodels represents a fruitful avenue of re-

search today, with particular focus being directed to the development of models that enjoy

a greater degree of empirical validation. The structure of these models must necessarily be

quite rich, with an explicit role for multiple spending aggregates (with differing sensitivities

to real interest rate movements) and many sources of real rigidities, all of which yield better

empirical fit.

Despite the development of increasingly sophisticated microfounded models, the welfare

criteria against which alternative monetary policies were evaluated remained largely ad hoc

for some time. Loss functions were often assumed to depend on the variance of some key

macroeconomic variables—most often output and inflation—with no obvious link to house-

hold utility (the improvement of which is arguably the ultimate objective of stabilization

policy). A major breakthrough came in the mid-1990s with the derivation of utility-based

welfare criteria.1 Since loss functions constructed using this methodology were derived di-

rectly from the representative household’s utility function, this allowed policy to be evaluated

with the same degree of rigor that was being used to model the economy. Researchers were

then able to consider how various features being incorporated into structural models to im-

prove their empirical validity would influence the criteria against which alternative policies

were evaluated.

One important limitation of this methodology remained, however: The procedure de-

veloped for constructing a utility-based welfare criterion in simple sticky-price models—and

later implemented in more complicated models—remained confined to models in which there

was no role for endogenous capital accumulation. As a result, ad hoc loss functions continued

to be used to evaluate models with explicit investment and saving decisions. This drawback
1See Rotemberg and Woodford (1997).
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has placed an increasingly serious limitation on policy analysis in recent years, as models with

endogenous capital accumulation—which enjoy much greater empirical validation—have be-

come increasingly widespread.

This paper, by deriving a utility-based welfare criterion in a model with endogenous cap-

ital accumulation, demonstrates that the microfoundations of the welfare criteria used to

evaluate policy in a model with endogenous capital can be made as rigorous as the specifica-

tion of these models. In addition, I demonstrate the extent to which it is possible to preserve

two features of the utility-based criteria that arise in simpler models: first, the (intuitively

appealing) result that the welfare criterion can be expressed in terms of suitably defined

“gap” terms; and second, the notion that welfare will depend only on quadratic functions of

relevant variables, which implies in turn that variables’ levels do not independently influence

the welfare criterion and thus that policy should be directed at stabilization (as opposed to

attaining particular target levels of economic variables).

As I demonstrate, the introduction of endogenous capital introduces a state variable to the

model that significantly complicates the derivation of a utility-based welfare criterion relative

to a model with fixed capital. In order to clearly describe what is required to derive a welfare

criterion in an endogenous-capital model, the model I work with incorporates the simplest

possible capital-evolution equation. In particular, I assume no adjustment costs (either in

investment or capital) and no time-to-build, both of which have been used in recent years in

order to improve the empirical fit of models with endogenous capital accumulation. (That

said, I do point out where the introduction of these features would affect the derivation.)

The balance of the paper is organized as follows. Section 2 outlines the endogenous-capital

model that I employ, while section 3 discusses different ways to define the “natural rate” of

output and the capital stock in the context of this type of model. Next, section 4 constructs

a second-order approximation to the model’s utility function, which is then simplified in

section 5. Finally, section 6 discusses how fluctuations in price inflation enter the welfare

criterion, and section 7 concludes.

2 The Model

Given that I am building upon an existing literature, the model that I consider shares most

of the features of the canonical monetary business cycle model. The main purpose of this

section, therefore, is to fix the details—and give the notation—for the particular specification
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I assume. An additional goal is to characterize the steady state and equilibrium conditions

of the flexible-price version of the model, which will provide the natural-rate concepts that

will be needed in order to compute the gap terms that enter the welfare criterion.

2.1 Technologies and Preferences

I begin by characterizing the production and utility relations that underpin firm and house-

hold behavior in my model economy.

2.1.1 The Production Technology

A single final good (denoted Yt) is assumed to be produced through the aggregation of an

infinite number of differentiated intermediate goods according to a Dixit-Stiglitz technology.

Specifically, final goods production is given by the function

Yt =
(∫ 1

0
Yt(z)

θ−1
θ dz

) θ
θ−1

, (1)

where the variable Yt(z) denotes the quantity of the intermediate good z (where z ∈ [0, 1])

that is used to produce final output, and θ is the elasticity of substitution between the

differentiated intermediate goods inputs used in the production of the final good.

The differentiated intermediate goods that are used as inputs in equation (1) are

produced by combining labor Lt and capital Kt (which are both hired from households)

according to a Cobb-Douglas production function. The production of intermediate good z is

represented by the function

Yt(z) = Xt (Kt(z))
α (Ht(z))

1−α , (2)

where Xt denotes a stationary unit-mean technology shock.

2.1.2 The Evolution of the Capital Stock

The economy’s capital stock at the start of period t+1, Kt+1, is equal to the previous period’s

undepreciated capital stock, (1 − δ)Kt, augmented by new capital installed in the previous

period, It. To keep the derivations as simple as possible, the assumed capital stock evolution

process does not include any adjustment costs. The evolution of the economy’s capital stock

is therefore given by

Kt+1 = (1− δ)Kt + It. (3)
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2.1.3 Preferences

Households derive utility from their purchases of the consumption good Ct and from the use

of their leisure time (which is inversely related to the labor Ht that they supply) according

to the following utility function:

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]
. (4)

The parameter β denotes the household’s discount factor, σ is the inverse of its intertemporal

elasticity of substitution, and s denotes its labor-supply elasticity. The stationary unit-

mean stochastic variables χct and χht represent aggregate shocks that affect the utility of

consumption and disutility of labor, respectively.

2.2 The Decentralized Flexible-Price Economy

The model economy is comprised of the following set of agents. There is one representative,

perfectly competitive firm in the final-good producing sector that purchases intermediate

inputs from the continuum of intermediate-goods producers. The intermediate-goods pro-

ducers, in turn, hire capital and labor from the representative household; these firms are

monopolists, and are therefore able to set the price at which they supply their output. Fi-

nally, the household purchases the final good—which is used both for consumption and for

augmenting the economy’s capital stock—from the final-good producing firm.

2.2.1 The Final-Goods Producer

The competitive firm in the final-goods sector, which owns the production technology de-

scribed in equation (1), takes as given the prices set by each intermediate-good producer for

their differentiated output, {Pt(z)}1z=0, and chooses intermediate inputs {Yt(z)}1z=0 so as to

minimize the cost of producing its final output Yt. The final-good producing firm therefore

solves the problem:

min
{Yt(z)}1z=0

∫ 1

0
Pt(z)Yt(z)dz s.t. Yt≤

(∫ 1

0
Yt(z)

θ−1
θ dz

) θ
θ−1

. (5)

This implies a demand function for each intermediate good that is given by

Yt(z) = Yt

(
Pt(z)
Pt

)−θ
. (6)

The variable Pt, which denotes the aggregate price level in the intermediate goods sector, is

given by Pt = (
∫ 1

0 (Pt(z))1−θdz)
1

1−θ .
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2.2.2 Intermediate-Goods Producers

Each intermediate-good producing firm z ∈ [0, 1] owns the production technology described

in equation (2). In the cost-minimization step of firm z’s problem, the firm takes as given the

aggregate wage Wt and the rental rate on capital Rkt , and chooses aggregate labor Lt(z) and

capital Kt(z) to minimize the costs of attaining its desired level of output Yt(z). Specifically,

firm z solves

min
{Kt(z),Ht(z)}

RktKt(z) +WtHt(z) s.t. Yt(z) = Xt (Kt(z))
α (Ht(z))

1−α . (7)

Since each firm produces its own differentiated variety of intermediate output Yt(z), it

is able to set its price Pt(z), which it does taking into account the demand schedule for its

output that it faces from the final-good sector (equation 6). In the flexible-price version of the

model, intermediate-good producing firms solve their price-setting problem in the absence of

any impediments. Hence, in the profit-maximizing part of its problem, firm z takes as given

the marginal cost MCt(z) for producing Yt(z), the aggregate price level Pt, and final output

Yt, and then chooses its price Pt(z) to maximize its profits subject to the demand curve it

faces for its differentiated output (equation 6). The profit-maximization part of the firm’s

problem is therefore described by:

max
{Pt(z)}

Pt(z)Yt(z)− (1− τ)MCt(z)Yt(z) s.t. Yt(z) = Yt

(
Pt(z)
Pt

)−θ
, (8)

where τ is a subsidy equal to θ−1, which ensures that the steady-state equilibrium is equal to

the Pareto-optimal equilibrium. The intermediate-good producing firm’s profit maximization

problem is the only part of the model that changes with the introduction of sticky prices; as

it is not necessary to present the model with sticky prices at this stage, the discussion of this

version of the model is postponed until section 6.

2.2.3 The Household

The household has preferences over consumption and leisure that are given by equation (4),

and can transform investment into productive capital according to equation (3). The house-

hold’s holding of bonds, Bt, evolves according to:

Bt=R−1
t−1Bt−1+WtHt+RktKt+Profitst+Tt−PtCt−PtIt, (9)
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where Rt denotes the gross nominal interest rate and Tt represents lump-sum transfers made

to the household by the government (or, when negative, taxes levied on the household).2

The household takes as given the expected path of the gross nominal interest rate, the

final-good price level Pt, the wage rate Wt, the capital rental rate Rkt , profits income, and

the initial bond stock B0, and chooses consumption Ct, investment It (and, hence, next

period’s capital stock Kt+1), and labor supply Lt to maximize its utility subject to its budget

constraint and the capital evolution equation. The household’s problem can therefore be

written as:

max
{Ct,It,Ht,Kt+1}∞t=0

E0

[ ∞∑
t=0

βt
(

1
1−σ

(Ct)
1−σ eaχ

c
t − 1

1+s
(Ht)

1+s ebχ
h
t

)]
s.t. eqn.s (3) and (9).

(10)

2.3 Equilibrium in the Flexible-Price Economy

Equilibrium is an allocation {Ct, It, Yt,Ht, {Ht(z)}1z=0,Kt, {Kt(z)}1z=0}∞t=0 and a sequence

of values {Wt/Pt, R
k
t /Pt, {MCt(z)/Pt}1z=0, Et(RtPt/Pt+1)}∞t=0 that satisfy the following con-

ditions: (i) the final-good producing firm solves (5); (ii) all intermediate-good producing

firms solve (7) and (8); (iii) the household solves (10); (iv) the goods market clears; and,

(v) all factor markets clear. Agents take the initial value of K0 and the sequence of shocks

{Xt, χ
c
t , χ

h
t }∞t=0 that hit the economy as given.

2.4 The Equilibrium Conditions of the Flexible-Price Economy

The first-order condition from the final-good producing firm’s cost-minimization problem is

given by equation (6). The first-order conditions from the the intermediate-good producing

firm’s cost-minimization problem are given by:

R̃kt = M̃Ct(z)α
Yt(z)
Kt(z)

, (11)

W̃t = M̃Ct(z) (1− α)
Yt(z)
Ht(z)

, and (12)

Yt(z) = Xt (Kt(z))
α (Ht(z))

1−α , (13)
2To keep the government’s role in the model as simple as possible, we assume that in each period lump-sum

transfers exactly fund the subsidy payments that are made to intermediate-goods producers. This implies

that the government’s budget constraint is given by
∫ 1

0
τMCt(z)Yt(z)dz = −Tt.
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where R̃kt = Rkt /Pt, W̃t = Wt/Pt, and M̃Ct(z) = MCt(z)/Pt. The first-order condition from

the firm’s profit-maximization problem is given by:

Pt(z) =
(

θ

θ − 1

)
(1− τ)MCt(z) = MCt(z), (14)

which implies that

M̃Ct(z) = 1 and Pt = Pt(z). (15)

The first-order conditions from the household’s utility-maximization problem are given by:

eaχ
c
t

Cσt
= βEt

[
Rt

Πt+1
· e

aχct+1

Cσt+1

]
, (16)

W̃t =
Hs
tC

σ
t e

bχht

eaχ
c
t

, (17)(
1− Et

[
Πt+1

Rt

])
= βEt

[
eaχ

c
t+1/Cσt+1

eaχ
c
t/Cσt

(
Rkt+1

Pt+1
− δ

)]
, (18)

and equation (3), where the variable Πt+1 = Pt+1/Pt denotes the period t+ 1 gross inflation

rate. Market clearing in the goods market requires

Yt = Ct + It, (19)

while in factor markets it requires

Ht =
∫ 1

0
Ht(z)dz and Kt =

∫ 1

0
Kt(z)dz. (20)

2.5 The Steady-State Conditions of the Flexible-Price Economy

What follows is the steady-state solution for the economy (note that these steady-state

conditions are the same in both the sticky- and flexible-price economies). The steady-state

real and nominal interest rates are given by:

R∗
Π∗

=
1
β

and R∗ =
Π∗
β
,

where the steady-state inflation rate is determined by the central bank’s inflation target.

The steady-state values of real marginal cost (M̃Ct), the real rental rate (R̃kt ), and the

real wage (W̃t) are:

M̃C∗ = 1, R̃k∗ =
1
β
− (1− δ) , and W̃∗ = (1− α)

(
α

1
β − (1− δ)

) α
1−α

,
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while the steady-state ratios L∗
Y∗

, K∗
Y∗

, I∗
Y∗

, and Ck∗
Y∗

are:

L∗
Y∗

=
(

1− α
α

)α( R̃k∗
W̃∗

)α
,
K∗
Y∗

=
(

α

1− α

)1−α
(
W̃∗

R̃k∗

)1−α

,
I∗
Y∗

=
δK∗
Y∗

, and
C∗
Y∗

= 1− δK∗
Y∗

.

From equation (17) we know that

Y∗ = (W∗)
1

s+σ

(
H∗
Y∗

) −s
s+σ

(
C∗
Y∗

) −σ
s+σ

,

which allows us to calculate steady-state values of L∗, K∗, I∗, and C∗ from the ratios defined

above.

In addition, note for future reference that the steady-state version of equation (17) can

be written as:
Hs
∗

C−σ∗
= W̃∗ or

H1+s
∗

C1−σ
∗

= W̃∗
H∗
C∗

= W̃∗
H∗
Y∗
· Y∗
C∗
.

We know from equation (12) that W̃∗ = (1 − α) Y∗H∗ , so that W̃∗H∗Y∗ = (1 − α). This implies

that
H1+s
∗

C1−σ
∗

=
1− α
C∗/Y∗

or
H1+s
∗

1− α
=

C1−σ
∗

C∗/Y∗
. (21)

An additional steady-state relationship that we will refer to later is

I∗
Y∗

=
δK∗
Y∗

=
δR̃k∗K∗
Y∗

· 1
R̃k∗

.

We know from equation (11) that R̃k∗ = α Y∗
K∗

, so R̃k∗
K∗
Y∗

= α; moreover, we know that the

steady-state value of R̃k∗ is 1
β − (1− δ). Together, these imply that

I∗
Y∗

=
δαβ

1− β(1− δ)
. (22)

2.6 Log-Linearized Equilibrium Conditions in the Flexible-Price Economy

The first-order conditions from the intermediate-good producing firm’s cost-minimization

problem (equations 11, 12, and 13) log-linearize to:

rkt = mct + yt − kt +O(‖ξ‖2), (23)

wt = mct + yt − ht +O(‖ξ‖2), and (24)

yt = xt + αkt + (1− α)ht +O(‖ξ‖2), (25)
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where rkt , wt, and mct represent the log deviations of the real rental rate, the real wage, and

real marginal cost from their respective steady-state levels (which are defined in section 2.5),

and xt is the log of the technology shock. The first-order condition from the intermediate-

good producing firm’s profit-maximization problem (equation 14) log-linearizes to

mct = 0 +O(‖ξ‖2). (26)

(Note that equation 26 is the only equation of the model that will change when sticky

prices are introduced.) The first-order conditions from the household’s utility-maximization

problem (equations 3, 16, 17, and 18) log-linearize to

a′χct − σct = (rt − Etπt+1) + a′Etχ
c
t+1 − Etσct+1 +O(‖ξ‖2), (27)

wt = sht + σct + bχht − aχct +O(‖ξ‖2), (28)

Etr
k
t+1 =

1
1− β(1− δ)

(rt − Etπt+1) +O(‖ξ‖2), and (29)

kt+1 = (1− δ)kt + δit +O(‖ξ‖2). (30)

Finally, the goods-market clearing condition log-linearizes to

yt = cct + (1− c)it +O(‖ξ‖2), (31)

where c denotes the steady-state share of consumption in aggregate output (i.e., c ≡ C∗/Y∗),
an expression for which was derived in section 2.4.

3 Defining the Natural Rate of Output

Our second-order approximation to the utility function will be derived in terms of output

(which is the obvious variable of interest) and the capital stock (which will be our state vari-

able). In addition, wherever possible we will want to express all variables in the approximate

welfare criterion as “gap” terms—i.e., relative to the variable’s natural rate (defined as the

level of the variable that would prevail under fully flexible prices).

For our purposes, it is useful to consider the relationship between the shock variables in

the model and output and the capital stock. There are two such relationships, which come

from the model’s first-order conditions; the first combines equations (24), (25), (28), and (31)

to yield

aχct−bχht +
1+s
1−α

xt=
[
s+α
1−α

+
σ

c

]
yt−

[
α(1+s)

1−α

]
kt−

[
σ

c
(1−c)

]
it+O(‖ξ‖2), (32)
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while the second combines equations (23), (27), (29), and (31) to yield

a′χct =a′Etχ
c
t+1+(1−β(1−δ))(Etyt+1−Etkt+1)− σ

c
(Etyt+1−yt) +

σ

c
(1−c)(it+1−it)+O(‖ξ‖2).

(33)

The it term that appears in in both equations (32) and (33) is related to current and next

period’s capital stock by (30).3

Equations (32) and (33) apply only to the flexible-price version of the model; as such, the

model variables in these equations are (by definition) largely natural rate concepts (which

will be labeled with a superscript n). In defining the natural rate variables, however, we face

the complication that there currently exist two competing definitions of the natural rate of

output in models with endogenous capital accumulation. The difference hinges on whether

the natural rate of output in a given period, which now depends on the capital stock in

addition to the shocks that hit the economy, should be defined based on the capital stock

consistent with the flexible-price model (that is, knt ), or the capital stock that actually exists

in the economy in that period (that is, the capital stock from the sticky-price model, kt).

The first concept has been advocated by Neiss and Nelson (2003), who construct their

definition of the natural rate of output on the basis that the relevant capital stock is that

which would have been in place had the economy always existed in a flexible-price world.

To be precise, while the initial capital stock k0 is given, the capital stock that defines the

natural rate of output in all subsequent periods is that from the flexible-price model, which is

denoted by {knt+1}∞t=0. Neiss and Nelson’s definition therefore implies that the flexible-price

levels of output and the capital stock are related to the economy’s shocks according to the

following sets of relations:

aχct−bχht +
1+s
1−α

xt=
[
s+α
1−α

+
σ

c

]
ynt −

[
α(1+s)

1−α

]
knt −

[
σ

c
(1−c)

]
int +O(‖ξ‖2), and

a′χct =a′Etχ
c
t+1+(1−β(1−δ))(Etynt+1−Etknt+1)− σ

c

(
Ety

n
t+1−ynt

)
+
σ

c
(1−c)

(
Eti

n
t+1−int

)
+O(‖ξ‖2),

where

int =
(

1
δ

)
knt+1 −

(
1− δ
δ

)
knt +O(‖ξ‖2).

3As noted earlier, we have kept the derivations in the endogenous-capital model as simple as possible

by assuming a capital stock evolution process (given by equation 3) that lacks any form of adjustment

costs; this delivers a very simple (log-linearized) capital supply relation (see equation 29). Richer and more

realistic capital accumulation assumptions would imply more complicated versions of equation (29) with either

additional capital-stock or investment-spending terms. Such terms would then appear in equation (33), and

thus alter our definitions of the natural rate of output. For the most part, this is the stage at which alternative

capital accumulation technologies would change our derivation of the welfare criterion.
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Hence, we have that

aχct−bχht+
1+s
1−α

xt=
[
s+α
1−α

+
σ

c

]
ynt −

[
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
knt −

[
σ

c
· 1−c

δ

]
knt+1+O(‖ξ‖2),

(34)

and

a′χct = a′Etχ
c
t+1+(1−β(1−δ))(Etynt+1−Etknt+1)− σ

c

(
Ety

n
t+1−ynt

)
+
σ

c
· 1−c

δ

(
Etk

n
t+2−knt+1

)
− σ

c
· 1−c

δ
(1−δ)

(
knt+1−knt

)
+O(‖ξ‖2). (35)

In contrast, Woodford’s (2003) definition of the natural rate of output is constructed

based on the actual capital stock with which the economy enters each period. Thus, if the

model that represents how the economy operates in practice is the sticky-price model, then

it is the period-t capital stock from that model that determines the current natural rate of

output. Woodford’s definition therefore implies that the flexible-price levels of output and

the capital stock will be related to the model’s shock terms by:

aχct−bχht +
1+s
1−α

xt=
[
s+α
1−α

+
σ

c

]
ynt −

[
α(1+s)

1−α

]
kt−

[
σ

c
(1−c)

]
int +O(‖ξ‖2), and

a′χct =a′Etχ
c
t+1+(1−β(1−δ))(Etynt+1−Etknt+1)− σ

c

(
Ety

n
t+1−ynt

)
+
σ

c
(1−c)

(
Eti

n
t+1−int

)
+O(‖ξ‖2),

where

int =
(

1
δ

)
knt+1 −

(
1− δ
δ

)
kt.

As a result,

aχct−bχht+
1+s
1−α

xt=
[
s+α
1−α

+
σ

c

]
ynt−

[
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
kt−

[
σ

c
· 1−c

δ

]
knt+1+O(‖ξ‖2),

(36)

and

a′χct = a′Etχ
c
t+1+(1−β(1−δ))(Etynt+1−Etknt+1)− σ

c

(
Ety

n
t+1−ynt

)
+
σ

c
· 1−c

δ

(
Etk

n
t+2−knt+1

)
− σ

c
· 1−c

δ
(1−δ) (kt+1−kt)+O(‖ξ‖2). (37)

The difference, of course, reflects the assumption that when we enter period t + 1, it is the

capital stock that is actually present that determines how int+1 is defined; hence, int+1 will

equal
(

1
δ

)
knt+2 −

(
1−δ
δ

)
kt+1 under this definition of the natural rate.

As Woodford argues, Neiss and Nelson’s definition of the natural rate of output renders

irrelevant the capital stock that actually exists and its effect on the economy’s productive
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capacity, and instead defines the natural rate of output conditional on some hypothetical

capital stock. Woodford’s definition of the natural rate of output—which is based on the

actual capital stock—is therefore more akin to what is commonly thought of as “potential”

output. Nevertheless, from a technical standpoint, the Neiss-Nelson definition carries an

important advantage inasmuch as it is completely symmetric, which—as we will see—makes

the derivation of the loss function considerably cleaner. We therefore consider both natural

rate definitions in what follows.

We have already noted that in the model with endogenous capital accumulation, the

capital stock enters our expression for the natural rate of output (equations 34 or 36) along

with the shock terms (which are the only terms that affect the natural rate in the model

without capital). In addition, in the model with capital we have derived two expressions

relating the model shocks and natural rate terms (either 34 and 35 or 36 and 37). We shall

see in section 5 that both of these equations will be needed in order to simplify our expression

for the utility-based welfare criterion.4

4 The Second-Order Approximation to the Utility Function

We construct the second-order approximation to the overall utility function (equation 4) by

deriving a second-order approximation to the within-period utility function,

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t . (38)

Since within-period utility is additively separable between consumption and hours, we can

consider the second-order approximations to each term in (38) separately. The second-order

approximation to the consumption portion of within-period utility is given by:

1
1− σ

(Ct)
1−σ eaχ

c
t = U(Ct, χct)

= U(C∗, 0) + UC(C∗, 0)(Ct − C∗) + Uχc(C∗, 0)χct

+
1
2

(
UC,C(C∗, 0)(Ct − C∗)2 + Uχc,χc(C∗, 0)(χct)

2 + 2UC,χc(C∗, 0)(Ct − C∗)χct
)

=
1

1− σ
C1−σ
∗ + C1−σ

∗

(
ct +

1
2
c2
t

)
+

1
1− σ

C1−σ
∗ a′χct

+
1
2

(
−σC1−σ

∗ c2
t +

1
1− σ

C1−σ
∗ χct

′aa′χct + 2C1−σ
∗ cta

′χct

)
+O

(
‖ξ‖3

)
, (39)

4In the model without endogenous capital accumulation, only the first of these equations is needed to

define the (considerably simplified) natural rate of output, ynt =
[
s+α
1−α + σ

c

]−1 (
aχct − bχht + 1+s

1−αxt
)
; the

second equation merely gives us the natural rate of interest that corresponds to the natural rate of output.

12



where ct denotes the log-deviation of consumption from its steady-state value (an expression

for which was obtained in section 2). Likewise, the second-order approximation to the hours

component of within-period utility is given by:
1

1+s
(Ht)

1+s ebχ
h
t = V (Ht, χ

h
t )

= V (H∗, 0) + VH(H∗, 0)(Ht −H∗) + Vχh(H∗, 0)χht

+
1
2

(
VH,H(H∗, 0)(Ht −H∗)2 + Vχh,χh(H∗, 0)(χht )2 + 2VH,χh(H∗, 0)(Ht −H∗)χht

)
=

1
1 + s

H1+s
∗ +H1+s

∗

(
ht +

1
2
h2
∗

)
+

1
1 + s

H1+s
∗ b′χht

+
1
2

(
sH1+s
∗ h2

t +
1

1 + s
H1+s
∗ χht

′
bb′χht + 2H1+s

∗ htb
′χht

)
+O

(
‖ξ‖3

)
. (40)

We would like our second-order approximation to the utility function to be expressed in

terms of output and capital only. We must therefore eliminate all the terms involving ct and

ht from equations (39) and (40).

To eliminate (ct + 1
2c

2
t ) from equation (39), we take the second-order approximation to

the market-clearing condition (equation 19) combined with the second-order approximation

to the capital evolution equation (3). Together, these two equations imply that

ct +
1
2
c2
t =

1
c

(
yt +

1
2
y2
t

)
− 1− c

c
· 1
δ

(
kt+1 +

1
2
k2
t+1

)
+

1− c

c
· 1− δ

δ

(
kt +

1
2
k2
t

)
+O

(
‖ξ‖3

)
.

Squaring the above equation provides us with an expression with which to replace c2
t in

equation (39), while multiplying the above equation through by a′χct gives us an expression

with which to replace cta′χct . These are given by:

c2
t =

(
1
c

)2

y2
t +

(
1− c

c
· 1
δ

)2

k2
t+1 +

(
1− c

c
· 1− δ

δ

)2

k2
t

+2
1
c
· 1−c

c
· 1−δ

δ
ytkt− 2

1
c
· 1−c

c
· 1
δ
ytkt+1− 2

(
1−c

c

)2 1−δ
δ
· 1
δ
ktkt+1+O

(
‖ξ‖3

)
, and

cta
′χct =

1
c
yta
′χct −

1− c

c
· 1
δ
kt+1a

′χct +
1− c

c
· 1− δ

δ
kta
′χct+O

(
‖ξ‖3

)
.

To eliminate the ht terms from equation (40), we first re-write firm z’s production function

(equation 2) as:

Yt(z) = Xt

(
Kt(z)
Ht(z)

)α
Ht(z) = Xt

(
Kt

Ht

)α
Ht(z),

where the second equality comes from the fact that all firms face the same factor prices.

Defining Ht as
∫ 1

0 Ht(x)dx, we write:

Ht =
∫ 1

0
Ht(x)dx =

(
Ht

Kt

)α 1
Xt

∫ 1

0
Yt(x)dx,

13



which we can re-arrange to yield

Ht =
(

1
Kt

) α
1−α

(
1
Xt

) 1
1−α

(∫ 1

0
Yt(x)dx

) 1
1−α

. (41)

To eliminate (ht + 1
2h

2
t ) from equation (40), we take the second-order approximation to

equation (41), that is,

ht+
1
2
h2
t =

−α
1−α

(
kt+

1
2
k2
t

)
+

1
1−α

(
yt+

1
2
y2
t

)
− 1

1−α

(
xt+

1
2
x2
t

)
+

1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+
1
2
· α

1− α
· 1

1− α
k2
t +

1
2
· α

1− α
· 1

1− α
y2
t −

1
2
· 1

1− α
· 2− α

1− α
x2
t

− α

1− α
· 1

1− α
ytkt +

1
1− α

· α

1− α
xtkt −

(
1

1− α

)2

xtyt+O
(
‖ξ‖3

)
.

Squaring the above equation provides us with an expression with which to replace h2
t in

equation (40), while multiplying the above equation through by b′χht yields an expression

with which we can replace htb′χht . These expressions are:

h2
t =

(
α

1− α

)2

k2
t +

(
1

1− α

)2

y2
t − 2

α

1− α
· 1

1− α
ytkt+O

(
‖ξ‖3

)
and

htb
′χht =

−α
1− α

ktb
′χht +

1
1− α

ytb
′χht +O

(
‖ξ‖3

)
.

The second-order approximation to the consumption term in the within-period utility

function—with consumption replaced by output and capital—is:

1
1− σ

(Ct)
1−σ eaχ

c
t

=
C1−σ
∗
c

yt−
C1−σ
∗
c
· 1−c

δ
kt+1+

C1−σ
∗
c
· 1−c

δ
(1−δ)kt+

1
2
· C

1−σ
∗
c

(
1−σ

c

)
y2
t

−1
2
· C

1−σ
∗
c
· 1−c

δ

(
1 +

σ

c
· 1− c

δ

)
k2
t+1+

1
2
· C

1−σ
∗
c
· 1−c

δ
(1− δ)

(
1−σ

c
· 1−c

δ
· (1−δ)

)
k2
t

−C
1−σ
∗
c
· σ

c
· 1−c

δ
(1−δ)ytkt+

C1−σ
∗
c
· σ

c
· 1−c

δ
ytkt+1 +

C1−σ
∗
c
· σ

c

(
1−c

δ

)2

(1−δ)ktkt+1.

+
C1−σ
∗
c

yta
′χct−

C1−σ
∗
c
· 1−c

δ
kt+1a

′χct+
C1−σ
∗
c
· 1−c

δ
(1−δ)kta′χct+t.i.p.+O

(
‖ξ‖3

)
, (42)

where “t.i.p.” denotes “terms independent of policy” (specifically, steady-state values and

the variances of the stochastic terms).

Next, the second-order approximation to the hours term in the within-period utility

function—with hours replaced by output and capital—is:

1
1 + s

(Ht)
1+s ebχ

h
t
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=
H1+s
∗

1−α
(−α)kt+

H1+s
∗

1−α
yt+

1
2
· H

1+s
∗

1−α
· α

1−α
α(1+s)k2

t +
1
2
· H

1+s
∗

1−α
· 1+s

1−α
y2
t −

H1+s
∗

1−α
· α(1 + s)

1−α
ktyt

−H
1+s
∗

1−α
αktb

′χht +
H1+s
∗

1−α
ytb
′χht +

H1+s
∗

1−α
· α(1 + s)

1− α
ktxt−

H1+s
∗

1−α
· 1 + s

1− α
ytxt

+
1
2
· H

1+s
∗

1−α
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)+t.i.p.+O

(
‖ξ‖3

)
. (43)

We now combine equations (42) and (43) in order to obtain a second-order approximation

for the within-period utility function (equation 38). In doing so, we group terms according to

whether they are first-order terms, second-order terms in the model’s variables, and second-

order cross-products between the model variables and shocks. Note that we can take the

multiplicative terms C1−σ
∗
c and H1+s

∗
1−α , which we know are equal from equation (21), to the

other side of the expression. We therefore write

(
1

1− σ
(Ct)

1−σ eaχ
c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)(
C1−σ
∗
c

)−1

= yt−
1−c

δ
kt+1+

1−c

δ
(1−δ)kt+αkt−yt︸ ︷︷ ︸

first−order terms

+
1
2

(
1−σ

c

)
y2
t +

1
2

(
−1−c

δ
+−σ

c

(
1− c

δ

)2
)
k2
t+1

+
1
2

(
1−c

δ
(1− δ)+−σ

c

(
1−c

δ

)2

(1−δ)2

)
k2
t −

σ

c
· 1−c

δ
(1−δ)ytkt+

σ

c
· 1−c

δ
ytkt+1

+
σ

c

(
1−c

δ

)2

(1−δ)ktkt+1+
1
2
· −α

1−α
α(1+s)k2

t +
1
2
· −(1+s)

1−α
y2
t +

α(1 + s)
1−α

ktyt

+yta′χct−
1−c

δ
kt+1a

′χct+
1−c

δ
(1−δ)kta′χct+αktb′χht −ytb′χht −

α(1 + s)
1− α

ktxt+
1 + s

1− α
ytxt︸ ︷︷ ︸

model−variable/shock cross−product terms

−1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)+t.i.p.+O

(
‖ξ‖3

)
. (44)

The obvious next step is to simplify equation (44); we do this in the next section. To effect

the simplification, we note that the second-order approximation to the overall utility function

(equation 4) will involve a (discounted) expression like equation (44) that corresponds to each

term in the overall utility function.

5 Simplifying the Approximate Utility Function

We start by simplifying the within-period utility expression (44), which we do in two steps.

First, we eliminate all first-order terms from the expression. Next, we simplify the cross
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products of the model variables and shock terms. This will then permit us to obtain an

approximate expression for the overall utility function, which we will write in terms of both

the Neiss-Nelson and Woodford natural rate definitions.

5.1 Eliminating First-Order Terms from Within-Period Utility

As simple inspection reveals, it is straightforward to eliminate output from the first-order

terms in equation (44):

yt−
1−c

δ
kt+1+

1−c

δ
(1−δ)kt+αkt−yt=

1−c

δ
kt+1+

1−c

δ
(1−δ)kt+αkt.

Simplifying the remaining terms—which clearly arise only in a model with endogenous capital

accumulation—is a little more complicated. First, we need to consider what (1−c)/δ equals.

Since c = C∗/Y∗ we know that (1−c) = I∗/Y∗, which we defined in equation (22). This

implies that
1−c

δ
=

βα

1− β(1− δ)
, (45)

which in turn implies that the remaining terms can be simplified as follows:

−1−c

δ
kt+1+

1−c

δ
(1−δ)kt+ αkt

=
−βα

1− β(1− δ)
kt+1+

βα

1− β(1− δ)
(1−δ)kt+ αkt

= α

( −β
1−β(1−δ)

kt+1+
β(1−δ)

1−β(1−δ)
kt+

1−β(1−δ)
1−β(1−δ)

kt

)
=α

1
1−β(1−δ)

(kt−βkt+1) .

Further simplification requires us to cancel terms across different periods. Recall that the

second-order approximation to the overall utility function is given by the discounted sum of

the second-order approximations to the within-period utility functions (that is, equation 44).

We can therefore pull together all of the first-order terms that remain after simplification

from each within-period utility function to obtain

α

1−β(1−δ)
E0

[
(k0−βk1)+β (k1−βk2) + · · ·+βt (kt−βkt+1)+βt (kt+1−βkt+2)+· · ·

]
,

which when we cancel terms from different periods is just equal to:

α

1−β(1−δ)
k0.

In other words, all first-order terms disappear except for a term in k0 (the initial capital

stock), which is assumed to be fixed and independent of policy.
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5.2 Simplifying the Cross-Product Terms

The second-order cross-products of the model variables and shocks in equation (44) are:

yta
′χct−

1−c

δ
kt+1a

′χct+
1−c

δ
(1−δ)kta′χct+αktb′χht −ytb′χht −

α(1+s)
1−α

ktxt+
1+s
1−α

ytxt

= yt[a′χct−b′χht +
1+s
1−α

xt]−
1−c

δ
kt+1a

′χct+
1−c

δ
(1−δ)kta′χct+αktb′χht −

α(1+s)
1−α

ktxt.

Note that we can substitute in for (1− c)/δ using equation (45) to obtain:

yt

[
a′χct−b′χht +

1+s
1−α

xt

]
− βα

1−β(1−δ)
kt+1a

′χct

+
βα(1−δ)

1−β(1−δ)
kta
′χct+α

1−β(1−δ)
1−β(1−δ)

ktb
′χht −

α(1+s)
1−α

ktxt

= yt

[
a′χct−b′χht +

1+s
1−α

xt

]
+

βα(1−δ)
1−β(1−δ)

kt[a′χct−b′χht ]

−α(1+s)
1−α

ktxt+
α

1−β(1−δ)
[ktb′χht −βkt+1a

′χct ]. (46)

We also have an expression for [a′χct−b′χht + 1+s
1−αxt] from equation (34) or (36) (depending on

whether we use Neiss and Nelson’s or Woodford’s definition of the natural rate of output).

We do not have any expressions for the remaining shock terms, and so will need to perform

additional manipulations in order to obtain a form that will allow us to replace these shock

terms with variables from the flexible-price model. To do this, we must take a stand on a

definition of the natural rate of output. We will first consider the Neiss-Nelson definition,

which—given its symmetry—is easier to implement; next, we will examine the Woodford

definition, which yields a more intuitive concept for potential output.

5.2.1 Derivation under the Neiss-Nelson Natural Rate Definition

We focus on the final term [ktb′χht −βkt+1a
′χct ] in equation (46), and replace a′χct with what

it equals when Neiss and Nelson’s (2003) definition of the natural rate of output is employed

(c.f. equation 35). Specifically,

[ktb′χht −βkt+1a
′χct ]

= ktb
′χht︸ ︷︷ ︸

B(t)

−βkt+1a
′χct+1︸ ︷︷ ︸

A(t)

−(1−β(1−δ))
(
βkt+1y

n
t+1−βkt+1k

n
t+1

)
+
σ

c

(
βkt+1y

n
t+1−βkt+1y

n
t

)

−σ
c
· 1−c

δ

(
βkt+1k

n
t+2−βkt+1k

n
t+1

)
+
σ

c
· 1−c

δ
(1−δ)

(
βkt+1k

n
t+1−βkt+1k

n
t

)
. (47)
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A similar expression appears in the second-order approximation to the t + 1 within-period

utility function; namely,

[ktb′χht+1−βkt+1a
′χct+1]

= βkt+1b
′χht+1︸ ︷︷ ︸

B(t+1)

−β2kt+2a
′χct+2︸ ︷︷ ︸

A(t+1)

−(1−β(1−δ))
(
β2kt+2y

n
t+2−β2kt+2k

n
t+2

)

+
σ

c

(
β2kt+2y

n
t+2−β2kt+2y

n
t+1

)
−σ

c
· 1−c

δ

(
β2kt+2k

n
t+3−β2kt+2k

n
t+2

)
+
σ

c
· 1−c

δ
(1−δ)

(
β2kt+2k

n
t+2−β2kt+2k

n
t+1

)
. (48)

We can group A and B from the two different periods (e.g. A(t) and B(t + 1) or A(t − 1)

and B(t)), which yields a term equal to −βkt+1[a′χct+1 − b′χht+1] in period t+ 1 and a term

equal to −kt[a′χct − b′χht ] in period t. Hence, we have:

[ktb′χht −βkt+1a
′χct ]

= ktb
′χht︸ ︷︷ ︸

B(t)

−kta′χct︸ ︷︷ ︸
A(t−1)

−(1−β(1−δ))
(
βkt+1y

n
t+1−βkt+1k

n
t+1

)
+
σ

c

(
βkt+1y

n
t+1−βkt+1y

n
t

)

−σ
c
· 1−c

δ

(
βkt+1k

n
t+2−βkt+1k

n
t+1

)
+
σ

c
· 1−c

δ
(1−δ)

(
βkt+1k

n
t+1−βkt+1k

n
t

)
,

which we can use to replace [ktb′χht −βkt+1a
′χct ] in equation (46). Note that, because we are

moving the A term from an earlier period (for example, t− 1) to a later period (in this case,

time t), we will have to add the term k0a
′χct in the initial period; otherwise, the within-period

loss function will not be the same for all periods. For considering the problem of maximizing

household welfare, this is immaterial because this term is independent of policy; however,

it does mean that the expression that we will be working with is only proportional to the

second-order approximation. In what follows, I ignore any such additive scaling terms.

The preceding substitutions imply that equation (46)—that is the cross-products of the

model variables and shocks—are:

yt

[
a′χct−b′χht +

1+s
1−α

xt

]
+

βα(1−δ)
1−β(1−δ)

kt[a′χct−b′χht ]− α(1+s)
1−α

ktxt+
−α

1−β(1−δ)
kt[a′χct−b′χht ]

− α

1−β(1−δ)
(1−β(1−δ))

(
βkt+1y

n
t+1−βkt+1k

n
t+1

)
+

α

1−β(1−δ)
· σ

c

(
βkt+1y

n
t+1−βkt+1y

n
t

)
− α

1−β(1−δ)
· σ

c
· 1−c

δ

(
βkt+1k

n
t+2−βkt+1k

n
t+1

)
+

α

1−β(1−δ)
· σ

c
· 1−c

δ
(1−δ)

(
βkt+1k

n
t+1−βkt+1k

n
t

)
.

= yt

[
a′χct−b′χht +

1+s
1−α

xt

]
−αkt

[
a′χct−b′χht −

1+s
1−α

xt

]
− α

(
βkt+1y

n
t+1−βkt+1k

n
t+1

)
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+
α

1−β(1−δ)
· σ

c

(
βkt+1y

n
t+1−βkt+1y

n
t

)
− α

1−β(1−δ)
· σ

c
· 1−c

δ

(
βkt+1k

n
t+2−βkt+1k

n
t+1

)
+

α

1−β(1−δ)
· σ

c
· 1−c

δ
(1−δ)

(
βkt+1k

n
t+1−βkt+1k

n
t

)
. (49)

We already have an expression for [a′χct − b′χht + 1+s
1−αxt] from equation (34). Substituting

this expression into (49) would then eliminate all of the cross products between the model

variables and shocks, thereby leaving us with a set of cross products between the model

variables and natural rate terms. Specifically, we obtain an expression for these terms that

is given by:[
s+ α

1− α
+
σ

c

]
yty

n
t +
[
−α(1 + s)

1− α
+
σ

c
· 1− c

δ
(1− δ)

]
ytk

n
t +
[
−σ

c
· 1− c

δ

]
ytk

n
t+1

+
[
βα(1− δ)

1− β(1− δ)

] [
s+ α

1− α
+
σ

c

]
kty

n
t +
[
βα(1− δ)

1− β(1− δ)

] [
−α(1 + s)

1− α
+
σ

c
· 1− c

δ
(1− δ)

]
ktk

n
t

+
[
βα(1− δ)

1− β(1− δ)

] [
−σ

c
· 1− c

δ

]
ktk

n
t+1+

[
α

1− β(1− δ)

] [
−s+ α

1− α
− σ

c

]
kty

n
t

+
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In considering the second-order approximation to the utility function, this would replace the

cross-products between the model variables and shocks in equation (44) when the natural

rate of output corresponds to Neiss and Nelson’s definition.

5.2.2 Derivation under the Woodford Natural Rate Definition

We can follow essentially the same steps when we use Woodford’s definition of the natural

rate of output; however, when we replace a′χct with its value from the flexible-price model

in the [ktb′χht −βkt+1a
′χct ] term of equation (46), we will now use equation (37), rather than

equation (35). Thus, with the Woodford definition of the natural rate of output, we obtain

that

[ktb′χht −βkt+1a
′χct ]
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= ktb
′χht︸ ︷︷ ︸

B(t)

−kta′χct︸ ︷︷ ︸
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.

We use this to replace [ktb′χht −βkt+1a
′χct ] in equation (46), which implies that when we

employ Woodford’s definition of the natural rate, the cross-product terms for the model

variables and shocks become:

yt

[
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. (51)

We have an expression for [a′χct−b′χht + 1+s
1−αxt] which is now given by equation (36). Substi-

tuting this expression into equation (51) would then eliminate all cross-product terms in the

variables and shocks, replacing them (as before) with cross products in the model variables

and natural-rate terms. Specifically, we find that these equal:[
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This replaces the cross-product terms in equation (44).

5.3 The Approximation to the Overall Utility Function

We now have everything that we require in order to construct the second-order approximation

to the overall utility function.
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5.3.1 Derivation Using the Neiss-Nelson Natural Rate

Under the Neiss-Nelson natural rate definition, we can combine the second-order approxima-

tion to the within-period utility function (given by equation 44) with the model-variable/natural-

rate cross product expressions outlined in section 5.2. This yields the following second-order

approximation to the overall utility function:(
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This simplifies to:(
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The complete derivation of this relation is given in appendix A. Equation (54) can also be

written in terms of deviations of current investment, output, and the existing capital stock

from their respective natural-rate levels; specifically as,(
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It is worth noting from equations (54) and (55) that when the definition of the natural-rate

variables follows that of Neiss and Nelson our expressions for the second-order approximation

to the utility function can (apart from the output dispersion term) be completely character-

ized in terms of gaps between variables’ actual and natural-rate values.

5.3.2 Derivation Using the Woodford Natural Rate

Under Woodford’s definition of the natural rate, we obtain the following second-order ap-

proximation to the overall utility function:(
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As shown in appendix A, this simplifies to:(
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or, alternatively:(
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+t.i.p.+O
(
‖ξ‖3

)
. (58)

In contrast to the previous case, when the definition of natural-rate variables follows Wood-

ford (2003), our expressions for the second-order approximation to the utility function cannot

be entirely characterized with gap terms (along with an output dispersion term): In addition

to these gaps, the squared actual capital stock and various actual and natural-rate cross

products enter the welfare expression. Intuitively, the actual state of the economy has a

separate influence on welfare in this case.

6 The Welfare Criterion in a Sticky-Price Model

Up to this point, we have not discussed what role sticky prices would play in our derivation

of the loss function. Sticky prices imply that there will be a relationship between inflation

and the output dispersion term varzyt(z) in our loss function expressions in section 5.3. In

addition, it is of independent interest to determine how the gap terms in the loss functions

that we have derived are related to the gap terms that determine inflation in the Phillips

curve.

As we noted in section 2.2, the only part of the model that changes when sticky prices

are introduced is the intermediate-good producing firm’s profit-maximization problem, which

must now reflect the fact that prices are fixed in advance. To model sticky prices, we assume

Calvo (1983) pricing (as modified by Yun, 1996), in which in any period a randomly selected

fraction 1−γ of firms can reset their price, while the remaining fraction γ are constrained to

charge their existing price (which is indexed to the steady-state inflation rate). In this setup,

a firm that is able to reset its price in period t takes as given its marginal cost MCt(z), the

aggregate price level Pt, and aggregate output Yt, and solves:

max
{Pt(z)}

∞∑
k=0

γkEt [Q0,k ((Pt(z)− (1− τ)MCt(z))Yt(z))] s.t. Yt(z) = Yt

(
Pt(z)
Pt

)−θ
, (59)

where Qt,t+v denotes the nominal stochastic discount factor (which firms also take as given).5

Equilibrium in the sticky-price model is an allocation {Ct, It, Yt,Ht, {Ht(z)}1z=0,Kt, {Kt(z)}1z=0}∞t=0

and a sequence of values {Πt,Wt/Pt, R
k
t /Pt, {MCt(z)}1z=0, Rt}∞t=0 that satisfy the following

conditions: (i) the final-good producing firm solves (5); (ii) all intermediate-good producing
5If we write the marginal utility of consumption as MUt, then the nominal stochastic discount factor Qt,t+v

equals
βvMUt+v/Pt+v

MUt/Pt
.
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firms solve (7) and (59); (iii) the household solves (10); (iv) the monetary authority sets

the nominal interest rate in a manner that ensures a determinate equilibrium; (v) the goods

market clears; and, (vi) all factor markets clear. Agents take as given the inital value of K0,

and the sequence of shocks {Xt, χ
c
t , χ

h
t }∞t=0 that hit the economy.

The equilibrium conditions in the sticky-price economy are as follows. The first-order

condition from the final-good producing firm’s cost-minimization problem is given by equa-

tion (6). The first-order conditions from the the intermediate-good producing firm’s cost-

minimization problem are given by equations (11), (12), and (13), while the first-order con-

dition from its profit-maximization problem is given by:

Pt(z) =
∑∞
k=0 γEt [Q0,tMCt+k(z)θYt+k]∑∞
k=0 γEt [Q0,t(θ − 1)Yt+k]

. (60)

In addition, the first-order conditions from the household’s utility-maximization problem are

given by equations (3), (16), (17), and (18). Market clearing in the goods market is given

by equation (19), while in factor markets it is given by equation (20). The steady-state

conditions for the sticky-price model are identical to those given in section 2.4.

The log-linearized first-order conditions from the intermediate-good producing firm’s cost-

minimization problem are still given by equations (23), (24), and (25). The first-order condi-

tion from the intermediate-good producing firm’s profit-maximization problem (equation 60)

log-linearizes to:

πt=βEtπt+1+
(1−γ)(1−γβ)

γ
mct+O(‖ξ‖2), where mct=αrkt+(1−α)wt+xt+O(‖ξ‖2). (61)

The log-linearized first-order conditions from the household’s utility-maximization problem

are still given by equations (27), (28), (29), and (30), while goods market clearing is still

given by (31).

6.1 The Phillips Curve in Terms of “Gap” Variables

We now wish to compare the gap terms that enter the approximate loss functions that we have

derived with the gap terms that enter the Phillips curve. From the expression for marginal

cost given in equation (61) as well as from equations (23), (25), (28), (30), and (31), we can

write:

mct=
[
s+α
1−α

+
σ

c

]
yt−
[
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
kt−

[
σ

c
· 1−c

δ

]
kt+1−aχct+bχht−

1+s
1−α

xt+O(‖ξ‖2).

(62)
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The flexible-price equivalent to equation (62) using the Neiss-Nelson definition of the natural

rate is:

mcnt =
[
s+α
1−α

+
σ

c

]
ynt −

[
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
knt −

[
σ

c
· 1−c

δ

]
knt+1−aχct+bχht −

1+s
1−α

xt+O(‖ξ‖2)

= 0+O(‖ξ‖2), (63)

while using Woodford’s definition it is:

mcnt =
[
s+α
1−α

+
σ

c

]
ynt −

[
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
kt −

[
σ

c
· 1−c

δ

]
knt+1−aχct+bχht −

1+s
1−α

xt+O(‖ξ‖2)

= 0+O(‖ξ‖2). (64)

Note that in both (63) and (64), mcnt = 0—we are in the flexible-price model—which makes

these two equations identical to (34) and (36).

Since mcnt = 0, we can add it to our Phillips curve expression (equation 61) without its

altering anything. Hence,

πt = βEtπt+1 +
(1− γ)(1− γβ)

γ
· (mct −mcnt ) +O(‖ξ‖2). (65)

This implies that when we use the Neiss-Nelson definition of the natural rate of output, our

Phillips curve in terms of gap terms is:

πt=βEtπt+1+
(1−γ)(1−γβ)

γ

([
s+α
1−α

+
σ

c

]
(yt−ynt )−

[
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
(kt−knt )

−
[
σ

c
· 1−c

δ

] (
kt+1−knt+1

))
+O(‖ξ‖2),(66)

or

πt = βEtπt+1+
(1−γ)(1−γβ)

γ

([
s+α
1−α

+
σ

c

]
(yt−ynt )

−
[
α(1+s)

1−α

]
(kt−knt )−

[
σ

c
(1−c)

]
(it−int )

)
+O(‖ξ‖2),(67)

where the latter expression is written in terms of the “investment gap.” When we use

Woodford’s definition, our Phillips curve is:

πt=βEtπt+1+
(1−γ)(1−γβ)

γ

([
s+α
1−α

+
σ

c

]
(yt−ynt )−

[
σ

c
· 1−c

δ

] (
kt+1−knt+1

))
+O(‖ξ‖2),

(68)

or

πt=βEtπt+1+
(1−γ)(1−γβ)

γ

([
s+α
1−α

+
σ

c

]
(yt−ynt )−

[
σ

c
(1−c)

]
(it−int )

)
+O(‖ξ‖2). (69)
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We see, therefore, that the same gap terms enter both the loss function and the Phillips

curve when we use the Neiss-Nelson definition of the natural rate of output. When we use

Woodford’s definition, the gaps that determine inflation also appear in the loss function;

however, additional terms are present there as well.6

6.2 Output Dispersion and Inflation

We now briefly consider the relationship between inflation and the output dispersion term

varzyt(z) = varz lnYt(z) that appears in the equations of section 5.3.

It turns out that the relationship between output dispersion and inflation is unaltered by

the presence of capital; as a result, the analysis is identical to that outlined in Chapter 6 of

Woodford (2003). In particular, the demand for each intermediate good (equation 6) implies

that varz lnYt(z) = θ2varz lnPt(z), while the recursive nature of the price level under Calvo

contracting implies that

varz lnPt(z) =
(

γ

1− γ

) t∑
s=0

γt−sπ2
s + t.i.p +O(‖ξ‖3),

so that

1
1−α

(
1
θ

+
α

1−α

)
varzyt(z) =

θ

1−α

(
1+

θα

1−α

)(
γ

1− γ

) t∑
s=0

γt−sπ2
s + t.i.p +O(‖ξ‖3),

or

Et

[ ∞∑
t=0

βt
1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

]

= Et

[ ∞∑
t=0

βt
θ

1−α

(
1+

θα

1−α

)(
γ

(1−γ)(1−βγ)

)
π2
t

]
+t.i.p+O(‖ξ‖3),

=
(

1
1− β

)(
θ

1−α

)(
1+

θα

1−α

)(
γ

(1−γ)(1−βγ)

)
var(πt)+t.i.p+O(‖ξ‖3),

which we can use to replace the varzyt(z) terms in the equations in section 5.3.
6Hence, care must be taken in extrapolating Woodford’s (2003) point that one can associate the output

gap in the new-Keynesian Phillips curve with the gap that belongs in a Taylor-style interest rate feedback

rule. As the preceding analysis indicates, such a conclusion only extends to a model with endogenous capital

in a very loose sense (because cross products of the gap terms now appear in the loss function) and, even in

this more limited sense, only obtains for a specific definition of potential output.
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6.3 The Utility-based Welfare Criterion

Taking expectations of equation (55) implies that

(1− β)

(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= −1
2

(
s+ α

1− α
+
σ

c

)
var (yt − ynt )− 1

2
· σ

c

(
αβδ

1− β(1− δ)

)2

var (it − int )

−1
2
· θ

1−α

(
1+

θα

1−α

)
γ

(1−γ)(1−βγ)
var (πt)+

σ

c
· αβδ

1−β(1−δ)
cov (yt−ynt , it−int )

−1
2
· αβδ2

1− β(1− δ)2
· 1 + αs

1− α

∞∑
j=−∞

(β(1−δ))j cov
(
it−int , it−j−int−j

)

+
δ

1−δ
α
α(1+s)

1−α

∞∑
j=1

(β(1−δ))j cov
(
it−j−int−j , yt−ynt

)
+ t.i.p.+O

(
‖ξ‖3

)
, (70)

where the natural-rate variables follow the Neiss-Nelson natural rate definition. Alternatively,

under the Woodford natural rate definition, we have that

(1− β)

(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= −1
2

(
s+α
1−α

+
σ

c

)
var (yt−ynt )− 1

2

(
σ

c

(
αβδ

1− β(1− δ)

)2

+αβδ2

)
var (it−int )

−1
2
· θ

1−α

(
1+

θα

1−α

)
γ

(1−γ)(1−βγ)
var (πt)+

σ

c
· αβδ

1−β(1−δ)
cov (yt−ynt , it−int )

−1
2

(
σ

c

(
αβ(1− δ)

1− β(1− δ)

)2

+
α2(1 + s)

1− α

)
var (kt)

+σ
αβ(1− δ)
1−β(1−δ)

cov (kt, cnt )−α(1+s)cov (kt, hnt )+ t.i.p.+O
(
‖ξ‖3

)
(71)

(which follows from taking expectations of equation 58).

For both definitions of the natural rate variables, the variance of the output gap—written

as var(yt − ynt )—and the variance of the inflation rate—var(πt)—have a detrimental effect

on household utility, just as they do in the model without endogenous capital accumulation.

In addition, for both natural rate definitions, the variance of the investment spending gap—

var(it − int )—also reduces household utility, implying that the composition of output—not

merely its aggregate value—has welfare implications in the model with endogenous capital.

(Of course, this reflects the fact that current investment—and, hence, next period’s capital
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stock—directly affects overall utility.) In addition, the comovement between the contempo-

raneous values of the investment and output gaps also affects household utility, this time

positively. Because consumption affects utility, it can be preferable for a given output gap

to spill over into the investment gap rather than into the consumption gap. The weight on

this term depends on the intertemporal elasticity of substitution σ as well as the steady-state

ratio of investment to consumption spending 1−c
c (recall equation 22).

When the natural rate terms are characterized according to the Neiss-Nelson definition,

the covariance of investment gaps across time also has a detrimental impact on utility. This

is because under the Neiss-Nelson natural-rate definition (in which the natural rate is de-

fined with reference to the flexible-price model’s capital stock) positive covariances between

investment gaps imply that the actual capital stock—and hence all model variables—is mov-

ing progressively further away from its welfare-maximizing natural rate level. By contrast, a

positive covariance between the output gap and previous investment gaps affects household

utility in a favorable way. Previous levels of investment spending that exceed their natural

rate imply a level of the capital stock that is also in excess of its natural rate. If capital

covaries with output in this manner, then smaller fluctuations in hours will result, which is

itself welfare enhancing. The weight on this term depends on the elasticity of labor sup-

ply s, the relative importance of capital and labor in the production process α
1−α , and the

depreciation rate of previously installed capital δ.

Finally, when natural rate variables are characterized according to Woodford’s definition,

the variance of deviations of the actual capital stock from its steady-state level reduces utility,

as does a positive covariance between capital and the natural rate of hours. In contrast, a

positive covariance between capital and the natural rate of consumption is favorable to utility.

It is difficult to place an intuitive interpretation on these terms.

7 Conclusions

This paper has extended the utility-based welfare criterion developed by Rotemberg and

Woodford (1997) and Woodford (2003) to a model with endogenous capital accumulation. By

deriving an explicit analytical solution, it has been possible to compare the welfare expression

that results in this model to the welfare criteria that are obtained in models where a capital

accumulation decision is absent. In addition, the explicit expressions derived here permit us

to see to what extent welfare can be characterized in terms of suitably defined gaps between

variables’ actual and natural rate values.
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As has been shown, the welfare criterion obtained for this model shares several features

with the corresponding expressions that have been derived in simpler models. In particular,

a criterion can be specified such that welfare losses depend solely on quadratic functions of

the model’s variables, thus confirming that policy should be oriented toward stabilization of

macroeconomic aggregates, rather than toward attaining particular levels of those aggregates.

That said, an important difference that obtains in this case is that the composition of output

directly affects welfare in the endogenous-capital model—a result that is not present in

standard treatments.

Of course, the degree to which these additional considerations will affect the character-

ization of optimal monetary policy remains an open question. A natural next step, then—

which is left for future research—is to use the welfare criterion developed here in order to

assess optimal policy in the context of more richly specified (and empirically valid) structural

macromodels.
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A Appendix

This appendix provides detailed derivations for several equations in the text.

A.1 Detailing the Steps between Equations (53) and (54)

It is useful to label all terms in (53). I use the code that second-order model variable terms

that are in the loss function via consumption are labeled with a C; second-order model

variable terms that are in the loss function via hours are labeled with an H; and second-

order model variable terms that are in the loss function via the second-order cross-product

terms are labeled with an X.(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0


∞∑
t=0

βt

1
2

1−σ
c︸ ︷︷ ︸

C1

y2
t +

1
2

−1−c

δ︸ ︷︷ ︸
C2a

−σ
c

(
1−c

δ

)2

︸ ︷︷ ︸
C2b

k2
t+1+

1
2

1−c

δ
(1−δ)︸ ︷︷ ︸
C3a

−σ
c

(
1−c

δ

)2

(1−δ)2︸ ︷︷ ︸
C3b

k2
t

−σ
c
· 1−c

δ
(1−δ)︸ ︷︷ ︸

C4

ytkt+
σ

c
· 1−c

δ︸ ︷︷ ︸
C5

ytkt+1+
σ

c

(
1−c

δ

)2

(1−δ)︸ ︷︷ ︸
C6

ktkt+1+
1
2
· −α

1−α
α(1+s)︸ ︷︷ ︸
H1

k2
t

+
1
2
· −(1+s)

1−α︸ ︷︷ ︸
H2

y2
t +

α(1 + s)
1−α︸ ︷︷ ︸
H3

ktyt−
1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+
[
s+ α

1− α
+
σ

c

]
︸ ︷︷ ︸

X1

yty
n
t +
[
−α(1 + s)

1− α
+
σ

c
· 1− c

δ
(1− δ)

]
︸ ︷︷ ︸

X2

ytk
n
t +
[
−σ

c
· 1− c

δ

]
︸ ︷︷ ︸

X3

ytk
n
t+1

+
[
βα(1−δ)

1−β(1−δ)

] [
s+α
1−α

+
σ

c

]
︸ ︷︷ ︸

X4

kty
n
t +
[
βα(1−δ)

1−β(1−δ)

] [
−α(1+s)

1−α
+
σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X5

ktk
n
t

+
[
βα(1− δ)

1− β(1− δ)

] [
−σ

c
· 1− c

δ

]
︸ ︷︷ ︸

X6

ktk
n
t+1+

[
α

1− β(1− δ)

] [
−s+ α

1− α
− σ

c

]
︸ ︷︷ ︸

X7

kty
n
t

+
[

α

1−β(1−δ)

] [
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X8

ktk
n
t +
[

α

1−β(1−δ)

] [
σ

c
· 1−c

δ

]
︸ ︷︷ ︸

X9

ktk
n
t+1

−αβ︸︷︷︸
X10

(
kt+1y

n
t+1−kt+1k

n
t+1

)
+
[

αβ

1−β(1−δ)

] [
σ

c

]
︸ ︷︷ ︸

X11

kt+1y
n
t+1+

[
αβ

1−β(1−δ)

] [
−σ

c

]
︸ ︷︷ ︸

X12

kt+1y
n
t
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+
[

αβ

1− β(1− δ)

] [
−σ

c
· 1−c

δ

]
︸ ︷︷ ︸

X13

kt+1k
n
t+2 +

[
αβ

1− β(1− δ)

] [
σ

c
· 1−c

δ

]
︸ ︷︷ ︸

X14

kt+1k
n
t+1

+
[

αβ

1−β(1−δ)

] [
σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X15

kt+1k
n
t+1+

[
αβ

1−β(1−δ)

] [
−σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X16

kt+1k
n
t




+t.i.p.+O
(
‖ξ‖3

)
. (72)

We will simplify (72) as much as possible by trying to combine second-order terms in the

model variables with terms that are cross products between the variables and natural-rate

expressions (i.e., the variables from the flexible-price model). The goal is to “complete the

square” across a number of terms, which will then allow the loss function to be expressed in

terms of gap variables (which are more easily interpretable).

We can begin to simplify (72) by noting a number of substitutions. (For the latter

substitutions in this list we use the fact—noted in equation 45—that 1−c
δ = βα

1−β(1−δ) .)

• X1 = −C1−H2; X2 = −C4−H3; and X3 = −C5.

• X4 +X7 = −α
[
s+α
1−α + σ

c

]
= Y 1.

• X5 +X8 = α
[
α(1+s)

1−α −
σ
c ·

1−c
δ (1− δ)

]
= Y 2 + Y 3.

• X6 =
[
βα(1−δ)

1−β(1−δ)

] [
−σ

c ·
1−c
δ

]
=
[

1−c
δ (1− δ)

] [
−σ

c ·
1−c
δ

]
= −C6.

• The term X9 from a period ahead—that is, βX9(t+1)kt+1k
n
t+2—cancels with the X13

term from the current period—that is, X13kt+1k
n
t+1.

• X12 =
[

αβ
1−β(1−δ)

] [
−σ

c

]
=
[

1−c
δ

] [
−σ

c

]
= −C5.

• X14 =
[

αβ
1−β(1−δ)

] [
σ
c ·

1−c
δ

]
=
[

1−c
δ

] [
σ
c ·

1−c
δ

]
= −C2b.

• X16 =
[

βα
1−β(1−δ)

] [
−σ

c ·
1−c
δ (1− δ)

]
=
[

1−c
δ

] [
−σ

c ·
1−c
δ (1− δ)

]
= −C6.

Any new coefficients introduced in this round of substitutions will be labeled Y . Now that

we have defined all of our C and H coefficients, to conserve on space we will replace the

coefficient values with these names. This yields:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]
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= E0

[∞∑
t=0

βt
(

1
2

[C1]y2
t +

1
2

([C2a] + [C2b])k2
t+1+

1
2

([C3a] + [C3b])k2
t +[C4]ytkt+[C5]ytkt+1

+[C6]ktkt+1+
1
2

[H1]k2
t +

1
2

[H2]y2
t +[H3]ktyt−

1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+[−C1−H2] ytynt +[−C4−H3] ytknt +[−C5] ytknt+1+α
[
−s+ α

1− α
− σ

c

]
︸ ︷︷ ︸

Y 1

kty
n
t

+

[
α2(1 + s)

1− α

]
︸ ︷︷ ︸

Y 2

ktk
n
t +
[
−ασ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

Y 3

ktk
n
t +[−C6] ktknt+1+−αβ︸︷︷︸

X10

(
kt+1y

n
t+1−kt+1k

n
t+1

)

+
[

αβ

1−β(1−δ)

][
σ

c

]
︸ ︷︷ ︸

X11

kt+1y
n
t+1+[−C5] kt+1y

n
t +[−C2b]kt+1k

n
t+1

+
[

αβ

1− β(1− δ)

] [
σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X15

kt+1k
n
t+1+[−C6] kt+1k

n
t


+ t.i.p.+O

(
‖ξ‖3

)
. (73)

We can simplify (73) by noting that:

• Y 1 = −α 1+s
1−α + α− ασc = Z1 + Z2 + Z3 (terms in the next equation).

• Y 2 = −H1.

Any new coefficients introduced in this round of substitution will be labeled Z. We obtain:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0

[∞∑
t=0

βt
(

1
2

[C1]y2
t +

1
2

([C2a] + [C2b])k2
t+1+

1
2

([C3a] + [C3b])k2
t +[C4]ytkt+[C5]ytkt+1

+[C6]ktkt+1+
1
2

[H1]k2
t +

1
2

[H2]y2
t +[H3]ktyt−

1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+[−C1−H2] ytynt +[−C4−H3] ytknt +[−C5] ytknt+1+
[
−α 1+s

1−α

]
︸ ︷︷ ︸

Z1

kty
n
t + [α]︸︷︷︸

Z2

kty
n
t

+
[
−ασ

c

]
︸ ︷︷ ︸

Z3

kty
n
t +[−H1]ktknt +

[
−ασ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

Y 3

ktk
n
t +[−C6] ktknt+1−αβ︸︷︷︸

X10a

kt+1y
n
t+1

−αβ︸︷︷︸
X10b

kt+1k
n
t+1+

[
αβ

1−β(1−δ)

][
σ

c

]
︸ ︷︷ ︸

X11

kt+1y
n
t+1+[−C5] kt+1y

n
t +[−C2b]kt+1k

n
t+1
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+
[

αβ

1− β(1− δ)

] [
σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X15

kt+1k
n
t+1+[−C6] kt+1k

n
t


+ t.i.p.+O

(
‖ξ‖3

)
.

(74)

We can simplify (74) by noting that:

• Z1 = −H3.

• The term Z2 from a period ahead—that is βZ2(t+1)kt+1y
n
t+1—cancels with the X10a

term from the current period—that is X10akt+1y
n
t+1.

• The term X11 from one period earlier—that is, 1
βX11ktynt —can be moved one pe-

riod later and combined with Z3 from the current period—that is, Z3ktynt —to yield

−ασ
c

(
1− 1

1−β(1−δ)

)
kty

n
t = ασ

c

(
β(1−δ)

1−β(1−δ)

)
kty

n
t = σ

c

(
αβ(1−δ)

1−β(1−δ)

)
kty

n
t = σ

c ·
1−c
δ (1 −

δ)ktynt = −C4ktynt . (In the very initial period the term k0y
n
0 , which is independent

of policy, can be added to the expression so that the within-period loss function looks

the same for all periods.)

• The term X15 from one period earlier—that is, 1
βX15ktknt —can be moved one pe-

riod later and combined with Y 3 from the current period—that is, Y 3ktknt —to yield[
−ασ

c ·
1−c
δ (1−δ)

][
1− 1

1−β(1−δ)

]
ktk

n
t =

[
σ
c ·

1−c
δ (1−δ)

][
αβ(1−δ)

1−β(1−δ)

]
ktk

n
t = σ

c

(
1−c
δ

)2
(1 −

δ)2ktk
n
t = −C3bktknt . (In the very initial period, the term k0k

n
0 , which is independent

of policy, can be added to the period so that the within-period loss function looks the

same for all periods.)

This implies:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0

[∞∑
t=0

βt
(

1
2

[C1]y2
t +

1
2

([C2a] + [C2b])k2
t+1+

1
2

([C3a] + [C3b])k2
t +[C4]ytkt+[C5]ytkt+1

+[C6]ktkt+1+
1
2

[H1]k2
t +

1
2

[H2]y2
t +[H3]ktyt−

1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+[−C1−H2] ytynt +[−C4−H3] ytknt +[−C5] ytknt+1+[−H3] ktynt +[−C4] ktynt

+[−H1]ktknt +[−C3b] ktknt +[−C6] ktknt+1−αβkt+1k
n
t+1+[−C5] kt+1y

n
t

+[−C2b]kt+1k
n
t+1+[−C6] kt+1k

n
t

)]
+ t.i.p.+O

(
‖ξ‖3

)
. (75)
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The exercise now is to regroup terms so that we can interpret our loss function in terms of

gaps between our sticky- and flexible-price model variables:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0

[∞∑
t=0

βt
(

1
2

[C1+H2]
(
y2
t − 2ytynt

)
+

1
2

[C2b]
(
k2
t+1 − 2kt+1k

n
t+1

)
+

1
2

[C3b+H1]
(
k2
t − 2ktknt

)
+[C4+H3] (ytkt−ytknt −ktynt )+[C5]

(
ytkt+1−ytknt+1−kt+1y

n
t

)
+[C6]

(
ktkt+1−ktknt+1−kt+1k

n
t

)
+

1
2

[C2a] k2
t+1+

1
2

[C3a] k2
t +αβkt+1k

n
t+1

−1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

)]
+ t.i.p.+O

(
‖ξ‖3

)
. (76)

Only the terms 1
2 [C2a] k2

t+1 + 1
2 [C3a] k2

t + αβkt+1k
n
t+1 remain ungrouped in equation (76).

These terms can be rearranged, however, by noting that the term C3a from one period

ahead—that is, βC3ak2
t+1—can be moved back a period and combined with the term C2a

from the current period (that is, C2ak2
t+1) to yield −1−c

δ (1− β(1− δ))k2
t+1 = − αβ

1−β(1−δ)(1−
β(1−δ))k2

t+1 = −αβk2
t+1. Thus, by shifting terms from one period to another, we can replace

1
2 [C2a] k2

t+1 + 1
2 [C3a] k2

t + αβkt+1k
n
t+1 with −1

2αβ(k2
t+1 − 2kt+1k

n
t+1). Then equation (76)

becomes:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0

[∞∑
t=0

βt
(

1
2

[C1+H2]
(
y2
t − 2ytynt

)
+

1
2

[C2b]
(
k2
t+1 − 2kt+1k

n
t+1

)
+

1
2

[C3b+H1]
(
k2
t − 2ktknt

)
+[C4+H3] (ytkt−ytknt −ktynt )+[C5]

(
ytkt+1−ytknt+1−kt+1y

n
t

)
+[C6]

(
ktkt+1−ktknt+1−kt+1k

n
t

)
− 1

2
αβ
(
k2
t+1 − kt+1k

n
t+1

)
−1

2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

)]
+ t.i.p.+O

(
‖ξ‖3

)
. (77)

It is straightforward to complete the relevant quadratics with natural-rate terms that are

independent of policy. We also substitute for C1, C2b, C3b, C4, C5, C6, H1, H2, and H3,

and replace (1− c)/δ using equation (45). Doing so yields:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0

[∞∑
t=0

βt
(
−1

2

[
s+ α

1− α
+
σ

c

]
(yt − ynt )2− 1

2

[
σ

c

(
αβ

1− β(1− δ)

)2

+αβ

] (
kt+1 − knt+1

)2
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−1
2

[
σ

c

(
αβ(1− δ)

1− β(1− δ)

)2

+
α2(1 + s)

1− α

]
(kt − knt )2− 1

2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z),

+
[
−σ

c
· αβ(1− δ)

1− β(1− δ)
+
α(1 + s)

1− α

]
(yt−ynt ) (kt−knt )

+
[
σ

c
· αβ

1− β(1− δ)

]
(yt−ynt )

(
kt+1 − knt+1

)
+

[
σ

c

(
αβ

1− β(1− δ)

)2

(1− δ)
]

(kt−knt )
(
kt+1−knt+1

))]
+ t.i.p.+O

(
‖ξ‖3

)
.

This is equation (58) from section 5.3.2.

A.2 Detailing the Steps between Equations (56) and (57)

I label all terms in (56) in the same manner that (53) was labeled.(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0


∞∑
t=0

βt

1
2

1−σ
c︸ ︷︷ ︸

C1

y2
t +

1
2

−1−c

δ︸ ︷︷ ︸
C2a

−σ
c

(
1−c

δ

)2

︸ ︷︷ ︸
C2b

k2
t+1+

1
2

1−c

δ
(1−δ)︸ ︷︷ ︸
C3a

−σ
c

(
1−c

δ

)2

(1−δ)2︸ ︷︷ ︸
C3b

k2
t

−σ
c
· 1−c

δ
(1−δ)︸ ︷︷ ︸

C4

ytkt+
σ

c
· 1−c

δ︸ ︷︷ ︸
C5

ytkt+1+
σ

c

(
1−c

δ

)2

(1−δ)︸ ︷︷ ︸
C6

ktkt+1+
1
2
· −α

1−α
α(1+s)︸ ︷︷ ︸
H1

k2
t

+
1
2
· −(1+s)

1−α︸ ︷︷ ︸
H2

y2
t +

α(1 + s)
1−α︸ ︷︷ ︸
H3

ktyt−
1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+
[
s+ α

1− α
+
σ

c

]
︸ ︷︷ ︸

X1

yty
n
t +
[
−α(1 + s)

1− α
+
σ

c
· 1− c

δ
(1− δ)

]
︸ ︷︷ ︸

X2

ytkt+
[
−σ

c
· 1− c

δ

]
︸ ︷︷ ︸

X3

ytk
n
t+1

+
[
βα(1−δ)

1−β(1−δ)

] [
s+α
1−α

+
σ

c

]
︸ ︷︷ ︸

X4

kty
n
t +
[
βα(1−δ)

1−β(1−δ)

] [
−α(1+s)

1−α
+
σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X5

k2
t

+
[
βα(1− δ)

1− β(1− δ)

] [
−σ

c
· 1− c

δ

]
︸ ︷︷ ︸

X6

ktk
n
t+1+

[
α

1− β(1− δ)

] [
−s+ α

1− α
− σ

c

]
︸ ︷︷ ︸

X7

kty
n
t

+
[

α

1−β(1−δ)

] [
α(1+s)

1−α
− σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X8

k2
t +
[

α

1−β(1−δ)

] [
σ

c
· 1−c

δ

]
︸ ︷︷ ︸

X9

ktk
n
t+1
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−αβ︸︷︷︸
X10

(
kt+1y

n
t+1−kt+1k

n
t+1

)
+
[

αβ

1−β(1−δ)

] [
σ

c

]
︸ ︷︷ ︸

X11

kt+1y
n
t+1+

[
αβ

1−β(1−δ)

] [
−σ

c

]
︸ ︷︷ ︸

X12

kt+1y
n
t

+
[

αβ

1− β(1− δ)

] [
−σ

c
· 1−c

δ

]
︸ ︷︷ ︸

X13

kt+1k
n
t+2 +

[
αβ

1− β(1− δ)

] [
σ

c
· 1−c

δ

]
︸ ︷︷ ︸

X14

kt+1k
n
t+1

+
[

αβ

1−β(1−δ)

] [
σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X15

k2
t+1+

[
αβ

1−β(1−δ)

] [
−σ

c
· 1−c

δ
(1−δ)

]
︸ ︷︷ ︸

X16

kt+1kt




+t.i.p.+O
(
‖ξ‖3

)
(78)

The sequence of simplifying steps listed after equations (72), (73), and (74) can be used to

simplify equation (78). Together these imply:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ

(Ct)
1−σ eaχ

c
t − 1

1 + s
(Ht)

1+s ebχ
h
t

)]

= E0

[∞∑
t=0

βt
(

1
2

[C1]y2
t +

1
2

([C2a] + [C2b])k2
t+1+

1
2

([C3a] + [C3b])k2
t +[C4]ytkt+[C5]ytkt+1

+[C6]ktkt+1+
1
2

[H1]k2
t +

1
2

[H2]y2
t +[H3]ktyt−

1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

+ [−C1−H2] ytynt +[−C4−H3] ytkt+[−C5] ytknt+1+[−H3] ktynt +[−C4] ktynt

+[−H1]k2
t +[−C6] ktknt+1−αβkt+1k

n
t+1+[−C5] kt+1y

n
t +[−C2b]kt+1k

n
t+1

+[−C6] kt+1kt+[−C3b] k2
t

)]
+t.i.p.+O

(
‖ξ‖3

)
. (79)

As before, we regroup terms so that we can interpret our loss function in terms of gaps

between the sticky-price and flexible-price model variables. In doing so, we also use the fact

(used earlier) that the C3a term from a period earlier—that is, βC3ak2
t+1—can be combined

with the C2a term from the current period—that is C2ak2
t+1—to yield −αβk2

t+1:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
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1
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(Ct)
1−σ eaχ

c
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t
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[∞∑
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2
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+

1
2
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(
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n
t

)
+[C6]ktknt+1−

1
2
· 1

1−α

(
1
θ

+
α

1−α

)
varzyt(z)

)]
+ t.i.p.+O

(
‖ξ‖3

)
. (80)
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We can then complete the relevant quadratics with natural-rate terms that are independent

of policy, substitute for C1, C2b, C3b, C4, C5, C6, H1, H2, and H3, and replace (1− c)/δ

using equation (45). Doing so yields:(
C1−σ
∗
c

)−1

E0

[ ∞∑
t=0

βt
(

1
1− σ
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1−σ eaχ
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[∞∑
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+
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)
.

In terms of the coefficients, the above equation—which is equation (57) in the text—looks a

lot like (54); however, not all squares in the above expression have been completed and not

everything is in gap form. Thus, we re-write equation (57) as:(
C1−σ
∗
c

)−1

E0

[ ∞∑
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+t.i.p.+O
(
‖ξ‖3

)
.

Noting that:

A3ktynt +A5ktknt+1+A1k2
t =

[
σ
αβ(1−δ)

1−β(1−δ)

]
ktc

n
t and A4ktynt +A2k2

t = [−α(1+s)] kthnt ,
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and that (kt+1 − knt+1) = δ(it − int ), we can write:(
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c

)−1
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.

This is equation (58) in the text.
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