

Distribution To NASA Installations

Following is a list of individuals who control the distribution of the NASA POCKET STATISTICS at their respective NASA Installations. Requests for additional copies should be made through the controlling office shown below.

NASA HEADQUARTERS Ms. Juanita M. Carlton Executive Support Office, Code DA

AMES RESEARCH CENTER Mr. Jack D. Stanley, Staff Assistant to the Associate Director

AMES DRYDEN FLIGHT RESEARCH FACILITY ATTN: Research Librarian, Room 2151

GODDARD INSTITUTE FOR SPACE STUDIES Dr. James E. Hansen

GODDARD SPACE FLIGHT CENTER Ms. Kay Seidenspinner Code 200

JET PROPULSION LABORATORY Ms. Justine Weiher Document Review Group JOHNSON SPACE CENTER Mr. H. M. Porter Printing Management Branch, Code JM8

JSC WHITE SANDS TEST FACILITY Mr. Rob. R. Tillett, Manager

KENNEDY SPACE CENTER Ms. Lisa Fowler Public Information Branch

KSC RESIDENT OFFICE (Vandenberg AFB) Mr. Ted L. Oglesby, Manager

LANGLEY RESEARCH CENTER Ms. Margaret W. Hunt Mail Stop 115

LEWIS RESEARCH CENTER Mr. Americo F. Forestieri, Director External Affairs, MS 3-16 MARSHALL SPACE FLIGHT CENTER Ms. Betty Fowler CN22 Management Operations Office

MICHOUD ASSEMBLY FACILITY Mr. John Demarest, Manager

NASA RESIDENT OFFICE -- JPL Mr. Fred W. Bowen, Manager

JOHN C. STENNIS SPACE CENTER Mr. Roy S. Estess, Director

SLIDELL COMPUTER COMPLEX Mr. Bobby L. German, Jr., Manager

WALLOPS FLIGHT FACILITY Mr. F. Moore, Director Management and Operations POCKET STATISTICS is published for the use of NASA managers and their staff. Included is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial and Manpower data.

Foreword

The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

POCKET STATISTICS is published for limited distribution. Requests for copies of this document should be sent to NASA Headquarters, Office of Headquarters Operations (Code DA). Changes or deletions to the distribution list may be made by phone to (202) 453-1039.

1.0

Published and Distributed by NATIONAL AERONAUTICS AND SPACE ADMINISTRATION OFFICE OF HEADQUARTERS OPERATIONS, CODE DA Washington, DC 20546

Contents

Section A - Administration and Organization

NASA Organization NASA Administrators National Aeronautics and Space Act U.S. National Space Policy NASA Installations The Year in Review.	A-2 A-3 A-4 A-6 A-9 A-14
Section B - Space Flight Activity	
Current Worldwide Launch Vehicles Summary of Announced Launches NASA Launches by Vehicle Launch History Summary of Announced Payloads Summary of US Payloads Soviet Spacecraft Designations Unofficial Tabulation of USSR Payloads NASA Astronauts Shuttle Approach and Landing Tests United States Manned Space Flight Shuttle Payloads and Experiments The Planets USA Planetary Space Flights USA Lunar Space Flights USA Lunar Space Flights USA Lunar Space Flights USA Lunar Space Flights NASA Major Launch Record	B-2 B-4 B-6 B-9 B-10 B-12 B-15 B-16 B-18 B-23 B-24 B-48 B-24 B-48 B-55 B-58 B-62

-

-.

Section C - Procurement, Funding and Manpower Distribution of NASA Prime Contract Awards C-3 C-4 Contract Awards by State C-5 Procurement Activity Section A C-6 Distribution of NASA Procurements C-7 Principal Contractors C-10 Educational and Nonprofit Institutions NASA's Budget Authority in 1991 Dollars C-14 Financial Summary C-15 R&D Funding C-16 SFC&DC Funding C-20 C of F Funding C-22 C-24 R&PM Funding Section B Personnel Summary C-26 Employment Summary C-28 Total NASA Civil Service Workforce C-29 Minority Employees C-30 Women Employees C-31 Section C

Section A

Administration and Organization

1.15

NASA Organization Chart

NASA Administrators

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

AN ACT To provide for research into problems of flight within and outside the Earth's atmosphere, and for other purposes.

DECLARATION OF POLICY AND PURPOSE

- Sec. 102 (a) The Congress hereby declares that it is the policy of the United States that activities in space should be devoted to peaceful purposes for the benefit of all mankind.
 - (b) The Congress declares that the general welfare and security of the United States require that adequate provision be made for aeronautical and space activities. The Congress further declares that such activities shall be the responsibility of, and shall be directed by, a civilian agency exercising control over aeronautical and space activities sponsored by the United • States, except that activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States (including the research and development necessary to make effective provision for the defense of the United States) shall be the responsibility of, and shall be directed by, the Department of Defense; and that determination as to which such agency has responsibility for and direction of any such activity shall be made by the President in conformity with section 201(e).
 - (c) The Congress declares that the general welfare of the United States requires that the National Aeronautics and Space Administration (as established by title II of this act) seek and encourage to the maximum extent possible the fullest commercial use of space.

- (d) The aeronautical and space activities of the United States shall be conducted so as to contribute materially to one or more of the following objectives:
 - (1) The expansion of human knowledge of phenomena in the atmosphere and space;
 - (2) The improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles;
 - (3) The development and operation of vehicles capable of carrying instruments, equipment, supplies, and living organisms through space;
 - (4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;
 - (5) The preservation of the role of the United States as a leader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere;
 - (6) The making available to agencies directly concerned with national defense of discoveries that have military value or significance, and the furnishing by such agencies, to the civilian agency established to direct and control nonmilitary aeronautical and space activities, of information as to discoveries which have value or significance to that agency;
 - (7) Cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results thereof; and

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

DECLARATION OF POLICY AND PURPOSE (Continued)

- (8) The most effective utilization of the scientific and engineering resources of the United States, with close cooperation among all interested agencies of the United States in order to avoid unnecessary duplication of effort, facilities, and equipment.
- (e) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward ground propulsion systems research and development.
- (f) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward the development of advanced automobile propulsion systems.
- (g) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed to assisting in bioengineering research, development, and demonstration programs designed to alleviate and minimize the effects of disability.

FUNCTIONS OF THE ADMINISTRATION

- Sec. 203 (a) The Administration, in order to carry out the purpose of this Act, shall -
 - plan, direct, and conduct aeronautical and space activities;
 - (2) arrange for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements and observations; and
 - (3) provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.
 - (b) (1) The Administration shall, to the extent of appropriated funds, initiate, support, and carry out such research, development, demonstration, and other related activities in ground propulsion technologies.
 - (2) The Administration shall initiate, support, and carry out such research, development, demonstration, and other related activities in solar heating and cooling technologies (to the extent that funds are appropriated therefor).

U.S. National Space Policy

On November 2, 1989, the President approved a national space policy that updated and reaffirmed U.S. goals and activities in space. Areas affected include civil and commercial remote sensing, space transportation, space debris, federal subsidies of commercial space activities, and Space Station Freedom.

Overall, the President's newly-issued national space policy revalidates the ongoing direction of U.S. space efforts and provides a broad policy framework to guide future United States space activities.

The policy reaffirms the Nation's commitment to the exploration and use of space in support of our national well being. United States leadership in space continues to be a fundamental objective guiding U.S. space activities. The policy recognizes that leadership requires United States preeminence in key areas of space activity critical to achieving our national security, scientific, technical, economic, and foreign policy goals. The policy also retains the long-term goal of expanding human presence and activity beyond Earth orbit into the Solar System. This goal provides the overall policy framework for the President's human space exploration initiative, announced July 20, 1989, in which the President called for completing Space Station Freedom, returning permanently to the Moon, and exploration of the planet Mars.

United States space activities are conducted by three separate and distinct sectors: two strongly interacting governmental sectors (civil and national security) and a separate, non-governmental commercial sector. Close coordination, cooperation, and technology and information exchange will be maintained among these sectors to avoid unnecessary duplication and promote attainment of United States space goals.

GOALS AND PRINCIPLES

A fundamental objective guiding United States space activities has been, and

continues to be, space leadership. Leadership in an increasingly competitive international environment does not require United States preeminence in all areas and disciplines of space enterprise. It does require United States preeminence in key areas of space activity critical to achieving our national security, scientific, technical, economic, and foreign policy goals.

- The overall goals of United States space activities are: (1) to strengthen the security of the United States; (2) to obtain scientific, technological, and economic benefits for the general population and to improve the quality of life on Earth through space-related activities; (3) to encourage continuing United States private-sector investment in space and related activities; (4) to promote international cooperative activities taking into account United States National security, foreign policy, scientific, and economic interests; (5) to cooperate with other nations in maintaining the freedom of space for all activities that enhance the security and welfare of mankind; and, as a long-range goal, (6) to expand human presence and activity beyond Earth orbit into the solar system.
- United States space activities shall be conducted in accordance with the following principles:
 - The United States is committed to the exploration and use of outer space by all nations for peaceful purposes and for the benefit of all mankind. "Peaceful purposes" allow for activities in pursuit of National security goals.
 - The United States will pursue activities in space in support of its inherent right of self-defense and its defense commitments to its allies.
 - The United States rejects any claims to sovereignty by any nation over outer space or celestial bodies, or any portion thereof, and rejects any limitations on the fundamental right of sovereign nations to acquire data from space.

U.S. Space Policy

- The United States considers the space systems of any nation to be national property with the right of passage through and operations in space without interference. Purposeful interference with space systems shall be viewed as an intringement on sovereign rights.
- The United States shall encourage and not preclude the commercial use and exploitation of space technologies and systems for national economic benefit. These commercial activities must be consistent with national security interests, and international and domestic legal obligations.
- The United States will, as a matter of policy, pursue its commercial space objectives without the use of direct Federal subsidies.
- The United States shall encourage other countries to engage in free and fair trade in commercial space goods and services.
- The United States will conduct international cooperative space-related activities that are expected to achieve sufficient scientific, political, economic, or national security benefits for the nation. The United States will seek mutually beneficial international participation in its space and space-related programs.

CIVIL SPACE POLICY

- The United States civil space sector activities shall contribute significantly to enhancing the Nation's science, technology, economy, pride, sense of well-being and direction, as well as United States world prestige and leadership. Civil sector activities shall comprise a balanced strategy of research, development, operations, and technology for science, exploration, and appropriate applications.
- The objective of the United States civil space activities shall be; (1) to expand knowledge of the Earth, its environment, the solar system,

and the universe; (2) to create new opportunities for use of the space environment through the conduct of appropriate research experimentation in advanced technology and systems; (3) to develop space technology for civil applications and, wherever appropriate, make such technology available to the commercial sector; (4) to preserve the United States preeminence in critical aspects of space science, applications, technology, and manned space flight; (5) to establish a permanently manned presence in space; and (6) to engage in international cooperative efforts that further United States space goals.

COMMERCIAL SPACE POLICY

The United States government shall not preclude or deter the continuing development of a separate, non-governmental commercial cpace sector. Expanding private sector investment in space by the market-driven commercial sector generates economic benefits for the Nation and supports governmental Space Sectors with an increasing range of space goods and services. Governmental Space Sectors shall purchase commercially available space goods and services to the fullest extent feasible and shall not conduct activities with potential commercial applications that preclude or deter commercial sector space activities except for national security or public safety reasons. Commercial Sector space activities shall be supervised or regulated only to the extent required by law, national security, international obligations, and public safety.

NATIONAL SECURITY SPACE POLICY

The United States will conduct those activities in space that are necessary to national defense. Space activities will contribute to national security objectives by (1) deterring, or if necessary, defending against enemy attack; (2) assuring that forces of hostile nations cannot prevent our own use of space; (3) negating, if necessary, hostile space systems; and (4) enhancing operations of United States and allied forces. Consistent with treaty obligations, the national security space

U.S. Space Policy

program shall support such functions as command and control, communications, navigation, environmental monitoring, warning, surveillance and force application (including research and development programs which support these functions).

INTER-SECTOR POLICIES

This section contains policies applicable to, and binding on, the national security and civil space sectors:

- * The United States Government will maintain and coordinate separate national security and civil operational space systems where differing needs of the sectors dictate.
- Survivability and endurance of national security space systems, including all necessary system elements, will be pursued commensurate with the planned use in crisis and conflict, with the threat, and with the availability of other assets to perform the mission.
- Government sectors shall encourage, to the maximum extent feasible, the development and use of United States private sector space capabilities.
- A continuing capability to remotely sense the Earth from space is important to the achievement of United States space goals. To ensure that the necessary capability exists, the United States government will: (a) ensure the continuity of LANDSAT-type remote sensing data; (b) discuss remote sensing issues and activities with foreign governments operating or regulating the private operation of remote sensing systems; (c) continue government research and development for future advanced remote sensing technologies and systems; and (d) encourage the development of commercial systems, which image the Earth from space, competitive with, or superior to foreign operated or commercial systems.

- Assured access to space, sufficient to achieve all United States space goals, is a key element of national space policy. United States space transportation systems must provide a balanced, robust, and flexible capability with sufficient resiliency to allow continued operations despite failures in any single system. The United States Government will continue research and development on component technologies in support of future transportation systems. The goals of United States space transportation policy are: (1) to achieve and maintain safe and reliable access to, transportation in, and return from, space; (2) to exploit the unique attributes of manned and unmanned launch and recovery systems; (3) to encourage to the maximum extent feasible, the development and use of United States private sector space transportation capabilities; and (4) to reduce the costs of space transportation and related services.
- Communications advancements are critical to all United States space sectors.
 To ensure necessary capabilities exist, the United States Government will continue research and development efforts for future advanced space communications technologies.
- The United States will consider and, as appropriate, formulate policy positions on arms control measures governing activities in space, and will conclude agreements on such measures only if they are equitable, effectively verifiable, and enhance the security of the United States and its allies.
- All space sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness. The United States will encourage other space-faring nations to adopt policies and practices aimed at debris minimization.

.

NASA HEADQUARTERS Washington, DC 20546

NASA Headquarters exercises management over the space flight centers, research centers, and other installations that constitute the National Aeronautics and Space Administration.

Responsibilities of Headquarters cover the determination of programs and projects; establishment of management policies; procedures and performance criteria; evaluation of progress; and the review and analysis of all phases of the aerospace program.

Planning, direction, and management of NASA's research and development programs are the responsibility of the program offices which report to and receive overall guidance and direction from an associate or assistant administrator.

AMES RESEARCH CENTER Moffett Field, CA 94035

Ames Research Center was founded in 1940 as an aircraft research laboratory by the National Advisory Committee for Aeronautics (NACA) and named for Dr. Joseph S. Ames, Chairman of NACA from 1927 to 1939. In 1958, Ames became part of NASA, along with other NACA installations and certain Department of Defense facilities. In 1981, NASA merged Ames with the Dryden Flight Research Facility.

Ames specializes in scientific research, exploration and applications aimed toward creating new technology for the nation.

The center's major program responsibilities are concentrated in computer science and applications, computational and experimental aerodynamics, flight simulation, flight research, hypersonic aircraft, rotorcraft and powered-lift technology, aeronautical and space sciences, solar system exploration, airborne science and applications, and infrared astronomy.

HUGH L. DRYDEN FLIGHT RESEARCH FACILITY Edwards, CA 93523

Since 1947, Ames-Dryden has developed a unique and highly specialized capability for conducting flight research programs. Its test organization, consisting of pilots, scientists, engineers, technicians and mechanics, is unmatched anywhere in the world. This versatile organization has demonstrated its capability, not only with high-speed research aircraft, but also with such unusual flight vehicles as the Lunar Landing Research Vehicle and the wingless lifting bodies.

Its primary research tools are research aircraft, ranging from a B-52 carrier aircraft and high performance jet fighters to the X-29 forward swept wing aircraft. Ground-based facilities include a high temperature loads calibration laboratory that allows ground-based testing of complete aircraft and structural components under the combined effects of loads and heat; a highly developed aircraft flight instrumentation capability; a flight systems laboratory with a diversified capability for avionics system fabrication, development and operations; a flow visualization facility that allows basic flow mechanics to be seen of models or small components; a data analysis facility for processing of flight research data; a remotely piloted research vehicles facility and a test range communications and data transmission capability, that links NASA's Western Aeronautical Test Range facilities at Ames-Moffett, Crows Landing and Ames-Dryden.

GODDARD SPACE FLIGHT CENTER Greenbelt, MD 20771

This NASA field center has put together a multitalented spaceflight team -engineers, scientists, technicians, project managers and support personnel -which is extending the horizons of human knowledge not only about the solar system and the universe but also about our Earth and its environment.

The Goddard mission is being accomplished through scientific research centered in six space and Earth science laboratories and in the management, development and operation of several near-Earth space systems.

After being launched into space, satellites fall under the 24-hour-a-day surveillance of a worldwide ground and spaceborne communications network, the nerve center of which is located at Goddard. One of the key elements of that network is the Tracking and Data Relay Satellite System (TDRSS) with its orbiting Tracking and Data Relay Satellite and associated ground tracking stations.

JET PROPULSION LABORATORY Pasadena, CA 91109

NASA's Jet Propulsion Laboratory (JPL) is a government-owned facility staffed by the California Institute of Technology. JPL operates under a NASA contract administered by the NASA Pasadena Office. In addition to the Pasadena site, JPL operates the Deep Space Communications Complex, a station of the worldwide Deep Space Network (DSN). The laboratory is engaged in activities associated with deep space automated scientific missions -- engineering subsystem and instrument development, and data reduction and analysis required by deep space flight.

The laboratory also designs and tests flight systems, including complete spacecraft, and provides technical direction to contractor organizations.

LYNDON B. JOHNSON SPACE CENTER Houston, TX 77058

Johnson Space Center was established in September 1961 as NASA's primary center for design, development and testing of spacecraft and associated systems for manned flight; selection and training of astronauts; planning and conducting manned missions; and extensive participation in the medical engineering and scientific experiments carried aboard space flights.

Johnson has program management responsibility for the Space Shuttle program, the nation's current manned space flight program. Johnson also has a major responsibility for the development of the Space Station, a permanently manned, Earth-orbiting facility to be constructed in space and operable within a decade. The center will be responsible for the interfaces between the Space Station and the Space Shuttle.

JOHN F. KENNEDY SPACE CENTER Kennedy Space Center, FL 32899

Kennedy Space Center (KSC) was created in the early 1960's to serve as the launch site for the Apollo lunar landing missions. After the Apollo program ended in 1972, Kennedy's Complex 39 was used for the launch of the Skylab spacecraft, and later, the Apollo spacecraft for the Apollo Soyuz Test Project.

Kennedy Space Center serves as the primary center within NASA for the test, checkout and launch of space vehicles. This presently includes launch of manned and unmanned vehicles at Kennedy, the adjacent Cape Canaveral Air Force Station, and at Vandenberg Air Force Base in California.

The center is responsible for the assembly, checkout and launch of Space Shuttle vehicles and their payloads, landing operations and the turn-around of Space Shuttle orbiters between missions, as well as preparation and launch of unmanned vehicles.

LANGLEY RESEARCH CENTER Hampton, VA 23665-5225

Langley's primary mission is the research and development of advanced concepts and technology for future aircraft and spacecraft systems, with particular emphasis on environmental effects, performance, range, safety and economy. Examples of this research are projects involving flight simulation, composite structural materials and automatic flight control systems.

Work continues in the development of technology for avionic systems for reliable operation in terminal areas of the future. Efforts continue to improve supersonic flight capabilities for both transport and military aircraft. The center works with the general aviation industry to help solve problems concerning aircraft design and load requirements and to improve flight operations.

Langley's newest major project is developing technology for the National Aero-Space Plane (NASP).

LEWIS RESEARCH CENTER Cleveland, OH 44135

Lewis Research Center was established in 1941 by the National Advisory Committee for Aeronautics (NACA). Named for George W. Lewis, NACA's Director of Research from 1924 to 1947, the center developed an international reputation for its research on jet propulsion systems.

Lewis is NASA's lead center for research, technology and development in aircraft propulsion, space propulsion, space power and satellite communication.

Aircraft propulsion activities in the early days of the jet age were to develop aircraft which would fly higher, faster and farther. Today's goals are fuel conservation, quieter flight and cleaner exhaust.

Lewis has responsibility for developing the largest space power system ever designed to provide the electrical power necessary to accommodate the life support systems and research experiments to be conducted aboard the Space Station. In addition, the center will support the Station in other major areas such as auxiliary propulsion systems and communications.

Lewis was selected by the Office of Management and Budget (OMB) as a Quality Improvement Prototype, which is one of the highest honors a federal governmen facility can achieve for quality and productivity. The award is part of the President's Productivity Improvement Program, which is administered by OMB.

MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, AL 35812

George C. Marshall Space Flight Center (MSFC) was formed on July 1, 1960, by the transfer to NASA of buildings and personnel comprising part of the U.S. Army Ballistic Missile Agency. Named for the famous soldier and statesman, General of the Army George C. Marshall, it was officially dedicated by President Dwight D. Eisenhower on September 8, 1960.

Marshall is a multiproject management, scientific and engineering establishment, with much emphasis on projects involving scientific investigation and application of space technology to the solution of problems on Earth.

In helping to reach the nation's goals in space, the center is working on many projects. Marshall had a significant role in the development of the Space Shuttle. It provides the orbiter's engines, the external tank that carries liquid hydrogen and liquid oxygen for those engines, and the solid rocket boosters that assist in lifting the Shuttle orbiter from the launch pad.

The center also plays a key role in the development of payloads to be flown aboard the Shuttle. One such payload is Spacelab, a reusable, modular scientific research facility carried in the Shuttle's cargo bay.

Marshall also is committed to the investigation of materials processing in space, which, in a gravity-free environment, promises to provide opportunities for understanding and improving Earth-based processes and for the formulation of space-unique materials. Exciting new techniques in materials processing have already been demonstrated in past Spacelab missions, such as the formation of alloys from normally immiscible products, and the growth of near-perfect large crystals impossible to grow on Earth.

MICHOUD ASSEMBLY FACILITY New Orleans, LA 70189

The primary mission of the Michoud Assembly Facility is the systems engineering, engineering design, manufacture, fabrication, assembly and related work for the Space Shuttle external tank. Marshall Space Flight Center exercises overall management control of the facility.

JOHN C. STENNIS SPACE CENTER Stennis Space Center, MS 39529

The John C. Stennis Space Center (SSC) scientific community is actively engaged in several research and development programs involving space, oceans and Earth. The complex includes industrial, laboratory and specialized engineering facilities to support the testing of large rocket propulsion systems.

The main mission of SSC is support of Space Shuttle main engine and main orbiter propulsion system testing. Shuttle main engine testing has been under way at SSC since 1975.

WALLOPS FLIGHT FACILITY Wallops Island, VA 23337

Established in 1945, Wallops Flight Facility, a part of the Goddard Space Flight Center, is one of the oldest launch sites in the world. Wallops manages and implements NASA's sounding rocket projects which use suborbital rocket vehicles to accommodate approximately 50 scientific missions each year. Wallops manages and coordinates NASA's Scientific Balloon Projects using thin film, helium filled balloons to provide approximately 45 scientific missions each year.

The Year in Review

NASA's accomplishments for the year 1990, despite several setbacks, were many and varied; ranging from the launch of Hubble Space Telescope to the retrieval of the SEEDS experiment housed on the LDEF to Magellan's intriguing radar images of Earth's sister planet, Venus.

SPACE SCIENCE AND APPLICATIONS

Hubble Space Telescope (HST) was launched aboard the Space Shuttle Discovery (STS-31) in April to begin gathering data on the origin of the universe. HST's initial optical-engineering test returned a valuable science observation, resolving the star cluster 30 Doradus three to four times better than the best ground-based observation. The discovery in June of a spherical aberration, a misshaping of the primary mirror that prevents the telescope from focusing light to a single, precise point will be repaired during the HST Servicing Mission planned for 1992. Replacement of the Wide Field Planetary Camera (WFPC) with the WFPC-2 will compensate for the current aberration.

Some highlights of HST's mission thus far include the capability of observing objects in visible light much more clearly than ground-based telescopes and extraordinary observations in the ultraviolet wavelengths. The WFPC observed a jet of material streaming away from the Orion Nebula with unprecedented clarity, offering insights into this region of young stars, and the Faint Object Camera has returned the clearest image yet of Pluto, and its moon, Charon. Most dramatically, the WFPC took several hundred pictures as the white spots on Saturn grew into an immense storm that spread around the planet's equator.

The Cosmic Background Explorer (COBE) completed its survey of the entire sky in infrared and microwave radiation and made unprecedented measurements of background radiation that support the Big Bang theory of the origin of the Universe. In December the Space Shuttle Columbia carried the ASTRO-1 payload, consisting of three ultraviolet telescopes and the Broad-Band X-Ray Telescope, to study the high-energy universe. Astronomers made 394 observations of 135 objects, including Jupiter and its moon lo, a comet, exploding stars, galaxies and quasars. ASTRO-1 also marked the return to flight of the Spacelab payload systems, which last flew in 1985.

The Magellan spacecraft returned radar images of Venus showing geological features unlike anything seen on Earth. Among the images sent back were what scientists called crater farms as well as checkered patterned fault lines running at right angles. Most intriguing were indications that Venus may still be geologically active, though much less so than Earth.

The Ulysses spacecraft, a joint NASA/ESA mission to study the poles of the Sun and interplanetary space above and below the poles, was launched in October by the Space Shuttle Discovery (STS-41).

In February, Galileo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck. In December, Galileo used the Earth's gravity to pick up speed on it's way to its ultimate rendezvous with Jupiter in 1995.

Six of the nine planets were photographed by Voyager 1, the first time such a perspective had ever been seen. Ploneer 11 left the solar system for interstellar space, while Pioneer 10 set a distance record by passing the 50 astronomical-unit milestone, 4.6 billion miles from Earth.

The Combined Release and Radiation Effects Satellite (CRRES), which uses chemical releases to study the Earth's magnetic fields and the plasmas, or ionized gases, that travel through them, was launched in July. Releases from a similar mission, PEGSAT, were seen in the spring over parts of Northern Canada.

NASA received approval from Congress to begin the Earth Observing System (EOS), a series of satellites that will use the perspective from space to observe the Earth as a global environmental system.

NASA scientists analyzed global temperatures from the 1980s to offer insights into potential global warming. Though no net trend could be seen within the last decade, observations indicated the 1980s were warmer than the 1970s. NASA's ongoing ozone depletion studies showed the 1990 ozone hole over Antarctica opened as rapidly and covered as wide an area as the record 1987 hole. A co-sponsored airborne expedition also showed local areas of ozone depletion over the Arctic. In October, the Space Shuttle Discovery flew the Shuttle Solar Backscatter Ultraviolet instrument used to calibrate other ozonedetection instruments. To continue global ozone monitoring through the end of the decade, NASA agreed with the Soviet Union to place a Total Ozone Mapping Spectrometer aboard a Soviet Meter satellite in 1991.

U.S.-Soviet Cooperation extended into the life sciences as the two nations exchanged biomedical data from space flights in 1989 at a September meeting. In addition, specialists from both countries began to analyze data obtained from short- and long-duration missions dealing with bone, muscle and cardiovascular physiology. The Physiological Systems Experiment was flown on STS-41 in October to investigate whether microgravity-induced conditions mimic medical problems on Earth.

Space Science research extended into other areas as well. Space Shuttle middeck payloads included experiments to investigate how protein crystals and how flames spread in the absence of the Earth's gravity. NASA aircraft took measurements that ultimately will be used to build instruments to study global winds and tropical rainfall and studied the chemistry of the lower atmosphere over Canada. Balloon flights observed atmospheric processes and tested balloon designs. In all, NASA conducted approximately 30 suborbital rocket flights and 25 balloon flights in support of space science. SPACE_FLIGHT

In what will become standard biennial selections, 23 new astronauts candidates were named in 1990, including the first woman to be named as a pilot candidate and the first Hispanic woman to be chosen. The candidates reported for training at Johnson Space Center in July.

The Space Shuttle made significant accomplishments in 1990 with six successful missions being flown, despite a stand-down of 5 months due to hydrogen leaks. Current capabilities of the Shuttle system were expanded during the year with two extended duration missions flown by Shuttle Columbia on missions STS-32 in January and STS-35 in December. The STS-32 mission set a new record as the longest Shuttle mission ever flown with 261 hours logged. The Shuttle Discovery carried two payloads into orbit on missions STS-31 in April which deployed the Hubble Space Telescope and STS-41 in October which deployed the Ulysses spacecraft. Atlantis also made two flights during the year for the Department of Defense on missions STS-38 in November.

Some Space Flight Highlights Include:

Jan. 9: Space Shuttle Columbia (STS-32) successfully launched SYNCOM IV-5.

Feb. 28: Space Shuttle Atlantis flew a successful mission for DoD.

March 27: An agreement was signed with General Dynamics to provide Atlas IIAS launch services for the 1995 joint NASA/ESA Solar and Heliospheric Observatory mission.

April 5: A Pegasus rocket was dropped from the wing of a B-52 aircraft, launching the PEGSAT satellite.

The Year In Review

April 24: Space Shuttle Discovery (STS-31) successfully deployed the Hubble Space Telescope.

May 9: Scout/Multiple Access Communication Satellite was launched for DoD.

May 11: Contract awarded for design, development, test and evaluation of the Space Shuttle Advanced Solid Rocket Motor (ASRM). A companion contract was awarded on May 25 for the design and construction of ASRM facilities.

June 1: Delta II launched the joint NASA/Germany Roentgen (ROSAT) Satellite.

June 7: NASA announced termination of its Orbital Maneuvering Vehicle program.

June 13: The Board of Governors of INTELSAT approved a Space Shuttle rescue mission for the stranded INTELSAT VI satellite.

July 3: Umbrella agreement signed in support of the Pegasus and Taurus commercial launch vehicle programs.

July 25: Atlas I (Atlas/Centaur-69) launched the Combined Release and Radiation Effects (CRRES) Satellite.

Aug. 22: A government/industry board selected the type of rocket engine which will be designed to power the NASA/USAF Advanced Launch System.

Oct. 6: Space Shuttle Discovery (STS-41) successfully deployed Ulysses spacecraft.

Nov. 15: Space Shuttle Atlantis (STS-38) flew a successful mission for DoD.

Dec. 2: Space Shuttle Columbia (STS-35) /Astro-1 mission.

SPACE STATION FREEDOM

A 1991 fiscal year budget shortfall of more than \$550 million, along with a Congressional mandate to significantly reduce out-year spending, prompted NASA to begin a 3-month assessment of the Space Station Freedom program. Ground rules given to the program to aid in this assessment were developed from Congressional language in NASA's FY 1991 Appropriations Bill.

While the restructuring will have an impact on the design, program officials expect to use the results of the integrated systems preliminary design review as a baseline for design changes.

COMMERCIAL PROGRAMS

NASA initiated a new method of outreach to American business by sponsoring "Technology 2000," the first industrial exposition and conference to showcase the transfer of NASA technology to the private sector.

The Office of Commercial Programs also sponsored the development of the Commercial Experiment Transporter (COMET), a system for launching and recovering commercial spaceborne experiments, to support its increasing commercial payload flight requirements.

Commercial space flight activity in 1990 included six middeck experiments carried on the Space Shuttle, as well as the launch of Consort 3 aboard a Starfire sounding rocket from White Sands Missile Range, New Mexico.

The Year in Review

Commercial experiments flown aboard the Shuttle in 1990 include:	AERONAUTICS AND SPACE TECHNOLOGY
. Protein Crystal Growth (PCG) and Fluids Experiment Apparatus (FEA) - STS-32 in January	NASA conducted a broad range of fundamental and applied aeronautics research programs in 1990. High-speed civil transport studies commissioned by NASA how lot to a foruced bins Sonced Becarge Bergerse that its sonce Becarge Bergerse that the sonce Becarge Bergerse and the sonce and the sonce Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge Becarge Bergerse and the sonce Becarge B
The Protein Crystal Growth (PCG) was flown again on STS-31 in April along with the Investigations into Polymer Membrane Processing (IPMP).	emphasizes the environmental compatibility of a next-generation supersonic transport. The preliminary results of emissions research show promise that acceptable emission levels can be achieved. Similarly, research indicates that compliance with noise reduction standards is possible.
The Polymer Membrane Processing (IPMP) was flown again on STS-41 in October along with the Physiological Systems Experiment.	NASA's Langley Research Center, Hampton, Virginia, flight tested a "hybrid" laminar air flow control system on a Boeing 757 airliner from March through
EXPLORATION	August. A porous experimental section was mounted on the leading edge of
NASA made significant advances this year in organizing and developing an approach to carry out President Bush's Space Exploration Initiative (SEI) to return to the Moon permanently and send humans to explore Mars. NASA was named in a new policy issued by the White House as the principal	laminar flow was achieved over the forward 65 percent of the wing surface could lead to significantly reduced fuel consumption and lower operating costs for future U.S. subsonic transports.
implementing agency of SEI, with the Departments of Defense and Energy playing major roles in technology development and implementation strategy.	Ames-Dryden Flight Research Center, Edwards, California, completed military utility evaluations of the X-29 research aircraft in high angle-of-attack flight at speeds up to 0.5 times the created of power Benerghered discovered that
A second policy dealt with an exploratory dialogue on international participation in SEI. This dialogue, with Europe, Japan, Canada, the Soviet Union and others, is expected to occur in 1991.	small variations in key aerodynamic parameters can yield significant variations in total aircraft characteristics at high flight-angles-of-attack. The result was that the X-29 had better flying qualities than expected, allowing the design of flight control system software overlays to improve roll performance
In May, President Bush announced a goal to land humans on Mars no later than 2019. Shortly thereafter, NASA launched an SEI Outreach effort to collect new and innovative concents and technologies from across the nation	Predictions show that roll performance near maximum lift may be much better than current fighter aircraft.
to carry out SEI.	In a joint program with the U.S. Air Force, the Arnes-Dryden facility successfully demonstrated a self-repairing flight control system concept using NASA's F-15 Highly Integrated Digital Electronic Control aircraft. The system concept included real-time reconfiguration of flight control surfaces, fault

detection and isolation, positive pilot alert and maintenance diagnostics to facilitate repairs. If fully developed, the system could greatly increase the ability of aircraft to survive battle damage and enhance safety during training missions.

The X-30 National Aero-Space Plane (NASP) program, a joint NASA/Department of Defense effort, reached a milestone in May when the five primary NASP contractors merged into a single national contractor team. Combining the technical expertise and top ideas of the contracts has produced a strong team that now uses all the best ideas from industry. NASA unveiled a new configuration for the X-30 NASP flight research vehicle at the end of October. The latest concept, a twin-tailed lifting-body shape, is a design concept from the contractor team.

Langley Research Center conducted flight tests of an automated landing system in October and November. NASA's Boeing 737 research aircraft made 36 landings using an integrated differential navigation system linked to the Global Positioning System constellation of Earth-orbiting satellites. The test data will be useful in designing auto-landing equipment for future spacecraft and will help researchers assess how to reduce risk in automated touchdowns.

After nearly 6 years in Earth orbit, the Long Duration Exposure Facility (LDEF) was retrieved by the crew of STS-32 in January. LDEF's 57 science and technology experiments are providing information about the effects of longterm exposure to the harsh environment of space.

Two prototype planetary robots made their debut during the year. "Ambler" is a six-legged, 12-toot-tail testbed to test technology for robots that may literally walk through rough terrain on the Moon and Mars. "Robby" is a more conventional six-wheeled articulated vehicle. Both robots are equipped with experimental computerized navigation systems that let them travel autonomously according to preprogrammed general instructions.

In April, the Human Performance Research Laboratory (HPRL) at Arnes Research Center, Mountain View, California, was dedicated to study the role of people in advanced aviation situations and long-duration space travel. The lab also will study relationships between humans and computers in its Automation Sciences Research Facility, now under construction. NASA announced in November that it has joined the Concurrent Supercomputing Consorium, a group of research organizations that will tackle some of the most demanding computational challenges. As a benefit of membership, NASA will have access to the world's fastest supercomputer, the Touchstone DELTA system, when it becomes operational next spring.

INTERNATIONAL_BELATIONS

NASA's international cooperative activities in 1990 included the launch of three international missions: Ulysses and the Hubble Space Telescope, cooperative missions with ESA, and ROSAT, a cooperative mission with Germany. NASA invited Japan, Canada and Europe to provide two mission specialist astronaut candidates to join the July 1992 astronaut training class. Cooperation with the Soviet Union continued to progress under the U.S./USSR Joint Working Group (JWG) on space biology and medicine; solar system exploration; space astronomy and astrophysics; solar-terrestrial physics and Earth sciences.

NASA and its Soviet counterpart signed an agreement in July to fly NASA's Total Ozone Mapping Spectrometer on a Soviet Meteor-3 spacecraft in 1991. In March, NASA agreed to participate in the Soviet Academy of Sciences' radio telescope project, RADIOASTRON, which will explore fundamental astrophysical phenomena. U.S./USSR officials continued discussions on flying the U.S. X-ray All Sky Monitor and an X-ray Polarimeter on the Soviet Spectrum-X-Gamma high energy astrophysics mission in 1993/1994.

The Year in Review

The Atmospheric Boundary Layer Experiment-3, part of NASA's Global EDUCATIONAL AFFAIRS Tropospheric Experiment, is a major scientific initiative established to study the underlying science of man's impact on the chemistry and dynamics of the NASA adopted the National Education Goals set by the President and the Governors as fundamental guidelines for developing and conducting global troposphere. education programs. As a result, a complementary 10-year plan is being developed. SPACE OPERATIONS The Office of Space Operations provided tracking, communications and data Astronauts presented the first live lesson from space in December during the STS-35, Astro-1 mission, "Space Classroom, Assignment: The Stars," acquisition for three major science missions: the Magellan on its mission to map the surface of Venus; Ulysses, a mission to the Sun, and the Hubble focused on the electromagnetic spectrum and its relationship to the high-Space Telescope. The fifth Tracking and Data Relay Satellite has essentially energy astronomy mission. Over 4 million student scientists planted gardens been completed and will be ready for launch on a Space Shuttle flight in during the spring semester to experiment with tomato seeds flown in space. The Space Exposed Experiment Developed for Students (SEEDS), was one 1991. The Advanced Tracking and Data Relay Satellite System (ATDRSS) Phase B study contracts were awarded. ATDRSS will ensure the essential of 57 experiments housed on the LDEF. continuation of the space network through the year 2012. In March, NASA debuted the first tractor-trailer mounted mobile teacher resource center that will travel the nation providing lesson materials to SAFETY AND MISSION QUALITY teachers who could not otherwise travel to a NASA field center. The mobile The Government Accounting Office reviewed the Office of Safety and Mission center is part of a larger education initiative, project LASER (Learning About Quality (SMQ) and concluded that the office is working well in providing Science, Engineering and Research). independent oversight, review, assessment and policy development. SMQ made a significant contribution to the successful launch of the Ulvsses spacecraft and contingency planning of the Galileo spacecraft flyby. In addition to overall safety planning, the office conducted independent reviews and evaluations of risks posed by the use of onboard nuclear power systems. The Seventh Annual NASA/Contractors Conference provided a forum for senior NASA and aerospace management to exchange information and experiences on Total Quality Management (TQM) and the continuous improvement process.

Section **B**

Space Flight Activity

FILMED PRECEDING PAGE BLANK NOT

Summary of Announced Launches

1957 	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
-	-																
			-	-	-	-	-	-	-	1	0	0	0	0	0	0	0
	5	6	11	19	34	27	35	39	42	32	26	19	17	17	13	10	8
	_	_	-	-	-	-	-	-		-	-	-	-	-	-	-	-
	-	-	-	-	-	-		1	1	2	0	0	2	1	0	0	0
	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-		-	-	-	-	1	2	1	0	1
-		-	-	-	-	-	-		-	-	-	-	-	-		-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
-	2	5	5	10	18	11	22	24	31	26	19	21	12	15	16	13	16
-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
-	-		-	-	-	-	-	-	-	-	-	-	1	1	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0	0	0
2	1	3	3	6	20	17	30	48	44	66	74	70	81	83	74	86	81
2	8	14	19	35	72	55	87	112	118	126	119	110	114	120	106	109	106
	1 1 1 1 1 1 1 2 2								$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

							NASA	LAUNC	HES									
TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
256 NASA	-	2	5	5	10	15	9	20	21	26	18	12	13	6	6	9	9	2
34 Cooperative	-		-	-	-	2	0	2	2	0	2	3	2	0	- 5	1	0	5
29 DOD	-	-	-	-	-	-	1	0	0	1	0	0	0	0	0	1	1	0
92 USA	-	-	-	-	-	1	1	0	1	4	6	3	4	4	3	3	2	4
39 Foreign	-	-	-	-	-	-	-	-	-	-	-	1	2	2	1	4	1	5
450 TOTAL	-	2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16

Summary of Announced Launches

																		_
TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL	
1 Australia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
476 DOD	9	11	10	12	7	6	5	6	7	10	3	1	5	4	10	10	476	
35 ESA	-		-	-	1	0	2	0	2	4	3	2	2	7	7	5	35	
10 France	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	
3 India	-	-		-	-	1	1	0	1	0	0	0	0	0	0	0	3	
2 Isreal	-	-	-	-	-			-	-	-	-	-	-	1	0	1	2	
41 Japan	2	1	2	3	2	2	3	1	3	3	2	2	3	2	2	3	41	
6 MDAC	-	-	-	-	-		-	-	-	-	-	-	-		1	5	6	
3 MMarietta	-	-	-	-	-	-	-	-	-	-	-	-	-	-		3	3	
449 NASA	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	449	
1 Orbital Science	s –	_	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	
28 PRC	3	2	0	1	0	0	1	1	1	3	1	2	2	4	a	5	28	
1 United Kingdon	n 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
2255 USSR	89	99	98	88	87	89	98	101	98	97	97	91	95	90	74	75	2255	
3311 TOTAL	125	128	124	124	106	105	123	121	127	129	120	103	110	116	101	116	3311	

£

MACA		116	cш	66
NASA	LA	υn	υп	E3

TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
256 NASA	10	1	3	8	3	1	4	4	4	6	9	1	0	2	6	6	256
33 Cooperative	1	2	1	2	0	0	0	0	1	0	0	0	0	1	0	1	33
29 DOD	1	2	1	1	2	2	2	0	1	1	2	3	1	4	1	1	29
92 USA	4	8	2	4	3	4	7	6	8	4	3	1	1	1	0	0	92
39 Foreign	3	2	7	5	1	0	0	2	1	1	0	0	1	0	0	0	39
449 TOTAL	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	449

NASA Launches By Vehicle

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
7 Atlas					2	3	1	0	0	1	0	0	0	0	0	0	0	0
29 Atlas Agena					2	4	0	5	2	9	6	1	0	0	0	0	0	0
9 Atlas E/F	-				~													~
61 Atlas Centaur					••		1	1	1	4	4	3	3	0	3	4	3	1
155 Delta			**				1	4	7	8	12	7	10	7	5	7	5	7
5 Juno II		1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6 Saturn I			••					3	3	0	0	0	0	0	0	0	0	0
7 Saturn IB			-							1	0	2	0	0	0	0	3	0
13 Saturn V						-				-	1	2	4	1	2	2	1	0
64 Scout					2	1	2	6	4	1	2	4	2	2	5	5	1	6
37 Shuttle						-												
4 Thor Able		1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 Thor Agena			-			1	0	2	2	2	1	0	2	2	0	0	0	0
21 Thor Delta			-	2	3	9	6	0	0	0	0	0	0	0	0	0	0	0
11 Titan II	-		-					1	5	5	0	0	0	0	0	0	0	0
7 Titan Centaur	-	-																2
2 Vanguard	-	-	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
450 TOTAL	_	2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16

NASA Launches By Vehicle

TOTAL	1975	1976	1977	1978	<u>,</u> 1979	1980	1981	1982	1983	1984	1985	1986	1 9 87	1988	1989	1990	TOTAL
7 Atlas	0	0	0	0	0	0	0	O	0	0	0	O	0	0	0	0	7
29 Atlas Agena	0	0	0	0	0	0	0	Ó	Ō	Ō	ō	ō	ō	Ō	õ	ō	29
9 Atlas E/F	-			2	1	1	1	Ó	1	1	ŏ	1	ō	1	Ö	ō	9
61 Atlas Centaur	2	3	2	7	2	3	4	2	1	1	3	1	ō	ò	1	1	61
154 Delta	12	9	9	10	3	3	5	7	7	4	õ	1	2	1	1	Ġ	154
5 Juno II	0	0	0	0	0	0	0	0	Ó	Ó	Ō	Ó	ō	Ó	Ó	ŏ	5
6 Saturn I	0	0	0	0	0	0	Ο	Ó	Ō	Ō	Ō	Ő	õ	ō	ō	· õ	6
7 Saturn IB	1	0	0	0	0	0	Ó	Ō	ō	ō	ō	õ	õ	õ	õ	ō	7
13 Saturn V	0	0	0	0	0	0	0	0	0	Ó	Ō	Ó	Ö	ō	ō	ō	13
64 Scout	2	2	1	1	3	0	1	Ó	1	Ť	2	1	1	4	ŏ	1	64
37 Shuttle	-	-			-	-	2	3	4	5	9	1	Ó	2	5	6	37
4 Thor Able	0	0	0	0	0	0	0	0	Ó	ō	õ	Ó	Ū.	ō	ŏ	ŏ	4
12 Thor Agena	0	0	0	0	0	0	0	Ō	ō	ŏ	õ	õ	ō	ō	ŏ	ŏ	12
21 Thor Delta	0	0	0	0	0	0	0	0	1	Ó	Ó	0	ō	Ō	ō	õ	21
11 Titan li	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	ō	Ō	ō	Ō	11
7 Titan Centaur	2	1	2	0	0	0	0	0	0	Ó	Ó	Ó	Ō	Ó	Ō	Ō	7
2 Vanguard	0	0	0	0	0	0	0	0	0	0	Ó	Ó	Ō	0	0	Ō	2
449 TOTAL	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	449

aunch History (Cumulative)

Summary of Worldwide Payloads

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1 Argentina	-	-	-	-	-	-		-	_	-	_	-	-	-	·	-	-	-
5 Australia	-	-	-		-			-	-	-	1	0	0	1	0	0	0	0
3 Brazil	-		-	-	-		-	-	-	-	-	-	_	-	_	-	-	_
9 Canada	-	-	-	-	-	-	-	-		-		-	-	-	-	1	1	0
29 China	-	-	-	-	-		-	-	-	-	-	-	-	1	1	0	0	Ď
44 Cooperative *	-	-	-		-	2	0	2	3	0	2	3	2	Ó	6	1	1	7
2 Czechoslovakia	-	-	-		-	_	-	-	_		-	-	-	_	-	_		
21 France	-	-	-	-	-	-	-	-	1	1	2	0	0	2	1	1	0	0
10 Germany	-		-	-		-		-	_	_	_	_	_	1	Ö	Ó	ō	1
12 India	-	-	-		-	-			-	-	-	-	-	-	-	-	-	
6 Indonesia	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
37 International Organizations *	-	-	-	-	-	-	-	-		-		1	1	1	1	3	0	0
2 isreal	-	-	-	-	-	-	-	-		-	-		-	-	-	-	_	_
1 Italy	-	-		-	-	-	-	-	-		-	-	-	-		-		_
51 Japan		-	-	-	-	-	-	-	-	-	-	-	-	1	2	1	0	1
2 Mexico	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1 Pakistan	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	
2660 Soviet Union	2	1	3	3	4	20	17	35	66	44	66	74	70	88	96	88	106	95
2 Sweden	-	-	-	-	· -	-	-	-	-		-	-		-	-	••	-	-
16 United Kingdom	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	0	0	3
1102 United States *	-	7	11	17	36	53	54	72	88	102	78	63	51	30	36	28	22	15
4015 TOTAL	2	8	14	20	40	75	71	109	158	147	149	141	125	126	144	123	130	122

* Separate Breakdown Follows

INTERNATIONAL ORGANIZATIONS

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	
1 AslaSat	_	-	-	-	-	-	-	-	_	-	-	-	_	-	-	_	_	_	
2 ASCO	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-	
26 ESA	-		-		-	-	-			-	-	1	1	0	0	3	0	0	
1 InMarSat	-		-	-	~	-				-	-	-	-	~	-	-	-	-	
6 NATO	-		-	-	-		-			-	-	-	-	1	1	0	0	0	
1 PanAmSat	-	-	-		-	-	-	-		-	-	-	-	~	-	-	-	-	
37 TOTAL	-	-	-	-	-	-		-	-	-	-	1	1	1	1	3	0	0	
and the second sec	· ·			_		_													
-10	• •		-		• .		*												

B-10

网络高语 化乙酰胺酸乙酰胺乙 なって間

Summary of Worldwide Payloads

TOTAL		1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL	
1 A	rgentina	-		-	-	-		-	-	_	-	-	-	-	-		1	1	
5 A	ustralia	0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	Ó	5	
38	Irazli	-	-	-	-	-	-	-	-	-	-	1	1	0	0	Ō	1	3	
9 C	anada	1	0	0	1	0	0	0	2	1	1	1	0	0	0	0	0	9	
29 C	hina	3	2	0	1	0	0	3	1	1	3	1	3	1	3	0	5	29	
46 C	cooperative	2	2	2	2	0	0	1	0	2	0	0	0	0	1	Ō	5	46	
2 C	zechoslovakia	-	-	-	1	0	0	0	0	0	0	0	0	0	0	1	Ó	2	
21 F	rance	5	0	1	0	0	0	0	0	0	1	1	1	0	1	1	2	21	
10 G	iermany	0	0	0	0	0	0	0	0	2	1	0	0	1	1	2	1	10	
12 lr	ndia	1	0	0	0	1	1	3	1	2	0	0	0	0	2	0	1	12	
6 Ir	ndonesia	-	1	1	0	0	0	0	0	1	1	Ó	Ó	1	ō	ō	1	6	
37 li	nternational Organizations	1	1	3	3	1	0	4	1	2	2	3	Ó	1	3	2	3	37	
2 1	sreat	-	-	-	-	-		-	-	-	-	-	-	-	1	ō	1	2	
1 11	aty	-	-	1	0	D	0	D	0	0	0	0	0	0	Ó	ō	Ó	ĩ	
51 J	apan	2	1	4	4	2	2	3	1	3	3	2	3	3	2	4	7	51	
2 N	lexico	-	-	-	-	-	-	_	_	_	_	2	Ō	Ő	ō	Ó	ó	2	
1 P	akistan	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	1	ī	
2660 S	ioviet Union	109	121	104	119	101	110	123	119	115	115	118	114	116	107	95	96	2660	
2 S	weden	-	-	-	-	-	-	-	-			-	1	Ó	0	1	ō	2	
16 U	inited Kingdom	0	0	0	0	1	0	1	0	0	2	0	0	0	Ō	1	5	16	
1101 U	nited States	26	27	17	29	17	13	19	17	22	32	33	9	9	15	22	31	1101	
4016 T	OTAL	150	155	133	160	123	126	157	142	151	161	164	132	133	136	129	160	4016	

INTERNATIONAL ORGANIZATIONS

TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
1 AsiaSat	-		-	-	-	-	-	-	-	-	-	-	-	_	-	1	1
2 ASCO	-		-	-	-	-	-	-	-	-	2	0	0	0	0	Ó	2
26 ESA	1	0	2	2	1	0	4	0	2	2	1	0	1	2	2	1	26
1 InMarSat	-	-	-		-	-		-	_	-	_	_	_	_	_	1	1
6 NATO	0	1	1	1	0	0	0	1	0	0	0	0	0	0	٥	ò	6
1 PanAmSat	-	-	-	-			-	-	-	-	_	_	_	1	ō	õ	ĩ
37 TOTAL	1	1	3	3	1	0	4	1	2	2	3	0	1	3	2	3	37

Summary of USA Payloads

OTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
5 AMSAT	-		-	-	-	-	-	-	-		-	-		-	-	1	0	1
5 AT&T	-		-	-	-	1	2	1	0	0	0	0	0	0	0	0	Ó	0
1 ASC	-	· _	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
47 COMSAT	-	-	-	-		-	-		1	1	3	1	3	3	2	2	1	1
690 DOD		5	6	12	23	39	44	50	66	71	57	43	32	18	24	14	11	8
7 GTE	-	-	-	-	-	-	` 	-	-	_	-	-	-		_	-	-	_
8 Hughes	-	-	-		-	-	-	-	-	_	-	-	-		-	-		
286 NAŠA	-	2	5	5	13	13	8	21	21	27	15	17	15	8	9	10	9	2
30 NOAA	-	-	-	-	-		-	-	-	3	3	2	1	1	1	1	1	1
1 N. Utah Univ	-		-	-	-		-	-	-	-	-	-	-		-	-	-	-
11 RCA	-	-		-	-		-	-	-	-	-	-	-	-	-		-	-
5 SBS	-	-		-	-	-	-	-1	-		-		-	-		-	-	_
6 WU	-		-	-	_			-		-	-	-	-	-	-	-	-	2
1102 TOTAL	-	7	11	17	36	53	54	72	88	102	78	63	51	30	36	28	22	15

COOPERATIVE PAYLOADS

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
5 NASA/Canada	-		-	-	-	1	0	0	1	0	0	0	1	Ó	1	0	0	Ó
2 NASA/DOD	-	-	-	-	-	-	-		-	_		-	-		-	-	-	_
6 NASA/ESA	-	-		-	-	-	-		-	-	-	2	0	0	0	0	0	0
6 NASA/France	-	-		-	-	-	-	-	1	0	0	0	0	0	2	0	1	0
2 France/Germany	-		-		-			-		-	-	-	~	-	-	-	-	1
5 NASA/Germany	-	-	-		-	-		-	-	-	-	-	1	0	0	1	. 0	1
5 NASA/Italy	-	-	-		~	-	-	1	0	0	1	0	0	0	1	0	0	1
2 NASA/Netherlands	-	-	-	-	~	-		-	-	-	-	-	~	-		-	-	1
2 NASA/NOAA	-	-	-		-	-		-	-	-	-	-		-	-	-		1
3 NASA/NRL	-	-	-		~	-	-	-	1	0	0	1	0	0	1	0	0	0
1 NASA/Spain	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	1
5 NASA/UK	-		-		~	1	0	1	0	0	1	0	0	0	1	0	0	1
44 TOTAL	-		-		~	2	0	2	3	Ó	2	3	2	0	6	1	1	7

Summary of USA Payloads

U.S. PAYLOADS

TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL
5 AMSAT	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	5
5 AT&T	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	5
1 ASC	-	-	-	-	-	-	-	-			1	0	0	0	0	0	1
47 COMSAT	2	6	1	3	0	1	3	2	2	2	3	0	0	1	1	2	47
690 DOD	10	18	12	14	11	8	7	6	8	12	11	5	8	9	12	16	690
7 GTE	-	-	_	-	-	-	-	-	-	2	1	1	0	2	0	1	7
8 Hughes	-	-	-	-		-	-	-	2	3	2	D	D	0	0	1	8
285 NASA	12	1	3	10	3	1	5	4	6	9	12	1	0	2	9	7	285
30 NOAA	1	1	1	1	1	2	2	0	2	2	0	1	1	1	0	0	30
1 N Utah Univ		-	-	-	-	-	-	_	-	-	1	0	0	0	0	0	1
11 RCA	1	1	0	0	1	0	1	2	2	0	1	1	0	0	0	1	11
5 585	-	_	_	-	-	1	1	1	0	1	0	0	0	0	0	1	5
6 WU	0	0	0	0	1	0	0	2	0	1	0	0	0	0	0	0	6
1101 TOTAL	26	27	17	29	17	13	19	17	22	32	33	9	9	15	22	31	1101
						co	OPERA	TIVE PA	YLOAD!	3							
τοται	1975	1976	1977	1978	1979	CO 1980	OPERA ⁻ 1981	TIVE PA 1982	YLOAD:	5 1984	1985	1986	1987	1988	1989	1990	TOTAL
TOTAL 5 NASA/Canada	1975 0	1976 1	1977 0	1978 0	1979 0	CO 1980 0	OPERA 1981 0	1982 0	YLOAD: 1983 0	5 1984 0	1985 0	1986 0	1987 0	1988 0	1989 0	1990 0	TOTAL 5
TOTAL 5 NASA/Canada 2 NASA/DOD	1975 0	1976 1 	1977 0 -	1978 0	1979 0	1980 0	OPERA 1981 0 –	1982 0 -	YLOAD: 1983 0 –	5 1984 0 -	1985 0 -	1986 0 -	1987 0 	1988 0 	1989 0	1990 0 2	TOTAL 5 2
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/FSA	1975 0 - 0	1976 1 0	1977 0 - 2	1978 0 - 2	1979 0 - 0	1980 0 -	OPERA 1981 0 - 0	1982 0 0	YLOAD: 1983 0 - 0	5 1984 0 - 0	1985 0 - 0	1986 0 - 0	1987 0 0	1988 0 0	1989 0 0	1990 0 2 0	TOTAL 5 2 6
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France	1975 0 - 0 0	1976 1 0 0	1977 0 - 2 0	1978 0 2 0	1979 0 0 0	1980 0 0 0	OPERA 1981 0 - 0 1	1982 0 0 0	YLOAD: 1983 0 - 0 1	5 1984 0 - 0 0	1985 0 0 0	1986 0 - 0 0	1987 0 0 0	1988 0 0 0	1989 0 0 0	1990 0 2 0 0	TOTAL 5 2 6 6
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany	1975 0 - 0 0	1976 1 0 0 0	1977 0 - 2 0 0	1978 0 2 0 0	1979 0 0 0 0	1980 0 0 0 0	OPERA 1981 0 - 0 1 0	1982 0 0 0 0 0	YLOAD: 1983 0 - 0 1 0	3 1984 0 - 0 0 0	1985 0 - 0 0 0	1986 0 - 0 0 0	1987 0 0 0 0	1988 0 0 0 0	1989 0 - 0 0 0	1990 0 2 0 0 0	TOTAL 5 2 6 6 2
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Germany	1975 0 0 0 1 1	1976 1 0 0 0 1	1977 0 - 2 0 0 0	1978 0 - 2 0 0 0	1979 0 - 0 0 0 0	CO 1980 0 0 0 0 0	OPERA 1981 0 - 0 1 0 0 0	1982 0 0 0 0 0 0	YLOAD 1983 0 - 0 1 0 0 0	5 1984 0 - 0 0 0 0	1985 0 - 0 0 0 0	1986 0 0 0 0 0	1987 0 0 0 0 0	1988 0 0 0 0 0	1989 0 0 0 0 0	1990 0 2 0 0 0 1	TOTAL 5 2 6 6 2 5
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Carmany 5 NASA/Carmany	1975 0 0 0 1 1 0	1976 1 0 0 1 1 0	1977 0 - 2 0 0 0 0	1978 0 2 0 0 0 0	1979 0 - 0 0 0 0 0	CO 1980 0 0 0 0 0 0	OPERA 1981 0 - 0 1 0 0 0 0	1982 0 0 0 0 0 0 0 0	YLOAD 1983 0 - 0 1 0 0 0 0	5 1984 0 - 0 0 0 0 0 0	1985 0 0 0 0 0 0	1986 0 0 0 0 0 0	1987 0 0 0 0 0 0	1988 0 0 0 0 0 1	1989 0 0 0 0 0 0	1990 0 2 0 0 0 1	TOTAL 5 2 6 6 2 5 5
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Cermany 5 NASA/taly 2 NASA/taly	1975 0 0 1 0 0 0	1976 1 0 0 1 0 0	1977 0 - 2 0 0 0 0 0 0	1978 0 - 2 0 0 0 0 0 0	1979 0 0 0 0 0 0 0	CO 1980 0 0 0 0 0 0	OPERA 1981 0 - 0 1 0 0 0 0 0	1982 0 0 0 0 0 0 0 0 0	YLOAD 1983 - 0 1 0 0 0 1 0 1	5 1984 0 - 0 0 0 0 0 0 0	1985 0 - 0 0 0 0 0 0	1986 0 0 0 0 0 0 0	1987 0 0 0 0 0 0 0	1988 0 0 0 0 0 1 0	1989 0 0 0 0 0 0 0	1990 0 2 0 0 0 1 0	TOTAL 5 6 6 2 5 5 2
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Germany 5 NASA/taly 2 NASA/taly 2 NASA/taly 2 NASA/NOAA	1975 0 0 0 1 0 0 0 0	1976 1 0 0 1 0 0 0 0	1977 0 - 2 0 0 0 0 0 0 0	1978 0 2 0 0 0 0 0 0 0	1979 0 0 0 0 0 0 0 0	CO 1980 0 0 0 0 0 0 0 0	OPERA ⁻ 1981 0 - 0 1 0 0 0 0 0 0 0	1982 0 0 0 0 0 0 0 0 0 0 0	YLOAD 1983 - 0 1 0 0 0 1 0 0 1 0	5 1984 0 - 0 0 0 0 0 0 0 0	1985 0 - 0 0 0 0 0 0 0 0	1986 0 0 0 0 0 0 0 0	1987 0 0 0 0 0 0 0 0	1988 0 0 0 0 0 1 0 0	1989 0 0 0 0 0 0 0 0	1990 2 0 0 0 1 0 0	TOTAL 5 2 6 6 2 5 5 5 2 2 2
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Cermany 5 NASA/Ataly 2 NASA/Netherlands 2 NASA/Netherlands 2 NASA/Netherlands	1975 0 0 0 1 0 0 0 1 0	1976 1 0 0 1 0 0 0 0 0	1977 0 - 2 0 0 0 0 0 0 0 0 0	1978 0 - 2 0 0 0 0 0 0 0 0 0	1979 0 - 0 0 0 0 0 0 0 0 0 0	CC 1980 0 0 0 0 0 0 0 0 0 0 0 0 0	OPERA 1981 0 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	TIVE PA 1982 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	YLOAD 1983 0 - 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1984 0 - 0 0 0 0 0 0 0 0 0 0	1985 0 0 0 0 0 0 0 0 0 0 0	1986 0 - 0 0 0 0 0 0 0 0 0 0	1987 0 0 0 0 0 0 0 0 0 0	1988 0 0 0 0 0 1 0 0 0 0	1989 0 - 0 0 0 0 0 0 0 0 0	1990 0 2 0 0 0 1 0 0 0 0	TOTAL 5 6 6 5 5 2 2 3
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Germany 5 NASA/Italy 2 NASA/Italy 2 NASA/Italy 2 NASA/Italy 3 NASA/INDAA 3 NASA/INRL 1 NASA/Snain	1975 0 - 0 1 0 0 1 0 0 1 0 0	1976 1 0 0 1 0 0 0 0 0 0 0	1977 0 2 0 0 0 0 0 0 0 0 0 0 0	1978 - 2 0 0 0 0 0 0 0 0 0	1979 0 0 0 0 0 0 0 0 0 0 0 0 0	CC 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OPERA 1981 0 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1982 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	YLOAD 1983 0 - 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1984 0 - 0 0 0 0 0 0 0 0 0 0 0	1985 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1986 0 0 0 0 0 0 0 0 0 0 0 0 0	1987 0 0 0 0 0 0 0 0 0 0 0 0 0	1988 0 0 0 0 0 0 1 0 0 0 0 0	1989 0 - 0 0 0 0 0 0 0 0 0 0 0	1990 0 2 0 0 1 0 0 0 0 0 0	TOTAL 5 2 6 6 2 5 5 2 2 3 1
TOTAL 5 NASA/Canada 2 NASA/DOD 6 NASA/ESA 6 NASA/France 2 France/Germany 5 NASA/Aermany 5 NASA/taly 2 NASA/NOAA 3 NASA/NRL 1 NASA/Spain 5 NASA/IKK	1975 0 0 1 0 0 0 0 0 0 0 0 0 0	1976 1 0 0 1 0 0 0 0 0 0 0	1977 0 - 2 0 0 0 0 0 0 0 0 0 0 0	1978 0 2 0 0 0 0 0 0 0 0 0 0 0	1979 0 0 0 0 0 0 0 0 0 0 0 0 0	CC 1980 	OPERA 1981 0 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	TIVE PA 1982 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0	YLOAD: 1983 0 - 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1984 0 0 0 0 0 0 0 0 0 0 0 0 0	1985 - 0 0 0 0 0 0 0 0 0 0 0 0 0	1986 - 0 0 0 0 0 0 0 0 0 0 0 0 0	1987 	1988 0 0 0 0 1 0 0 0 0 0 0	1989 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1990 2 0 0 1 0 0 0 0 0 0 0 0	TOTAL 5 6 2 5 5 2 2 3 1 5

Soviet Spacecraft Designations

BURAN (Snowstorm): Reusable orbital space shuttle. COSMOS: Designation given to many different activities in space. EKRAN (Screen): Geosynchronous comsat for TV services. ELEKTRON: Dual satellites to study the radiation belts. FOTON: Scientific satellite to continue space materials studies. GAMMA: Radiation detection satellite? GORIZONT (Horizon): Geosynchronous comsat for international relay. GRANAT: Astrophysical orbital observatory. INTERCOSMOS International scientific satellite. ISKRA: Amateur radio satellite. KRISTALL: Module carrying technical and biomedical instruments to MIR. KVANT: MIR space station astrophysics module. LUNA: Lunar exploration spacecraft. MARS: Spacecraft to explore the planet Mars. METEOR: Polar orbiting meteorological satellite. MIR (Peace): Advanced manned scientific space station in Earth orbit. MOLNIYA (Lightning): Part of the domestic communications satellite system. NADEZHDA: Navigation satellite.

OKEAN: Oceanographic satellite to monitor ice conditions. PHOBOS: International project to study Mars and its moon Phobos. POLYOT: Maneuverable satellite capable of changing orbits. PROGNOZ (Forecast): Scientific interplanetary satellite. PROGRESS: Unmanned cargo flight to resupply manned space stations. PROTON: Scientific satellite to investigate the nature of Cosmic Rays. RADIO: Small radio relay satellite for use by amateurs. RADUGA (Rainbow): Geosynchronous comsat for telephone, telepraph, and domestic TV. RESURS: Earth resources satellite. SALYUT: Manned scientific space station in Earth orbit. SOYUZ (Union): Manned spacecraft for flight in Earth orbit. SPUTNIK: Early series of satellites to develop manned spaceflight. VEGA: Two spacecraft international project to study Venus and Halley's Comet. VENERA: Spacecraft to explore the planet Venus. VOSKHOD: Modified Vostok capsule for two and three Cosmonauts. VOSTOK (East): First manned capsule; placed six Cosmonauts in orbit. ZOND: Automatic spacecraft development tests. Zond 5 was the first spacecraft to make a circumlunar flight and return safely to Earth.

Unofficial Tabulation of USSR Payloads

TOTAL	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1 Buran	-				-		-			-	-						-	-
2120 Cosmos	-		-		-	12	12	27	52	34	61	64	55	72	81	72	85	74
19 Ekran			-		-		-	-	••	-	-			-	-		-	-
4 Electron	-		-		-			4	0	0	0	0	0	0	0	0	0	0
3 Foton			-		-		-	-			-	-		-		-	-	
1 Gamma	-					-			-	-	-	-	••				-	-
22 Gorizont	-		-		-				-	-	-	-		-	-		-	
1 Granat	-						-		-			-					-	-
23 Intercosmos	-	-	-						-			-	2	2	1	3	2	2
3 Iskra	-		-		-						-			••			-	-
1 Kristall	-	-	-						-	-		-	-			-		-
2 Kvant	-						-	-		-	-			-				-
24 Luna	-		3	0	0	0	1	0	4	5	0	1	1	2	2	1	1	2
7 Mars	-	-			-	1	0	0	0	0	0	0	0	0	2	0	4	0
54 Meteor	-						-		-	-			2	4	4	3	2	5
1 Mir	-		-		-	••	-	-	~	-	-			-	-		-	-
136 Molniya	-		-				-		2	2	3	3	2	5	3	6	8	7
2 Nadezhda	-	-	-		-		-	-	••	-	-	-	-	-		-	-	-
2 Okean	-		-		-		-		-	-		-		-	-	-		
2 Phobos	-	-	-		-		-	-		-	-	-					-	
2 Polyot	-		-		-		1	1	0	0	0	0	0	0	0	0	0	0
10 Prognoz	-		-				-	-	-		-	-		-		2	1	0
47 Progress	-		-				-		-	-	-	-		-	-	-	-	-
4 Proton	-	-			-		-	-	2	1	0	1	0	0	0	0	0	0
8 Radio	-		-				-	-		-	-					-	-	-
28 Raduga	-		-		-		-	-	-		-	-		-			-	-
9 Resurs	-				-			-	-	-	-	-		-			-	
7 Salyut	-		-		-				-	-	-	-		-	1	0	1	2
66 Soyuz			-		-			-	-		1	2	5	1	2	0	2	3
12 Sputnik	2	1	0	3	4	2	0	0	0	0	0	0	0	0	0	0	0	0
2 Vega	-		-		-	-	-		-	-	-	-			-	-		-
15 Venera	-	-			-		-	-	2	0	1	0	2	1	0	1	0	0
2 Voskhod	-	-		-	-		-	1	1	0	0	0	0	0	0	0	0	0
4 Vostok	-		-		-	2	2	0	0	0	0	0	0	0	Ý 0	0	0	0
10 Zond			-		-			2	3	0	0	3	1	1	0	0	0	0
6 No Designation	-		-		-	3	1	0	0	2	0	0	0	0	0	0	0	0
2660 TOTAL	2	1	3	3	4	20	17	35	66	44	66	74	70	88	96	88	106	95

47
Unofficial Tabulation of USSR Payloads

TOTAL	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	TOTAL	1
1 Buran			_		· -	-	-	-		-	_	-		1	0	0	1	
2120 Cosmos	85	101	86	96	79	88	94	97	94	94	99	96	97	79	68	66	2120	- 1
19 Ekran	-	1	1	0	2	2	1	2	2	2	1	1	2	2	0	0	19	I
4 Electron	0	0	Ó	0	0	0	0	0	0	0	Ó	0	0	0	ò	Ó	4	
3 Foton	-		_		-			_	_	_	-	-	-	1	1	1	3	1
1 Gamma	-		-		-		-	-		-	_	-		_	-	1	1	
22 Gorizont	-		-	1	2	1	0	2	2	2	1	2	1	2	3	3	22	1
1 Granat	-	-	-		-		-	-	-	-	-	-		-	1	ò	1	
23 Intercosmos	2	2	1	1	2	0	2	0	0	0	0	0	0	0	1	0	23	
3 iskra	-		-				1	2	0	0	0	0	ò	Ó	0	0	3	
1 Kristali	-		-	••			-	_	_	-		-		_	_	1	1	
2 Kvant	-		-		-		-	-	-		-	-	1	0	1	Ó	2	
24 Luna	0	1	0	0	0	0	0	0	0	0	0	0	Ó	ō	Ó	Ó	24	
7 Mars	0	0	Ó	Ó	0	0	0	0	0	0	Ō	0	ō	Ō	ō	0	7	
54 Meteor	4	3	4	0	3	2	2	2	1	1	з	1	2	2	2	2	54	
1 Mir	-		-		-		-		-	-	-	1	0	0	0	0	1	
136 Molniya	10	7	6	6	5	4	8	5	7	4	8	7	1	7	4	6	136	
2 Nadezhda	-		-		-		-	-	-	-	-	-			1	1	2	
2 Okean	-		-		-		-	3 -	-	-	-	-		1	0	1	2	
2 Phobos	-		-		-	••	-	·	-	-	-	-		2	0	0	2	
2 Polyot	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
10 Prognoz	1	1	1	1	0	1	0	0	1	0	1	0	0	0	0	0	10	
47 Progress	-	-	-	4	3	4	1	4	2	5	1	2	7	6	4	4	47	
4 Proton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
8 Radio	-	-	-	2	0	0	6	0	0	0	0	0	0	0	0	0	8	
28 Raduga	1	1	1	1	1	2	3	1	2	2	2	2	2	1	3	3	28	1
9 Resurs	-		-		-	-	-	-	-	-	-	-		-	5	4	9	
7 Salyut	0	1	· 1	0	0	0	0	1	0	0	0	0	0	0	0	0	7	
66 Soyuz	4	3	3	5	4	6	3	3	2	3	2	2	3	3	1	3	66	
12 Sputnik	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	
2 Vega	-		-		-	-	-	-	-	2	0	0	0	0	0	0	2	
15 Venera	2	0	0	2	0	0	2	0	2	0	0	0	0	0	0	0	15	
2 Voskhod	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
4 Vostok	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
10 Zond	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	
6 No Designation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	
2660 TOTAL	109	121	104	119	101	110	123	119	115	115	118	114	116	107	95	96	2660	

						TOTAL	-						TOTAL
NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME
				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)	-				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)
Acton, Loren W., PhD	Civ	STS-51F	PS	190:45:26		190:45:26	Brand, Vance D.	Civ	Apollo Soy	uz CMP	217:28:23		763:54:44
Adamson, James C., Lt. Col.	USA	STS-28	MS	121:00:09		121:00:09			STS-5	Cdr	122:14:26		
Akers, Thomas D., Maj.	USAF	STS-41	MS	98:11:00		98:11:00			STS-41B	Cdr	191:15:55		
Aldrin, Edwin E., Jr., Col.	USAF Ret	Gemini 12	Pit	68:34:31	05:37	289:53:06			STS-35	Cdr	215:06:00		
		Apollo 11	LMP	195:18:35	02:15		Brandenstein, Daniel C., Cap	USN	STS-8	Pit	145:08:43		575:48:12
Allen, Joseph P. PhD	Civ	STS-5	MS	122:14:26		313:59:22			STS-51G	Cdr	169:38:52		
		STS-51A	MS	191:44:56	12:14				STS-32	Cdr	120:06:49		
Al-Saud, Salman	Civ	STS-51G	PS	169:38:52		169:38:52	Bridges, Roy D., Col	USAF	STS-51-F	Plt	190:45:26		190:45:26
Anders, William A., B. Gen.	USAF	Apolio 8	LMP	147:00:42		206:00:01	Brown, Mark F., Lt. Col	USAF	STS-28	MS	121:00:09		121:00:09
Armstrong, Neil	Civ	Gemini 8	Cdr	10:41:26			Buchli, James F., Col	USMC	STS-51C	MS	73:33:23		361:57:06
		Apollo 11	Cdr	195:18:35	02:32 *				STS-61A	MS	168:44:51		
Bagian, James P. MD	Civ	STS-29	MS	119:38:52		119:38:52			STS-29	MS	119:38:52		
Baker, Ellen S., MD	Civ	STS-34	MS	119:39:24		119:39:24	Cabana, Robert D., Lt. Col.	USMC	STS-41	Pit	98:11:00		98:11:00
Bartoe, John-David F., PhD	Civ	STS-51F	PS	190:45:26		190:45:26	Carpenter, M. Scott, Cdr.	USN Ret	Aurora 7	Cdr	4:56:05		4:56:05
Baudry, Patrick, Lt. Col.	FAF	STS-51G	PS	169:38:52		169:38:52	Carr, Gerald P., Col	USMC Ret	Skylab 4	Cdr	2017:15:32	15:48	2017:15:32
Bean, Alan F., Capt	USN Ret	Apolio 12	LMP	244:36:25	07:45	1671:45:29	Carter, Manley, Cdr.	USN	STS-33	MS	120:06:49		120:06:49
		Skylab 3	Cdr	1427:09:04	02:45		Casper, John H., Col	USAF	STS-36	Plt	106:18:23		106:18:23
Blaha, John E., Col	USAF	STS-29	Pit	119:38:52		239:45:41	Cenker, Robert J.	Civ	STS-61C	PS	146:03:51		146:03:51
		STS-33	Pit	120:06:49			Cernan, Eugene A., Capt.	USN Ret	Gemini 9A	Pit	72:21:00	02:08	566:16:32
Bluford, Guion S., Col	USAF	STS-8	MS	145:08:43		313:53:34	•		Apollo 10	LMP	192:03:23		
		STS-61A	MS	168:44:51					Apollo 17	Cdr	301:51:59	22:04	
Bobko, Karol J., Col	USAF	STS-6	Plt	120:23:42		386:03:43	Chang-Diaz, Franklin R., Phi) Çiv	STS-61C	MS	146:03:51		265:43:15
		STS-51D	Cdr	167:55:23					STS-34	MS	119:39:24		
		STS-51J	Cdr	97:44:38			Cleave, Mary L., PhD	Civ	STS-61B	MS	165:04:49		262:02:20
Bolden, Charles F., Col	USMC	STS 61-C	Pit	145:03:51		267:19:56			STS-30	MS	96:56:25		
		STS-31	Pit	121:16:05			Coats, Michael L., Capt.	USN	STS-41D	Pit	144:56:04		264:34:56
Borman, Frank, Col.	USAF Ret	Gemini 7	Cdr	330:35:31		477:36:13			STS-29	Cdr	119:38:52		
		Apollo 8	Cdr	147:00:42			Collins, Michael, M. Gen	USAF	Gemini 10	Pit	70:45:39	01:30	266:11:14
									Apolio 11	CMP	195:18:35		
					*Lunar Su	rface EVA						*Lunar Su	rface EVA

						TOTAL							TOTAL
	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME
				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)					(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)
Conrod Charles (Bete) Can	IICN Ret	Gemini 5	20	190-55-14		1179-28-36	Fisher William F MD	Civ.	575-511	MS	170-17-42	11-51	170-17-42
contau, onanca (rete), oep	- UQHINCI	Gemini t1	Cdr	71-17-08		1112.20.00	Fullerton C. Cordon Col	USAF	STCI	90	192-04-45		382-50-11
		Anaila 12	Car	244-26-25	07-45 *			V UAI	STG-A1F	Cdr	190-45-26		
		Skulah 2	Cdr	672-40-40	05-61		Euror Reinbard RhD	Chu	STG.61A	20	186-44-51		186-44-51
Cooper I Corrigo It Col	LIGAE Bat	Eaith 7	DIE	34-10-49	00.01	226-18-03	Gardner Dale A	USN	STCR	MS	145-08-43		336-53-39
	UJAF HEL	Cemini 5	Cdr	100-55-14		220.10.00	Galorier, Dale A.,	0311	STG-51A	MS	191-64-56	12-14	330,33,33
Course Richard O. Col	UCAE	CTC_51I	DI+	170-17-42		485-12-53	Gerriner Guy S. Lt. Col	USAF	516-27	01)	105-05-37		320-11-37
covey, monard o., con	UJAF	STS-26	Dh	97-00-11		403.12.00	daraner, ouy 5., ct. 66.	034	STS-35	Ph	215:06:00		020.11.01
		STC-39	Cdr	117:55:00			Garn F. J. "Jake"	Civ	STS-510	PS	167-55-23		167-55-23
Creighton John O. Capt	IICN	STC-51C		169-38-52		275-57-15	Garneau Marc PhD	Civ	STG41G	29	197-23-33		107-23-23
creighton, sonn o., capi	0.314	CTC-16	Cdr	106-18-22		210.01.10	Garriett Owen K BbB	Civ	Skylah 3	DI)	1427-09-04	13-44	1674-56-28
Crimon Robert Cant	HEN	CTC.1	Dit	54:20:23		565-48-11	danial, owen is, the		STC.0	MS	247-47-24	10.44	1014.00.20
crippen, noven L, capt	0.311	CTC.7	CAr	146-22-50		303.40.11	Comor Charles D		CTC.38	MC	117-55-00		117-55-00
		STGAIC	Cdr	167-40-07			Gibson Edward G PhD	Civ	Sindah 4	Pit	2017-15-32	15-20	2017-15-32
		STSAIC	Cdr	107-22-22			Gibson Robert Cdr	LISN	STGAIR	20	191-15-55	10.20	442-25-23
Culberteen, Erank I		STC.18	Dit	117:55:00		117-55-00	dibadii, habert E., der.	0011	STGAIC	Car	146-03-51		
Cuppingham Walter	Chu	Anolio 7	IMD	260-00-03		260-09-03			STC.27	Cdr	105-05-37		
Dute Charles M. B. Con	LICAE	Apolio 16	IMD	265-51-05	20-14 *	265-51-05	Glenn John H. Jr. Col	HEMC Del	Eriendehin 7	7 Car	4-55-22		4-56-22
Durke, Gignes M., B. Gen.	Chu	CTC.CIA	MC	169-44-61	20.14	420-46-28	Gordon Bichard E Ir Cant	USING NEL	Comini 11	011	71-17-09	01-57	215-52-23
Dundar, Borane J., Pho	CIV	CTC.99	MC NC	261:00:27		423.43.20	Gordon, Aschard F., al., Cape	. USIN Het	Apollo 12	CMD	244-36-35	01.57	313.33.33
Dumanas Comuni 7		010902 CTC 25	00	201.00.37		215-06-00	Grobe Beneld I. Col	DEAE	CTC_611	Chin /-	07-44-19		104-42-00
Circle Depp E Col		313°33 Ano/lo 7	-3 CND	213.00.00		213.00.00	Grabe, Hostald 3., COI	USAF	STS-313	F 14	06-56-05		134.44.03
Eisele, Udial F., Udi.	Cive Cive	ADDINO /	MC	200.09.03		100:45:26	Gregory Frederick D. Col	IICAE	S13-50	Dit	168-08-46		200-12-25
England, Antiony W., Pho		515-01F	M3 04-	50:43:20		190:40.20	dregory, Frederick D., Cor	USAF	515-516 CTC 11	C.d.	100.00.40		200:13.35
Engle, Joe H., Col	USAF	313-2	Cur Cd-	39:13:13		244:30.00	Crisco & Dovid	Ch.	010-00	UG:	120.00:49	. 01-10	167.55.00
		313-311	çar	170:17:42	01.00	001-51-50	Griggs, S. David		SIS-SID	MD MD	107:35:23	03:10	107:33:23
Evans, Honaid H., Capt	USN HEL		UMP	301:51:59	01:00	301:51:59	Grissom, virgint, LL Col.	USAF	Cuberty Be	11 PIL	15:37		5:08:37
Fabian, John M. Col.	USAF	313-1	CM	140.23.39		310:02:31	Maine Fred W	C h.	Geman 3		4.33300		140-54-41
	A L.	313-316	MO	109:38:52		101.44.50	Hart Torry			LMP	142,34;41		142:34:41
Hisner, Anna L., MU	CIV	515-51A	MS	191:44:56		191;44:50	mart, Terry J	CIV .	515410	MQ	107:40:07		107:40:07
					*Lunar Su	rtace EVA			** Suborbita) Flight			

				-		TOTAL							TOTAL
	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME
				(HR:MIN:SEC)	(HR:MUN)	(HR:MIN:SEC)	{				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC
Hartsfield, Henry W.	USAF Ret	STS-4	Pit	169:09:40		482:50:35	Lousma, Jack R., Col	USMC	Skylab 3	Plt	1427:09:04	10:59	1619:13:49
· •		STS-41D	Cdr	144:56:04					STS-3	Cdr	192:04:45		
		STS-61A	Cdr	168:44:51			Lovell, James A., Jr., Capt	USN Ret	Gemini 7	Pit	330:35:31		715:05:25
Hauck, Frederick H., Capt	USN	STS-7	Pit	146:23:59		435:09:06			Gemini 12	Cdr	94:34:31		
		STS-51A	Cdr	191:44:56					Apollo 8	CMP	147:00:42		
		STS-26	Cdr	97:00:11			1		Apollo 13	Cdr	142:54:41		
Hawley, Steven A., PhD	Civ	STS-41D	MS	144:56:04		412:16:00	Low, G. David	Civ	STS-32	MS	261:00:37		261:00:37
		STS-61C	MS	146:03:51			Lucid, Shannon W., PhD	Civ	STS-51G	MS	169:38:52		289:18:16
		STS-31	MS	121:16:05					STS-34	MS	119:39:24		
Henize, Karl G., PhD	Civ	STS-51F	MS	190:45:26		190:45:26	Mattingly, Thomas K., Capt	USN	Apollo 16	CMP	265:51:05	01:24	508:34:04
Hilmers, David C., Lt. Col.	USMC	STS-51J	MS	97:44:38		301:03:11	1		STS-4	Cdr	169:09:40		
		STS-26	MS	97:00:11					STS-51C	Cdr	73:33:23		
		STS-36	MS	106:18:23			McAuliffe, S. Christa	Civ	STS-51L	PS	N/A		N/A
Hoffman, Jefferv A., PhD	Civ	STS-51D	MS	167:55:23	03:10	383:01:23	McBride, Jon A., Cdr	USN	STS-41G	Pit	197:23:33		197:23:3:
		STS-35	MS	215:06:00			McCandless, Bruce, Capt.	USN	STS-41B	MS	121:16:05	11:37	121:16:0
Irwin, James B., Col	USAF Ret	Apolio 15	LMP	295:11:53	18:35	295:11:53	McCulley, Michael, Cdr	USN	STS-34	Pit	119:39:24		119:39:2
ivins, Marsha S.	Çiv	STS-32	MS	261:00:37		261:00:37	McDivitt, James A., B. Gen	USAF Ret	Gemini 4	Cdr	97:56:11		338:57:0
Jarvis, Gregory B	Civ	STS-51L	PS	N/A		N/A			Apolio 9	Cdr	241:00:54		
Kerwin, Joseph P., Cant	USN Ret	Skvtab 2	Plt	672:49:49	03:30	672:49:49	McNair, Ronald E., PhD	Civ	STS-41B	MS	191:15:55		191:15:5
Lee, Mark C. Mai	USAF	STS-30	MS	96:56:25		96:56:25	. ,		STS-51L	MS	N/A		
Leetsma, David C., Cdr	USN	STS-41G	MS	197:23:33	03:29	318:23:42	Meade, Carl J.		STS-38	MS	117:55:00		117:55:0
		STS-28	MS	121:00:09		121:00:09	Melnick, Bruce E., Cdr	USCG	STS-41	MS	98:11:00		98:11:0
Lenoir, William B., PhD	Civ	STS-5	MS	122:14:26		122:14:26	Merbold, Ulf, PhD	Civ	STS-9	PS	247:47:24		247:47:2
Lichtenberg, Bryon K., PhD	Civ	STS-9	PS	247:47:24		247:47:24	Messerschmid, Ernest, PhD	Civ	STS-61A	PS	168:44:51		168:44:5
Lind, Don Leslie, PhD	Chr	STS-51B	MS	168:08:46		168:08:46	Mitchell, Edger D., Capt	USN Ret	Apollo 14	LMP	216:01:57	09:23	216:01:5
Lounge, John M.	Chv	STS-511	MS	170:17:42		482:23:53	Mullane, Richard M., Col	USAF	STS-41D	MS	144:56:04		356:20:0
		STS-26	MS	97:00:11			1		STS-27	MS	105:05:37		
		STS-35	MS	215:06:00			1		STS-36	MS	106:18:23		
							}						
					"Lunar S	iurface EVA						*Lunar S	urface EVA
B-20							······						

						TOTAL							TOTAL
NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FUGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME
				(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)					(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)
Musgrave, F. Story, MD, Phi	Civ	STS-6	MS	120:23:42	03:54	431:15:57	Roosa, Stuart A., Col	USAF Ret	Apollo 14	CMP	216:10:57		216:10:57
		STS-51F	MS	190:45:26			Ross, Jerry L., Lt. Col	USAF	STS-618	MS	165:04:49	12:20	270:10:26
		STS-33	MS	120:06:49			• • • • • • • • •		STS-27	MS	105:05:37		
Nagel, Steven R., Col.	USAF	SIS-51G	MS	169:38:52		338:23:43	Schirra, Walter M., Jr., Capt	USN Ret	Sigma 7	Pit	9:13:11		295:13:38
		STS-61A	Ph	168:44:51					Gemini 6A	Cár	25:51:24		
Nelson, Bill	Civ	STS-61C	PS	146:03:51		146:03:51			Apollo 7	Cdr	260:09:03		
Nelson, George D., PhD	Civ	STS-41C	MS	167:40:07	10:06	410:44:09	Schmitt, Harrison H., PhD	Civ	Apollo 17	LMP	301:51:59	22:04	301:51:59
	÷	STS-61C	MS	145:03:51			Schweickart, Russell	Civ	Apollo 9	LMP	241:00:54	01:07	241:00:54
_		STS-26	MS	97:00:11			Scobee, Francis R. (Dick)	USAF Ret	STS-41C	Pit	167:40:07		167:40:07
Neri Vela, Rodolpho, PhD	Civ	STS-61B	PS	165:04:49		165:04:49			STS-51L	Cđr	N/A		
O'Connor, Bryan O., Col	USMC	STS-61B	Pit	165:04:49		165:04:49	Scott, David R., Col	USAF Ret	Gemini 8	Plt	10:41:26		546:54:13
Ockeis, Wubbo J., PhD	Civ	STS-61A	PS	168:44:51		168:44:51			Apolio 9	CMP	241:00:54	01:01	
Onizuka, Ellison S., Lt. Col	USAF	STS-51C	MS	73:33:23		73:33:23			Apollo 15	Çdr	295:11:53	19:08	
		STS-51L	MS	· N/A			Scully-Power, Paul D.	Civ	STS-41G	PS	197:23:33		197:23:33
Overmyer, Robert F., Col	USMC	STS-5	Pit	122:14:26		290:23:12	Seddon, M. Rhea, MD	Civ	STS-51D	MS	167:55:23		167:55:23
		STS-51B	Cdr	168:08:46			Shaw, Brewster H., Col	USAF	STS-9	Pit	247:47:24		533:52:22
Pailes, William A., Maj	USAF	STS-51J	PS	97:44:38		97:44:38			STS-61B	Cdr	165:04:49		
Parise, Ronald A.		STS-35	PS	215:06:00		215:06:00			STS-28	Cdr	121:00:09		
Parker, Robert A., PhD	Civ	STS-9	MS	247:47:24		462:53:24	Shepard, Alan B., Jr., R. Adm	USN Ret	**Freedom 3	7 Pit	15:22		216:17:19
		STS-35	MS	215:06:00					Apolio 14	Cdr	216:01:57	09:23 *	
Payton, Gary E., Maj	USAF	STS-51C	PS	73:33:23		73:33:23	Shepherd, William M., Capt	USN	STS-27	MS	105:05:37		203:16:37
Peterson, Donald H.	USAF Ret	STS-6	MS	120:23:42	03:54	120:23:42			STS-41	MS	98:11:00		
Pogue, William R., Col.	USAF Ret	Skylab 4	Pit	2017:15:32	13:34	2017:15:32	Shriver, Loren J., Col	USAF	STS-51C	Pit	73:33:23		194:49:28
Resnik, Judith A., PhD	Civ	STS-41D	MS	144:56:04		144:56:04			STS-31	Cdr	121:16:05		
		STS-SIL	MS	N/A			Slayton, Donald K., Maj	USAF Ret	Apollo Soyu	22 CMP	217:28:23		217:28:23
Richards, Richard N., Cdr	USN	STS-28	Ptt	121:00:09		219:11:09	Smith, Michael J., Cdr	USN	STS-51L	Pit	N/A		N/A
		STS-41	Cdr	98:11:00			Spring, Sherwood C., Lt. Col	USA	STS-61B	MS	165:04:49	12:20	165:04:49
Ride, Sally K., PhD	Civ	STS-7	MS	146:23:59		343:47:32	Springer, Robert C., Col	USMC	STS-29	MS	119:38:52		237:33:52
		STS-41G	MS	197:23:33		1			STS-38	MS	117:55:00		
					*Lunar So	urface EVA			* *Suborbita	il Flight		*Lunar Su	rface EVA

							TOTAL							TOTAL
L	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FLIGHT TIME	NAME	SERVICE	MISSION	POSITION	FLIGHT TIME	EVA	FUGHT TIM
-					(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC)					(HR:MIN:SEC)	(HR:MIN)	(HR:MIN:SEC
	01 11 ml Thamas D. 14 C.									• • • • •	-			
	Stationo, Inomas P., Lt Gen	USAF Ret	Gemini 6A	119	25:51:24		507:44:10	White, Edward H., Lt. Ca	USAF	Gemini 4	PIT	97:56:11	00:23	97:56:1
			Gemini 9A	Cdr	72:21:00			Withams, Donald E., Ca	DI USN	\$15-510	PIC	167:55:23		287:34:4
			Apoilo 10	Cdr	192:03:23					STS-34	Cdr	119:39:24		
			Apolio Soyu	z Cdr	217:28:23			Worden, Alfred M., Col	USAF Ret	Apolio 15	CMP	295:11:53	00:39	295:11:5
	Stewart, Robert L., Col	USA	STS-41B	MS	191:15:55	11:37	289:00:33	Young, John W., Capt	USN Ret	Gemini 3	Pit	4:53:00		835:41:3
			STS-51J	MS	97:44:38			1		Gemini 10	Cdr	70:46:39		
	Sullivan, Kathryn D., PhD	Civ	STS-41G	MS	. 197:23:33	03:29	318:39:38			Apolio 10	CMP	192:03:23		
ľ			STS-31	MS	121:16:05					Apolio 16	Cdr	265:51:05	20:14 *	
	Swigert, John L, Jr.	Civ	Apollo 13	CMP	142:54:41		142:54:41	1		STS-1	Cdr	54:20:32		
	Thagard, Norman E., MD	Civ	STS-7	MS	146:23:59		411:30:16	l		STS-9	Cdr	247:47:24		
			STS-51B	MS	168:08:46			ļ						
			STS-30	MS	96:56:25									
	Thornton, Kathryn	Civ	STS-33	MS	120:06:49		120:06:49							
L	Thornton, William E., MD	Civ	STS-8	MS	145:08:43		313:17:29							
ĺ			STS-51B	MS	168:08:46			1						
L	Thuot, Pierre J., Lt. Cdr	USG	STS-36	MS	105:18:23		106:18:23	J						
l	Truly, Richard H., Capt	USN	STS-2	Plt	54:13:13		199:21:56							
L			STS-8	Cdr	145:08:43									
L	van den Berg, Lodewijk, PhD	Civ	STS-51B	PS	168:08:46		168:08:46							
L	van Hoften, James D., PhD	Civ	STS-41C	MS	167:40:07	10:06	377:57:49							
Į			STS-511	MS	170:17:42	11:51)						
L	Walker, Charles D.	Civ	STS-41D	PS	144:56:04		477:56:16							
L	-		STS-510	PS	167:55:23			1						
L			STS-61B	PS	165:04:49									
Ĺ	Walker, David M., Capt	USN	STS-51A	Pit	191:44:56		288:42:27	1						
L			STS-30	Cdr	96:56:25									
L	Wang, Taylor G., PhD	Civ	STS-51B	PS	168:08:46		168:08:46	1						
L	Weitz Paul J., Cant	LISN Ref	Skylab 2	Plt	672:49:49	01:44	793:13:31							
ŀ			STS-6	Cdr	120:23:42									
	Wetherbee, James, Cdr	USN	STS-32	Pit	261:00:37		261:00:37							
J			2.2.5-										*Lunar S	urface EVA
								I						

huttle Approach And Landing Tests

LIGHT	FLIGHT DATE	WEIGHT (kg,	DESCRIPTION OF FLIGHT
aptive Inert light l	Feb 18, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to Shuttle Carrier Aircraft (SCA) to evaluate low speed performance and handling qualities of Orbiter/SCA combination. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 10 minutes.
aptive Inert light 2	Feb 22, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to demonstrate flutter free envelope. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 3 hours 15 minutes.
aptive Inert light 3	Feb 25, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to complete flutter and stability testing. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry, Flight Time: 2 hours 30 minutes.
aptive Inert light 4	Feb 28, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate configuration variables. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry, Flight Time: 2 hours 11 minutes.
aptive Inert light 5	Mar 2, 1977	65,142.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate maneuver performance and procedures. SCA Crew: Fitzhugh L. Fulton, Jr., A. J. Roy, Vic Horton, and Skip Guidry. Flight Time: 1 hour 40 minutes.
aptive Active light 1A	Jun 18, 1977	68,462.3	First manned captive active flight with Fred W. Haise, Jr. and C. Gordon Pullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA for initial performance checks of Orbiter Flight Control System. SCA Crew: Flizhuch L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Quidry. Flight Time: 56 minutes.
aptive Active light 1 .	Jun 28, 1977	68,462.3	Manned captive active flight with Joe H. Engle and Richard H. Truly. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: I hour 3 minutes.
aptive Active light 3	Jul 26, 1977	68,462.3	Manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 59 minutes.
ee Flight l	Aug 12, 1977	68,039.6	First manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone on, released from SCA to verify handling qualities of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 51 seconds.
ee Flight 2	Sep 13, 1977	68,039.6	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) released from SCA to verify characteristics of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 55 seconds.
ee Flight 3	Sep 23, 1977	68,402.4	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton. Manned Orbiter (Enterprise) released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 12 seconds.
ee Flight 4	Oct 12, 1977	68,817.5	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) with tailcone off and three simulated engine bells installed released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhuch L. Fulton, Jr. and Thomas C. McNurtry. Flight Time: hour 7 minutes 48 seconds.
ee Flight 5	Oct 26, 1977	68,825.2	Manned free flight with Fred W. Haise, Jr. and C. Gordon Pullerton. Manned Orbiter (Enterprise) with tailcone off released from SCA to evaluate performance of landing gear on paved runway. SCA Crew: Fitzhugh L. Pulton, Jr. and Thomas C. McWurtry. Flight Time: 54 minutes 42 seconds.

Summary of United States Manned Space Flight

MISSION	CREW MEMBERS	MISSION	CREW HOURS	MISSION	CREW MEMBERS	MISSION	CREW HOURS
		(HR:MIN:SEC)	(HR:MIN:SEC)			(HR:MIN:SEC)	(HR:MIN:SEC)
MERCURY REDS	TONE (Suborbital)			APOLLO SATUR	RN I		
*Freedom 7	Shepard	15:22	15:22:00	Apollo 7	Schirra, Eisele, Cunningham	260:09:03	780:27:09
*Liberty Bell ?	Grissom	15:37	15:37:00				
Total Flights - :	2	30:59	30:59	APOLLO SATUR	RN V		
MERCURY ATLA	S (Orbital)			Apollo 8	Borman, Lovell, Anders	147:00:42	441:02:06
				Apollo 9	McDivitt, Scott, Schweickart	241:00:54	723:02:42
Friendship 7	Glenn	4:55:23	4:55:23	Apolio 10	Stafford, Young, Cernan	192:03:23	576:10:09
Aurora 7	Carpenter	4:56:05	4:56:05	Apoilo 11	Armstrong, Collins, Aldrin	195:18:35	585:55:45
Sigma 7	Schirra	9:13:11	295:13:38	Apollo 12	Conrad, Gordon, Bean	244:36:25	733:49:15
Faith 7	Cooper	34:19:49	226:18:03	Apolio 13	Lovell, Swigert, Haise	142:54:41	428:44:03
Total Flights -	4	53:24:28	53:24:28	Apolio 14	Shepard, Roosa, Mitchell	216:01:57	648:05:51
				Apoilo 15	Scott, Worden, Irwin	295:11:53	885:35:39
TOTAL MERCUR	Y FLIGHTS - 6	53:55:27	53:55:27	Apollo 16	Young, Mattingly, Duke	265:51:05	797:33:15
				Apolio 17	Ceman, Evans, Schmitt	301:51:59	905:35:57
GEMINI TITAN				Total Flights -	10	2241:51:34	7506:01:51
Gemini 3	Grissom, Young	4:53:00	9:46:00	TOTAL APOLLO	D-11	2502:00:37	7506:01:51
Gemini 4	McDivitt, White	97:56:11	195:52:22				
Gemini 5	Cooper, Conrad	190:55:14	381:50:28	SKYLAB SATUP	RNIB		
Gemini 6A	Schirra, Stafford	25:51:24	51:42:48	1			
Gemini 7	Borman, Lovell	330:35:31	661:11:02	Skylab 2	Conrad, Kerwin, Weitz	672:49:49	2018:29:27
Gemini 8	Armstrong, Scott	10:41:26	21:22:52	Skylab 3	Bean, Garriott, Lousma	1427:09:04	4281:27:12
Gemini 9A	Stafford, Cernan	72:21:00	144:42:00	Skylab 4	Carr, E. Gibson, Pogue	2017:15:32	6051:46:36
Gemini 10	Young, Collins	70:46:39	141:33:18			· ·	
Gemini 11	Conrad, Gordon	71:17:08	142:34:16	TOTAL SKYL	AB FLIGHTS - 3	4117:14:25	12351:43:15
Gemini 12	Lovell, Aldrin	94:34:31	189:09:02				
	•			APOLLO SATU	RN IB		
TOTAL GEMIN	I FLIGHTS - 10	969:52:04	1939:44:08	ASTP	Stafford, Brand, Slayton	217:28:23	652:25:09

Summary of United States Manned Space Flight

		MISSION				MISSION	
MISSION	CREW MEMBERS	DURATION	CREW HOURS	MISSION	CREW MEMBERS	DURATION	CREW HOURS
		(HR:MIN:SEC)	(HR:MIN:SEC)			(HR:MIN:SEC)	(HR:MIN:SEC)
	-						
STS-1 - Columbia	Young, Crippen	54:20:32	108:41:04	STS-61A · Challenger	Hartsfield, Nagel, Buchli, Bluford, Dunbar,	168:44:51	1349:58:48
STS-2 - Columbia	Engle, Truly	54:13:13	108:26:26		Furrer, Messerschmid, Ockels		
STS-3 - Columbia	Lousma, Fullerton	192:04:45	384:09:30	STS-61B · Atlantis	Shaw, O'Connor, Cleave, Spring, Ross,	165:04:49	1155:33:43
STS-4 - Columbia	Mattingly, Hartsfield	169:09:40	338:19:20		Neri Vela, C. Walker		
STS-5 - Columbia	Brand, Overmyer, Allen, Lenoir	122:14:26	488:57:44	STS-61C - Columbia	R. Gibson, Bolden, Chang-Diaz, Hawley,	146:03:51	1022:26:57
STS-6 - Challenger	Weitz, Bobko, Peterson, Musgrave	120:23:42	481:34:48		G. Nelson, Cenker, B. Nelson		
STS-7 - Challenger	Crippen, Hauch, Ride, Fabian, Thagard	146:23:59	731:59:55	STS-51L - Challenger	Scobee, Smith, Resnik, Onizuka, McNair,	N/A	N/A
STS-8 · Challenger	Truly, Brandenstein, D. Gardner, Bluford,	145:08:43	725:43:35		Jarvis, McAuliffe		
	W. Thornton			STS-26 - Discovery	Hauck, Covey, Lounge, Hilmers, G. Nelson	97:00:11	485:00:55
STS-9 - Columbia	Young, Shaw, Garriott, Parker,	247:47:24	1486:44:24	STS-27 - Atlantis	R. Gibson, Gardner, Mullane, Ross, Shephere	105:05:37	525:28:05
	Lichtenberg, Merbold			STS-29 - Discovery	Coats, Blaha, Bagian, Buchi, Springer	119:38:52	598:14:20
STS-41B - Challenger	Brand, Gibson, McCandless, McNair,	191:15:55	956:19:35	STS-30 - Atlantis	Walker, Grabe, Thagard, Cleave, Lee	96:56:25	484:47:35
	Stewart			STS-28 - Columbia	Shaw, Richards, Leetsma, Adamson, Brown	121:00:09	605:00:45
STS-41C - Challenger	Crippen, Scobee, van Hoften, G. Nelson, Harl	167:40:07	838:20:35	STS-34 - Atlantis	Williams, McCully, Baker, Chang-Diaz, Lucid	119:39:24	598:17:00
STS-41D - Discovery	Hartsfield, Coats, Resnik, Hawley, Multane,	144:56:04	869:36:24	STS-33 - Discovery	Gregory, Blaha, Musgrave, K. Thornton, Cart	er 120:06:49	600:34:05
	C. Walker			STS-32 - Columbia	Brandenstein, Wetherbee, Dunbar, Ivins, Low	261:00:37	1305:03:05
STS-41G - Challenger	Crippen, McBride, Ride, Sullivan, Leetsma,	197:23:33	1381:44:51	STS-36 - Atlantis	Creighton, Casper, Hilmers, Mullane, Thuot	106:18:23	531:31:55
	Garneau, Scully-Power			STS-31 - Discovery	Shriver, Bolden, McCandless, Hawley, Sullivi	in 121:16:05	606:20:25
STS-51A - Discovery	Hauck, D. Walker, Gardner, A. Fisher, Allen	191:44:56	958:44:40	STS-41- Discovery	Richards, Cabana, Melnick, Shepard, Akers	98:11:00	490:45:00
STS-51C - Discovery	Mattingly, Shriver, Onizuka, Buchti, Payton	73:33:23	367:46:55	STS-38 - Atlantis	Covey, Springer, Meade, Culbertson, Gemar	117:55:00	589:35:00
STS-51D - Discovery	Bobko, Williams, Seddon, Hoffman, Griggs,	167:55:23	1175:27:41	STS-35 - Columbia	Brand, Lounge, Hoffman, Parker,	215:06:00	1290:36:00
	C. Walker, Garn				G. Gardner, Parise, Durrance		
STS-51B - Challenger	Overmyer, Gregory, Lind, Thagard,	168:08:45	1177:01:22				
	W. Thornton, van den Berg, Wang			TOTAL SHUTTLE FLIC	GHTS - 38	5363:57:12	28681:54:13
STS-51G - Discovery	Brandenstein, Creighton, Lucid, Fabian,	169:38:52	1187:32:04				
	Nagel, Baudry, Al-Saud						
STS-51F · Challenger	Fullerton, Bridges, Musgrave, England,	190:45:26	1335:18:02				
	Henize, Acton, Bartoe			1			
STS-511 - Discovery	Engle, Covey, van Hoften, Lounge, W. Fisher	170:17:42	851:28:30	{			
STS-51J - Atlantis	Bobko, Grabe, Hilmers, Stewart, Pailes	97:44:38	488:53:10				
				1			

FLIGHT	LAUNCH DATE	LANDING DATE	CREW		PAYLOADS AND EXPERIMENTS
STS-1 (Columbia) Mission Dura	Apr 12, 1981 (KSC) tion: 54 hrs 20	Apr 14, 1981 (DFRF)) min 32 sec	Cdr: Plt:	John W. Young Robert L. Crippen	Development Plight Instrumentation (DFI) Passive Optical Sample Assembly (POSA) Aerodynamic Coefficient Identification Package (ACIP)
STS-2 (Columbia) Mission Dura	Nov 12, 1981 (KSC) tion: 54 hms 13	Nov 14, 1981 (DFRF) 3 min 13 sec	Cdr: Plt:	Joe Henry Engle Richard H. Truly	OSTA-1 Development Flight Instrumentation (DFI) Induced Environment Containment Monitor (IECM) Aerodynamic Coefficient Identification Package (ACIP) OEX Tile Gap Heating Effects OEX Catalytic Surface Effects OEX Dynamic, Acoustic, and Thermal Environment (DATE) Experiment
STS-3 (Columbia) Mission Dura	Mar 22, 1982 (KSC) tion: 192 hrs 4	Mar 30, 1982 (White Sands) Unin 45 sec	Cdr: Plt:	Jack R. Lousna Charles G. Pullerton	OSS-1 Monodisperse Latex Reactor (MIR) Experiment Electrophoresis Equip. Verification Test (EEVT) Tile Gap Heating Effects Experiment Catalytic Surface Effects Experiment Dynamic, Acoustic, and Thermal Environment (DATE) Experiment Development Flight Instrumentation (DET) Induced Environment Containment Monitor (IECM) Aerodynamic Coefficient Identification Package (ACIP) Get-Away Special (GAS) Test Canister Student Experiment - Insects in Flight Motion Study

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-4 (Columbia) Mission	Jun 27, 1982 (KSC) Duration: 169	Jul 4, 1982 (DERF) hrs 09 min 40	Cdr: Thomas K. Mattingly II Plt: Henry W. Hartsfield, Jr. sec	DOD Payload - 82-1 Monodisperse Latex Reactor (MIR) Experiment - NASA Continuous Flow Electrophoresis System (CPES - NASA Tile Gap Heating Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Dynamic, Acoustic, and Thermal Environment (DATE) Exp - NASA Development Flight Instrumentation (DFI) - NASA Induced Environment Containment Monitor (IECM) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Special - Utah State University Student Experiments: Effects of Diet/Exercise/Zero Gravity on Lipoprotein Profiles Effects of Space Travel on Trivalent Chrominum in the Body
STS-5 (Columbia) Mission Du	Nov 11, 1982 (KSC) ration: 122 hrs	Nov 16, 1982 (DRRF) 14 min 26 sec	Cdr: Vance DeVoe Brand Plt: Robert P. Overmyer MS: Joseph P. Allen MS: William B. Lenoir	Deployed: SBS-C - Satellite Business Systems Telesat-E -Telesat Canada, Ltd. Tile Gap Heating Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Dynamic, Accustic, and Thermal Environment (DATE) Exp - NASA Atmospheric Luminosities Investigation (Glow Experiment) - NASA Development Flight Instrumentation (DFI) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Special - ERNO, West Germany Student Experiments: Formation of Crystals in Weightlessness Growth of Porifera in Zero-Gravity Convection in Zero-Gravity

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-6 (Challenger)	Apr 4, 1983 (KSC)	Apr 9, 1983 (DFRF)	Cdr: Paul J. Weitz Plt: Karol J. Bobko MS: Donald H. Peterson	Deployed: TTRS-A/IUS - Spacecom/USAF Continuous flow Electrophoresis System (CFES) - NASA
Mission Dura	:10n: 120 hrs :	23 min 42 sec	MS: Story Musgrave	Monodisperse Latex Reactor (MIR) - NASA Nighttime/Daytime Optical Survey of Lightning (NOSL) - NASA Aerodynamic Coefficient Tdentification Package (ACIP) - NASA Get-Away Specials: G-005 - Asahi Shimban, Japan G-049 - USAF Academy G-381 - Park Seed Company, South Carolina
STS-7 (Challenger) Mission Durat	Jun 18, 1983 (KSC) :ion: 146 hrs ;	Jun 24, 1983 (DERF) 23 min 59 sec	Odr: Robert L. Crippen Pit: Frederick H. Hauck MS: John M. Pabian MS: Sally K. Ride MS: Norman E. Thagard	Deployed: Telesat-F (ANIK C-2)/PAM-D - Telesat, Canada Palapa-Bl/PAM-D - Peruntel, Indonesia Shuttle Pallet Satellite (SPAS-01) - MBB, Germany OSTA-2 - NASA Continuous Plow Electrophoresis System (CPES) - NASA
				Monodisperse Latex Reactor (MLR) - NASA Get-Away Specials: G-002 - Kayser Threde, West Germany G-009 - Purdue University G-012 - RCA/Camden New Jersey Schools G-033 - California Institute of Technology G-088 - Edsyn, Inc.
				G-305 - USAF/INL G-345 - GSPC/NRL

PLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-8 (Challønger) Mission Durat	Aug 30, 1983 (KSC) sion: 145 hrs 8	Sep 5, 1983 (DERP) min 43 gec	Cdr: Richard H. Truly Plt: Daniel C. Brandenstein MS: Dale A. Gardner MS: Guion S. Bluford, Jr. MS: William E. Thornton, MD	Deployed: INSAT-18/PAM-D - India Payload Flight Test Article (PFTA) - NASA Radiation Monitoring Equipment (RME) - NASA Heat Pipe - NASA Oru: Interventies or Materials (JMA) NASA
				Investigation of STS Atmospheric Luminosities (ISAL) - NASA Animal Enclosure - NASA Continuous Flow Electrophoresis System (CFES) - NASA/MDAC Modular Auxiliary Data System (MADS) - NASA Anrodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Specials: G-0346 - Cosmic Ray Upset Experiment (CRUX) -GSPC/Neupert G-0347 - Photographic Film Evaluation Exp - GSPC/Molphsen G-0348 - Contamination Monitor - GSPC/McIntosh G-0347 - Asahi/Shimban, Japan Student Experiment - Biofeedback SE81-1 Other - Postal Covers
STS-9 (Columbia)	Nov 28, 1983 (KSC)	Dec 8, 1983 (DFRF)	Cdr: John W. Young Plt: Brewster W. Shaw	Spacelab-1 (Long Module) + Pallet - ESA/NASA Spacelab Attach Hardware, TK. set, Misc - ESA/NASA
Mission Durat	ion: 247 hrs 4	7 min 24 sec	MS: Owen K. Garriott MS: Robert A. R. Parker PS: Byron K. Lichtenberg PS: Ulf Merbold (ESA)	STS Operator - NASA

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 41-B (Challenger) Mission Durat	Feb 3, 1984 (KSC)	Feb 11, 1984 (KSC) 5 min 55 sec	Cdr: Vance D. Brand Plt: Robert L. Gibson MS: Bruce McCandless MS: Robert L. Stewart MS: Ronald E. McNair	Deployed: Westar VI/PAM-D - Western Union Palap-82/PAM-D - Indonesia Integrated Rendezvous Tanget (IRT) - NASA Acoustic Containerless Experiment System (ACES) - NASA-OSSA/JSC SPAS-01A - MBB, Getmany Iscelectric Focusing Experiment (IEF) - NASA-OSSA/MSFC Radiation Monitoring Experiment (IEF) - NASA Monodisperse Latex Reactor (MIR) - NASA Cinama 360 - Cinema 360, Inc. Manned Maneuvering Unit (MPU) - NASA Manipulation Foot Restraint (MER) - NASA Cargo Bay Storage Assambly (CBSA) - NASA Catto Bay Storage Cast UnivØrighton High School COS1 - Arc Discharge Lamp Test - GTE Laboratories, Inc. C309 - CRUX - Air Force Space Test Program C349 - COddard Space Flight Center Student Experiment - SE81-40 - Arthritis, Dan Weber - Pfizer/CD
STS 41-C (Challenger) Mission Durat	Apr 6, 1984 (KSC) ion: 167 hrs	Ap: 13, 1984 (DFRF) 40 min 07 sec	Odr: Robert L. Crippen Plt: Francis R. Scobee MS: Terry J. Hart MS: James D. Van Hoften MS: George D. Nelson	Deployed: Long Duration Exposure Facility (LDEF-1) - NASA/Langley Solar Max Mission Flight Support System - NASA/GSFC Manned Maneuvering Unit Flight Support System - NASA Manned Foot Restraint - NASA Cinema 360 - Cinema 360, Inc. IMAX - IMAX/NASA Radiation Monitoring Experiment (RME) - NASA Student Experiment - Honeycomb construction by bee colony

FLIGHT	LAUNCH DATE	LANDING	DATE CRE	w	PAYLOADS AND EXPERIMENTS
STS 41-D(Rev) (Discovery) Mission Durat	Aug 30, 1984 (KSC) ion: 144 hrs !	Sep 5, (EAFB) 56 πin 4 9	1984 Cdr Plt . MS: sec MS:	: Henry W. Hartsfield : Michael L. Coats Richard M. Mullane Steven A. Hawley Judith A. Resnik Charles D. Walker	Deployed: SBS-D/PAM-D - Satellite Business Systems Syncom IV-2/Unique Upper Stage - Hughes Comm. Service, Inc. Telstar 3-C/PAM-D - AT&T Co. OAST-1/MPESS - NASA CPESS III (Cont. Plow Flectp. Sys.) - MDAC DMAX - IMAX RME (Radiation Monitor Exp.) - NASA Clouds Photo Experiment - USAP Student Experiment - SE82-14 - Murphy/RI
STS 41-G (Challenger) Mission Durat	Oct 5, 1984 (KSC)	Oct 13, (KSC) 23 min	1984 Cdr Plt MS: 33 sec MS: MS: PS: PS:	: Robert L. Crippen : Jon A. McBride Kathryn D. Sullivan Sally K. Ride David D. Leetsma Marc D. Garneau Paul D. Scully-Power	Deployed: Earth Radiation Budget Satellite (ERBS) - NASA OSTA-3/Pallet - NASA LFC/CRS/MPESS - NASA IMAX - IMAX RME (Radiation Monitor Exp.) - NASA APE (Auroral Photog, Exp.) - USAF TLD (Thermo, Lum. Dosimeter) - Hungary CANEX (Canadian Experiment) - Canada Get-Away Specials: G007 - Stud. Exp., Radio Trans. Exp Ala. Space & Rocket Cntr G013 - Halogen Lamp Ex. (HALEX) - Kayser-Threde/ESA G032 - Physics of Solids/Liquids - Asahi Corp., Japan G038 - Vapor Deposition - McShane/MSFC G074 - Fuel System Test - MDAC G306 - Trapped Ions in Space - Naval Res Lab/USNA G469 - Cosmic Ray Upset Exp NASA/CSFC/IEM G518 - Physics and Mat'l Process Utah State U.

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-A (Discovery) Mission Dura	Nov 8, 1984 (KSC) Ition: 191 hrs	Nov 16, 1984 (KSC) 44 min 56 sec	Odr: Prederick H. Hauck Plt: David M. Walker MS: Joseph P. Allen MS: Anna L. Pisher MS: Dale A. Gardner	Deployed: Telesat-H/PAM-D - Telesat, Canada Syncom TV-1/Unique Upper Stage - Hughes Comm. Services, Inc. Satellite Retrieval Pallets (2) - NASA/MDAC MMU/FSS (2) - NASA Diffuse Mixing of Organic Solids (DMOS) - 3M Co. Radiation Monitoring Equipment (RME) - NASA Man. Poot Restraint (MER) - WASA
STS 51-C (Discovery) Mission Dura	Jan 24, 1985 (KSC) htion: 73 hrs 3	Jan 27, 1985 (KSC) 33 min 23 sec	Cdr: Thomas K. Mattingly Plt: Loren J. Shriver MS: Ellison S. Onizuka MS: James P. Buchli PS: Gary E. Payton	Deployed: DOD/Inertial Upper Stage - DOD Aggreyation of Red Cells (ARC) Mid-deck Exp Univ. of Sydney
STS 51-D (Discovery) Mission Dura	Apr 12, 1985 (KSC)	Apr 19, 1985 (KSC) 55 min 23 sec	Odr: Karol J. Bobko (USAP) Plt: Donald E. Williams (USN) PS: Charles D. Walker (MDAC) PS: E. J. Garn (Senator) MS: M. Rhea Seddon (MD) MS: S. David Griggs (NAR) MS: Jeffrey A. Hoffman (PhD)	Deployed: Telesat-I/PAM-D - Telesat Canada, Ltd Syncan IV-3/UUS - Hughes Comm. Services, Inc. American Pilght Echocandiograph - NASA Continuous Plow Electrophonesis Sys. (CPES III) - MDAC/NASA Image Intensifier Investigation - NASA Informal Science Study (Toys in Space) - Houston Museum/Nat. Sci. Phase Partitioning Experiment (PPE) - NASA Get Away Specials (GAS): G035 - Physics of Solids & Lignids - Asahi, Japan G471 - Cap. Pump Loop Experiment - GSFC Student Experiments: SE 82-03 - Statoliths in Corn Rt Caps - Amberg/Martin Marietta SE 82-03 - Effect of Weightlessness on Aging of Brain Cells - Fras/USC/LA Orthopaelic Hospital Other - Statute of Liberty Replicas (2)

LIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-B (Challenger) Mission Durat	Apr 29, 1985 (KSC) ion: 168 hrs	May 6, 1985 (DFRF) 08 min 46 sec	Cdr: R. F. Overmyer (USMC) Plt: P. D. Gregory (USAF) MS: Don L. Lind (PhD) MS: Norman E. Thagard (MD) MS: Wn. E. Thornton (MD) MS: Wn. E. Thornton (MD) PS: Lodewijk Vandenberg (PhD) PS: Taylor Wang (PhD)	Deployed: NUSAT - Northern Utah University Spacelab 3 (LM + MPESS) - NASA/ESA GLOMR - DOD
STS 51-G (Discovery) fission Durat	Jun 17, 1985 (KSC) ion: 169 hrs	Jun 24,1985 (EDW) 38 min 52 sec	Cdr: Daniel Brandenstein (USN) Plt: John O. Creighton (USN) MS: John M. Fabian (USAF) MS: Steven R. Nagel (USAF) MS: Shannon W. Lucid (PhD) PS: Patrick Baudry (France) PS: Prince Sultan Salman Al-Saud (Saudi Arabia)	Deployed: Morelos-A/PAM-D - Mexico Arabsat-A/PAM-D - ASCO Telstar 3-D/PAM-D - ASCO Telstar 3-D/PAM-D - AT&T Spartan-1/MPESS - NASA/CSPC/NRL Fr. Bostural Exp. (FPE) - CNES, France Auto. Dir. Solid. FURT (ADSF) - NASA/MSFC High-Prec. Track. Exp. (HPTE) - USAF Getaway Specials (GAS): G025 - Dyn. Behavior of Lig. Props W.Germany G027 - Slipcasting under Micro-G - W.Germany G028 - Punc'l Study of MnBi - W.Germany G034 - Bio/Phys. Sci. Stud. Exp El Paso/Ysleta, TX G314 - Space Ulra. Rad. Env. (SURE) - USAF/NRL G471 - Cap. Pump Loop Exp GSPC

PLIGHT	LAUNCH DATE	LANDING DATE	OREW	PAYLOADS AND EXPERIMENTS
STS 51-P (Challenger) Mission Durat	Jul 29, 1985 (KSC) tion: 190 hrs 4	Aug 6, 1985 (EDW) 15 min 26 sec	Cdr: Chas. Fullerton (USAF) Plt: Roy D. Bridges (USAF) MS: F. Story Musgrave (M.D.) MS: Anthony W. England (PhD) MS: Karl G. Henize (PhD) PS: Loren W. Acton (Lockheed) PS: John-David Bartoe (USN)	Deployed: Plasma Diagnostics Package - NASA Spacelab-2 - NASA/ESA Shuttle Amateur Radio Experiment - AMSAT Space Life Sciences Training Program - NASA
STS 51-I (Discovery) Mission Durat	Aug 27, 1985 (KSC) tion: 170 hrs	Sep 3, 1985 (EDW) 17 min 42 sec	Cdr: Toe H. Engle (USAF) Plt: Richard O. Covey (USAF) MS: James van Hoften (PhD) MS: John M. Lounge MS: William F. Fisher (MD)	Deployed: AUSSAT-1/PAM-D - Australia ASC-1/PAM-D - American Satellite Co. SYNCOM IV-4/UNQ - Hughes Comm Services, Inc. Physical Vapor Transport of Organic Solids (PVTOG) - 3M Corp SYNCOM IV-3 Repair Equipment - NASA/Hughes
STS 51-J (Atlantis) Mission Dur.	Oct 3, 1985 (KSC) ation:97 hrs	Oct 7, 1985 (EDW) 44 min 38 sec	Cdr: Karol Bobko (USAF) Plt: Ronald J. Grabe (USAF) MS: Robert C. Stewart (USA) MS: David C. Hilmers (USMC) PS: William A. Pailes (USAF)	DOD Mission
STS 61-A (Challenger) Mission Ducat	Oct 30, 1985 (KSC) tion: 168 hrs 4	Nov 5, 1985 (EDW) 4 min 51 sec	Cdr: Henry Hartsfield (USAF) Plt: Steven Nagel (USAF) MS: Bonnie Dunbar (PhD) MS: James Buchli (USMC) MS: Guion Bluford (USAF) FS: Ernst Messerschmid (PhD, G FS: Reinhard Furrer (PhD, Germ PS: Wubbo Ockels (PhD, Dutch)	Deployed: GLOMR GAS - DOD Spacelab D-1 (Long Module + Unique Support Structure) ~ DEVLR Material Experiment Assembly (MEA) - NASA Wetman) Man)

FLIGHT	LAUNCH DATE	LANDING DAT	OKEW	PAYLOADS AND EXPERIMENTS
STS 61-B (Atlantis) Mission Durat	Nov 26, 1985 (KSC) tion: 165 hrs -	Dec 3, 1985 (EAFB) 4 min 49 sec	Cdr: Brewster H. Shaw (U Plt: Bryan D. O'Connor (MS: Mary L. Cleave (PhD MS: Sherwood C. Spring MS: Jerry L. Ross (USAP PS: Rudolfo Neri Vela (PS: Charles Walker (MDA	 SAP) Deployed: USMC) Worelos-B/PAM-D - Mexico Aussat-2/PAM-D - Australia (USA) Satcom KU-2/PAM-DI - RCA OEX Target - NASA PhD) EASE/ACCESS/MPESS - NASA/MIT C) IMAX Payload Bay Camera - DMAX/NASA Continuous Plow Electrophoresis Sys (CFES III) - MDAC/3M/NASA Diffusive Mixing of Organic Solutions (DMCS) - 3M Company Morelos Payload Specialist Experiments (MFSE) - Mexican Gov't Getaway Special: G479 - Primary Surface Mirrors/Metallic Crys (Telesat, Canada)
STS 61-C (Columbia) Mission Durat	Jan 12, 1986 (KSC) tion: 146 hrs 3	Jan 18, 1986 (KSC) 3 min 51 sec	Cdr: Robert L. Gibson (U Plt: C. F. Bolden, Jr. (MS: F R. Chang-Diaz (Ph MS: George D. Nelson (P MS: Steven A. Hawley (P PS: Robert J. Cenker (R PS: C. William Nelson (SN) Deployed: SATCOM KU-1/PAM-D2 - RCA Materials Science Lab (MSL-2) - NASA D) Hitchhiker G-1 (HHC-1) - NASA D) GAS Bridge Assembly (12 GAS cans) - NASA CAS Bridge Assembly (12 GAS cans) - NASA CAS Getaway Special (G-470) - Dept. of Agriculture Cong) Infrared Imaging Experiment (IR-IE) - NASA Infrared Imaging Experiment (ISE) - NASA Comet Halley Active Monitoring Program (CHAMP) - NASA Shuttle Student Involvement Program (SSIP) - NASA
STS 51-L (Challenger) Mission Durat	Jan 28, 1986 (KSC) :ion: N/A	Jan 28, 1986	Odr: Prancis R. Scobee (1) Plt: Michael J. Smith (1) MS: Judith A. Resnik (P) MS: Ellison S. Onizuka MS: Ronald E. McNair (P) PS: Gregory Jarvis (Hug) PS: S. Christa McAuliffe (Teacher)	 TTRS-B/IUS - NASA/Spacecom Spartan-Halley/MPESS - NASA/U. of Col. Comet Halley Active Monitor Prog (CHAMP) - NASA/Lockheed/U.Col. (USAP) Fluid Dynamics Experiment (PDE) - Hughes D) Radiation Monitoring Experiment (RME) - NASA Phase Partitioning Experiment (PTE) - NASA Teacher in Space Project (TISP) - NASA Shuttle Student Involvement Program (SSIP) - NASA

PLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-26 (Discovery) Mission D	Sep 29, 1988 (KSC) Duration: 97)	Oct 3, 1988 (EAFB)	Cdr. Frederick H. Hauck Plt: Richard O. Covey MS: John M. Lounge MS: David C. Hilmers MS: George D. Nelson sec	Deployed: TORS-C - TRW CONTEL/NASA Inertial Upper Stage (IUS) - Bocing/USAF/NASA Orbiter Exp Auto Support Ins Sys (OASIS) - Lockheed/USAF/NASA Automated Directional Solidification Furnace (ASDF) - NASA Aggregation of Red Blood Cells (ARC) - NASA Earth Limb Radiance Experiment (EERAD) - NASA Isoelectric Focusing Experiment (IEF) - NASA Inferred Communication Flight Exp (INCFE) - Wilton Ind./NASA Mesoscale Lightning Exp (MEE) - NASA Protein Crystal Growth (PCG) - U of Alabama/NASA Phased Partitioning Experiment (PEF) - NASA Physical Vapor Transport of Organic Solids (PVTOS) - 3M/NASA Shuttle Student Involvement Projects: SSIP 82-4 - MDAC/Lloyd Eruce SSIP 82-5 - Union College/R. Caboli
STS-27 (Atlantis)	Dec 2, 1988 (KSC)	Dec 6, 1988 (EAFB)	Cdr: Robert L. Gibson Plt: Guy S. Gardner MS: Richard M. Mullane MS: Jerry L. Ross MS: William M. Shepherd	Deployed: DOD Payload - DOD
Mission D	uration: 105	hrs 05 min 37	'sec	

FLIGHT_	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-29 (Discovøy) Mission Durat	Mar 13, 1989 (KSC)	Mar 17, 1989 (EAFB) 38 min 52 sec	Cdr: Michael L. Coats Plt: John E. Blaha MS: James P. Bagian Ms:James P. Buchli MS: Robert C. Springer	Deployed: TDRS-D - TRW/CONTEL/NASA Inertial Upper Stage (IUS) - Boeing/USAF/NASA Orbier Experiments Autonomous Supporting Instrumentation System (OASIS-I) - Lockheed/ISAF/NASA Space Station Heat Pipe Advanced Radiator Element (SHARE) - NASA Air Force Maui Optial System (AMOS) Calibration Test - USAF Chromosome and Plant Cell Division in Space Experiment (CHROMEX) - NASA IMAX Corporation Camera Experiment (IMAX) - INAX of Canada/NASA Protein Crystal Growth (PCG) - Univ. of Alabama/NASA Shutle Student Involveent Project: SSIP 82-8 - Ky, Pried Chicken/John C. Vellinger SSIP-9 - Orthopaedic Hosp./USC/Andrew I, Fras
STS-30 (Atlantis) Mission Durat	May 4, 1989 (KSC) ion 96 hrs 56	May 8, 1989 (EAFB) 5 min 25 sec	Cdr: David M. Walker Plt: Ronald J. Grabe MS: Norman E. Thagard MS: Mary L. Cleave MS: Mark C. Lee	Deploved: Magellan Spacecraft/Inertial Upper Stae (IUS) - Martin/JPL/NASA Fluid Experiment Apparatus (FEA) - Rockwell/NASA Air Force Maui Optical Site Calibration (AMOS) - USAF
STS-28 (Columbia Mission Durat	Aug 8, 1989 (KSC) ion 121 hrs 0	Aug 13, 1989 (EAFB) 00 min 09 sec	Cdr: Brewster H. Shaw Plt: Richard N. Richards MS: David C. Leetsma MS: James C. Adamson MS: Mark N. Brown	Deployed: DOD Payload - DOD

FLIGHT	LAUNCH	DATE	LANDING	DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-34 (Atlantis)	Oct 18, (KSC)	1989	Oct 23, (EAFB)	1989	Cdr: Donald E. Williams Plt: Michael McCulley MS: Ellen S. Baker MS: Franklin R. Chang-Diaz	Deployable Payload Galileo/IUS Attached PLB Payload Shutle Solar Backscatter Ultraviolet (SSBUV) CAS (Cet June Consist)
Mission Du	ration:	119 h	rs 39 mi	ns 24	secs .	Zero Gravity Growth of Ice Crystals Crew Compartment Payload Polymer Morphology Growth Hormone Concentration & Distribution in Plants Senor Technology Experiment IMAX Camera Mesoscale Lightning Experiment
STS-33 (Discovery	Nov 22,) (KSC)	1989 120 b	Nov 27, (EAFB)	1989	Cdr: Frederick D. Gregory Plt: John E. Blaha MS: Manley L. Carter MS: Franklin Musgrave MS: Kathryn C. Thornton	DOD Mission

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-32 (Columbia) Mission Dur	Jan 09, 199 (KSC) cation: 261	0 Jan 20, 1990 (EAFB) hrs 0 mins 37	Cdr: Daniel C. Branden Plt: James D. Wetherbe MS: Bonnie J. Dunbar MS: Marsha S. Ivins MS: G. David Low secs	stein Deployable Payload e Syncom IV-5 Returned Cargo LDEF (deployed on STS-41C) Crew Compartment Payload American Flight Echocardiograph (AFE)
				Air Force Maui Optical Site Calibration Test (AMOS) Characterization of Neurospora Circadian Rhythms (CNCR Fluids Experiment Apparatus IMAX Camera Latitude/Longitude Locator (L3) Mesoscale Lightning Experiment Protein Crystal Growth (PCG) Special Payload Mission Kits
				Remote Manipulator System (RMS) Gally MADS
STS-36 (Atlantis)	Feb 28, 199 (KSC)	0 Apr 14, 1990 (DFRF)	Cdr: John D. Creighton Plt: John H. Casper MS: David C. Hilmers MS: Richard M. Mullan MS: Pierre J. Thuot	DOD Mission
Mission Dur	ation: 106	hrs 18 mins 23	secs	
l				

FLIGHT LAUNCH DATE LANDING DATE CREW	PAYLOADS AND EXPERIMENTS
STS-31 Apr 24, 1990 Apr 29, 1990 Cdr: Loren J. Shriver (Discovery) (KSC) (EAFB) Plt: Charles F. Bolden MS: Bruce McCandless MS: Steven A. Hawley MS: Kathryn D. Sullivan Mission Duration: 121 hrs 16 mins 5 secs	Deployable Payload Hubble Space Telescope (HST) Attached PLB Payload IMAX Cargo Bay Camera (ICBC) Ascent Particle Monitor (APM) Crew Compartment Payload Air Force Maui Optical Site Calibration Test (AMOS) IMAX Camera Investigation into Polymer Membrane Processing (IPMi Protein Crystal Growth (PCG) Radiation Monitoring Experiment (RME) Investigation of Arc and Ion Behavior in Microgravit (Student Experiment 82-16) Special Payload Mission Kits Remote Manipulator System (RMS) Gally HST EVA Tools
STS-41 Oct 06, 1990 Oct 10, 1990 Cdr: Richard N. Richards (Discovery) (KSC) (DFRF) Plt: Robert D. Cabana MS: Bruce E. Melnick MS: William M. Shepherd S: Thomae D. Akars	Deployable Payload Ulysses Secondary Payloads Shuttle Solar Backscatter Ultraviolet (SSBUV) Untelsat Solar Array Coupon (ISAC)
Mission Duration: 98 hrs 11 mins ORIGINAL PAGE IS	Air Force Maui Optical Site (AMOS) Chromosome and Plant Cell Division in Space (CHROME Voice Command System (VCS) Solid Surface Combustion Experiment (SSCE) Investigation into Polymer Membrane Processing (IPM Physiological Systems Experiment (PSE) Badiation Monitor Experiment (RME-III)

,

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-38 (Atlantis)	Nov 15, 1990 (KSC)	Nov 20, 1990 (KSC)	Cdr: Richard O. Covey Plt: Frank L. Culbertson MS: Robert C. Springer MS: Carl J. Meade MS: Charles D. Gemar	DOD Mission
Mission Du	ation: 117 H	urs 55 mins		
STS-35 (Columbia)	Dec 02, 1990 (KSC)	Dec 11, 1990 (DFRF)	Cdr: Vance Brand Plt: Guy S. Gardner MS: John M. Lounge MS: Jeffrey A. Hoffman MS: Robert A. R. Parker PS: Ronald A. Parise PS: Samuel T. Durrance	Primary Payload Astro-1 Middeck Experiments Air Force Maui Optical Site (AMOS) Shuttle Amateur Radio Experiment (SAREX-II) Ultraviolet Plume Instrument (UVPI)
Mission Du	ation: 215	nrs 6 mins		

	€. •			J. Server		and a second	User	, , , , , , , , , , , , , , , , , , ,	••••
	MERCURY	VENUS	EARTH	MARS	JUPITER	SATURN	URANUS	NEPTUNE 1	PLUTO
Mean Distance from Sun (Million of Kilometers)	57.9	108.2	149.6	227.9	778.3	1,427	2,870	4,497	5,900
Period of Revolution	88 days	224.7 days	365 days	687 days	11.86 yrs	29.46 yrs	84 yrs	165 yrs	248 yrs
Rotation Period	59 days	243 days Retrograde	23 hrs 56 mins	24 hrs 37 míns	9 hrs 55 míns	10 hrs 40 mins	17.2 hrs Retrograde	18 hrs 30 mins (?)	6 days 9 18 mins Retrograd
Inclination of Axis	Near 0 ⁰	3 ⁰	23027	25 ⁰ 12'	3°5'	26044	97 ⁰ 55'	28048	?
Inclination of Orbit to Ecliptic	70	3.4 ⁰	_0°	1.9 ⁰	1.3 ⁰	2.50	0.80	_1.8 ⁰	17.2 ⁰
Eccentricity of Orbit	.206	. 007	.017	.093	.048	.056	.047	.009	.254
Equatorial Diameter (Kilometers)	4,1 %	12,100	12,756	6,794	143,200	120,000	51,800	49,500 (?)	3,000 (?)
Atmosphere (Main Components)	Virtually None	Carbon Dioxide	Nitrogen Oxygen	Carbon Dioxide	Hydrogen Helium	Hydrogen Helium	Helium Hydrogen Methane	Hydrogen Helium Methane	None Detected
Satellites Rings	0	0	1 0	2 0	16 1	21 1,000 (?)	15 11 (?)	2 7	1 ?

During the first decade of planetary flights, NASA spacecraft were dispatched to scan the other inner planets: Mercury, Venus, and Mars. These worlds, and our own, are known as the terrestrial planets because of their similarity to Earth's rocky composition. In 1972, NASA opened the second decade of planetary exploration with the launch of a Jupiter probe. Interest was shriting to the other planets, giant balls of dense gas quite different from the terrestrial worlds we had previously surveyed. By studying the geology of planets and moons, and comparing the differences and similarities, we are learning more about the origin and history of these worlds and the solar system as a whole.

MERCURY

Obtaining the first closeup views of Mercury was the primary objective of the Mariner 10 space probe, launched from Kennedy Space Center in November 1973. After a journey of nearly 5 months, which included a thyby of Venus, the spacecraft passed within 805 kilometers (500 miles) of the solar system's innermost planet on March 29, 1974. Mariner 10 photographs revealed an ancient, heavily cratered surface on Mercury, and showed huge cliffs crisscrossing the planet. These apparently were created when Mercury's interior cooled and shrank, compressing the planet's crust. The cliffs are as high as 2 kilometers (32.2 miles) and as long as 1500 kilometers (322 miles).

Instruments onboard Mariner 10 discovered that the planet has a weak magnetic field and a trace of atmosphere composed chiefly of argon, neon and helium. The spacecraft reported temperatures ranging from 510 degrees Celsius (950 degrees Fahrenheit) on Mercury's sunit side to -210 degrees Celsius (-346 degrees Fahrenheit) on the dark side.

It takes 59 Earth days for Mercury to make a single rotation. It spins at a rate of about 10 kilometers (about 6 milles) per hour, measured at the equator. Mercury appears to have a crust of light silicate rock. Scientists believe it has a heavy iron-rich core that makes up about half of its volume.

Mariner 10 made two additional flybys of Mercury - on September 21, 1974 and March 6, 1975.

VENUS

The Mariner 2 space probe, launched August 27, 1962, was the first of more than a dozen successful American and Soviet missions to study the mysterious planet. Mariner 2 passed within 34,762 kilometers (21,600 miles) of Venus on December 14, 1962, and became the first spacecraft to scan another planet. Its instruments made measurements of Venus for 42 minutes. Mariner 5, launched in June 1987, flew within 4,023 kilometers (2,500 miles) of Venus. Its instruments measured the planet's magnetic field, ionosphere, radiation belts and temperatures. On its way to Mercury, Mariner 10 flew by Venus and returned ultraviolet pictures showing cloud circulation patterns in the Venusian atmosphere.

On December 4, 1978 the Pioneer Venus Orbiter became the first spacecraft placed in orbit around the planet. Five days later, the Pioneer Venus Multiprobe entered the Venusian atmosphere at different locations above the planet. Four independent probes and a main body radiced data about the planet's atmosphere during this descent toward the surface.

Approximately 97 percent of Venus' atmosphere is carbon dioxide. Venus' atmosphere acts like a greenhouse, permitting solar radiation to reach the surface but trapping the heat which would ordinarily be radiated back into space. As a result, surface temperatures are 482 degrees Celsius (900 degrees Fahrenheit), hot enough to melt lead.

Radar aboard the Pioneer Venus orbiter provided a means of seeing through Venus' dense cloud cover and determining surface features over much of the planet. Among the features determined are two continent-like highland areas, one located in the equatorial region and the other to the north.

Venus' predominant weather pattern is a highspeed circulation of clouds which are made up of suffuric acid. These speeds reach as high as 362 kilometers (225 miles) per hour. The circulation is in the same direction - easi to west - as Venus' skw retrograde rotation.

NASA's Pioneer-Venus orbiter continues to circle the planet. It is expected to send data about Venus to Earth for years to come.

In May 1989 the space shuttle deployed the Magellan spacecraft, which is currently mapping the surface of Venus. Magellan returned radar images in 1990 that showed geotopical features unlike anything seen on Earth. One area accientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Magellan will continue to map the entire surface of Venus and observe evidence of volcaric enptions into 1991.

EARTH

From our journeys into space, we have learned much about our home planet - Earth. The first American satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. It discovered an intense radiation zone, now called the Van Allen Radiation Region, surrounding Earth. Since then, other research satellites have revealed that our planet's magnetic field is distorted into a teardrop shape by the solar wind - the stream of charged particles continuously ejected from the Sun. Earth's magnetic field does not tade of tink space but has definite boundaries. Our upper atmosphere, once believed catm and quiescent, seethes with activity, swelling by day and contracting by night. It is affected by the changes in solar activity and contributes to weather and dimate on Earth.

Satellites positioned about 35,000 kilometers (22,000 miles) out in space play a major role every day in local weather forecasting. Their watchtul electronic eyes warn us of dangerous storms. Continuous global monitoring provides a vast amount of useful data, as well as contributing to a better understanding of Earth's complex weather machine. From their unkque variage point in space, spacecarfi can survey the Earth's resources and monitor the planet's health. As viewed from space, Earth's distinguishing characteristics are its blue waters and white clouds. Enveloped by an ocean of air consisting of 78 percent nitrogen and 21 percent oxygen, the planet is the only one in our solar system known to harbor file. Circling the Sun at an average distance of 149 million kilometers (93 million miles), Earth is the third planet from the Sun and the fifth largest in the solar system.

Its repid spin and molten nickel-iron core give rise to an extensive magnetic field, which, coupled with the atmosphere, shields us from nearly all of the harmful radiation coming from the Sun and other stars. Most meteors burn up in Earth's atmosphere before they can strike the surface. The planet's active geological processes have left no evidence of the ancient petiting it atmost certainly received soon after it was formed.

MOON

The Apollo program left us a large legacy of lunar materials and data. Six two-man crews landed on and explored the lunar surface between 1969 and 1972. They returned a collection of rocks and soil weighing 382 kilograms (842 pounds) and consisting of more than 2,000 separate samples. From this material and other studies, scientists have constructed a history of the Moon dating back to its Infancy. Rocks collected from the lunar highlands date about 4.0 to 4.3 billion years old. It's believed that the solar system formed about 4.6 billion years ago. The first few million years of the Moor's existence were so violent that few traces of this period ermain. As a molten outer layer gradually cooled and solidilied into different kinds of rock, the Moon was bombarded by huge asteroids and smaller objects and their collisions with the Moon created huge basins hundreds of kilometers across.

This catastrophic bombardment died away about 4 billion years ago, leaving the lunar highlands covered with huge overlapping craters and a deep layer of shattered and broken rock. Heal produced by the docay of radioactive elements began to met the inside of the Moon at depths of about 200 kilometers (124 miles) below its surface. Then, from about 3.8 to 3.1 billion years ago, great floods of lava rose from inside the Moon and poured out over its surface, filling in the large impact basins to form the dark parts of the Moon - adiled maria or seas. Explorations show that there has been no significant volcanic activity on the Moon for more than 3 billion years and, since then, the lunar surface has been altered only by the rare impacts of large meteorities and by the the atomic particles of the Sun and stars.

MARS

Mariner 4, launched in late 1964, flew past Mars on July 14, 1965, to within 9,656 kilometers (6,000 miles) of the surface. Returning 22 close-up pictures, it found no evidence of artificial canals or flowing water. Mariners 6 and 7 followed during the summer of 1969, returning about 200 pictures showing a diversity of surface conditions. Earlier atmospheric data were confirmed and refined. On May 30, 1971, Mariner 9 was launched on a mission to study the Martian surface from orbit. It arrived five and a half months after liftont, only to find Mars in the midst of a planet-wide dust storm which made surface photography impossible for several weeks. After the storm cleared, Mariner 9 began returning the first of 7,000 pictures which revealed previously unknown Martian features, including evidence that rivers, and possibly seas, could have once existed on the planet.

In August and September 1975, two Viking spacecraft, each consisting of an orbiter and a lander were launched on a mission designed to answer several questions, including: is there life on Mars? The results sent back by the two unmanned laboratories, which soft-landed on the planet, were inconclusive. Small samples of the red Martian soit were specially treated in three different experiments designed to detect biological processes. While some of the tests indicated iological activities were occurring, the same results could be explained by the planet's soil hemistry. There was a notable absence of evidence that organic molecules exist on Mars.

hotos sent from the Plain of Chryse, where Viking 1 landed on Juty 20, 1976, show a bleak, usty red landscape. A panorama returmed by the robot explorer pictures a gently rolling plain, thered with rocks and graced by rippied sand dunes. This red dust from the Marilan soil gives he sky a pinkish hue. Viking 2 landed on the Plain of Utopia, arriving several weeks after its win. The landscape it viewed is more rolling than that seen by Viking 1, and there are no dunes isble.

loth Vising landers became weather stations, recording wind velocity and direction, amperatures, and atmospheric pressure. As days became weeks, the Marian weather hanged little. The highest atmospheric temperature recorded by either lander was -21 degrees antigrade (-17 degrees Fahrenheit) at the Viking 1 site in midsummer. The lowest temperature 124 degrees Calsius (-19 degrees Fahrenheit), was recorded at the more norhenry Viking 2 site uring winter. Wind speeds near hurricane force were measured by both weather stations uring global dust storms. Viking 2 photographed light patches of trost, probably water ice, uring is second winter on Mars.

he Martian atmosphere is primarily carbon clicxide. Present in small percentages are nitrogen, xygen and argon, with trace amounts of krypton and xenon. Martian air contains only about /1000 as much water as Earth's but even this small amount can condense out and form clouds hich ride high in the atmosphere, or swiri around the slopes of towering Martian volcances. ocal patches of early morning tog can form in valleys. There is evidence that in the past, a enser Martian atmosphere may have allowed water to flow on the planet. Physical features losely resembling shorelines, gorges, riverbeds and islands suggest that great rivers once xisted on the planet. Mars has two small, irregularly shaped moons, Phobos and Deimos, with neienr, cratered surfaces.

If tour Viking spacecraft, two orbiters and two landers, exceeded by large margins their design letime of 90 days. The four spacecraft were launched in 1975 and began Mars operation in 976. The first to fail was Orbiter 2 which stopped operating on July 24, 1978 when it is attitude ontrol gas was depleted because of a leak. Lander 2 operated until April 12, 1980 when it was hut down due to battery degeneration. Orbiter 1 operated until August 7, 1980, when it to used leats of its attitude control gas. Lander 1 ceased operating on November 13, 1980.

JUPITER

In March 1972, NASA dispatched the first of four space probes to survey the colossal worlds of gas and their moons of rock and ice. For each probe, Jupiter was the first port of call.

Pioneer 10 launched March 2, 1972, was the first spacecraft to penetrate the Asteroid Belt and travel to the outer regions of the solar system. In December 1973, it returned the first closeup pictures of Jupiter as it flew within 132,252 kilometers (81,168 miles) of the planet's banded cloud tops. Pioneer 11 followed a year later. Voyagers 1 and 2 were launched in 1977 and returned spectacular photographs of Jupiter and its 16 satellites during Ilybys in 1979.

During their visits these exploring spacecraft found Jupiter to be a whirling ball of liquid hydrogen and helium. It contains small amounts of methane, armonia, ethane, acetylene, phosphene, germanium tetrahydride and possibly hydrogen cyanide. Jupiter's clouds also contain armonia and water crystals. Scientists believe it likely that between the planet's frigid cloud tops and the warmer hydrogen ocean that lies below, there are regions where methane, armonia, water and other gases coupounds, it they exist, are probably short lived.

The Great Red Spot, observed for centuries through Earth-based telescopes, is a tremendous atmospheric storm, similar to Earth's hurricanes, which rotates counterclockwise. Our space probes detected lighting in Jupiter's upper atmosphere and observed auroral emissions in the Jovian polar regions similar to Earth's northern lights. Voyager 1 returned the first evidence of a ring encircling Jupiter. Photographs returned by the spacecraft and its companion Voyager 2 showed a narrow ring too faint to be seen by Earth's telescopes.

Largest of the solar system's planets, Jupiter rotates at a dizzying pace, once every 9 hours 55 minutes 30 seconds. It takes the massive planet almost 12 Earth years to complete a journey around the Sun. The planet is something of a mini solar system, with 16 known moons orbiting above its clouds.

One of the most remarkable findings of the Voyager mission was the discovery of active volcances on the Galilean moon lo. It was the first time volcanic emptions were observed on a world other than Earth. The Voyager cameras identified at least eight active volcances on the moon. Plumes extended as far as 250 kilometers (155 miles) above the moon's surface. The

ORIGINAL PAGE IS OF POOR QUALITY

satellite's pizza-colored surface, rich in hues of oranges and yellow, is probably the result of suffur-rich materials which have been brought to the surface by volcanic activity. Europa, approximately the same size as the Earth's Moon, is the brightest Galilean satellite. Its surface displays a complex array of streaks that indicate the crust has been tractured.

Like Europa, the other two Galiliean moons (Ganymede and Calilisto) are frozen worlds of ice and rock. Ganymede is the largest satellite in the solar system, larger than the planet Mercury. It is composed of about 50 percent water or ice and the rest rock. Calilisto, only slightly smaller than Ganymede, has the lowest density of any Galilean satellite, implying that it has large amounts of water in its composition. In October 1989, Galileo began its round about trip to Jupiter, where it dropped a probe into the Jovian atmosphere in the first direct study of the solar system's largest planet.

SATURN

No planet in the solar system is adored like Saturn. Its exquisite ring system is unrivalled. Like Jupter, Saturn is composed mostly of hydrogen. But in contrast to the vivid colors and wild turbulence found in Jupiter's clouds, Saturn has a more subtle, butterscotch hue and its markings are often muted by high altitude haze.

Three American spacecraft have visited Saturn. Pioneer 11 zipped by the planet and its moon Titan in 1979, returning the first closeup pictures. Voyager 1 tollowed in November 1980, sending back breathtaking photographs that revealed for the first time the complexities of Saturn's ring system and moons. Voyager 2 flew by the planet and its moons in August 1981.

The spacecraft discovered that there are actually thousands of ninglets encircling Saturn. These rings are composed of countless low-density particles orbiting individually around the equator at progressive distances from the planet's Coud tops. Analysis of radio waves passing through the rings showed that the particles vary widely in size, ranging from dust to boulders. Most of the material is ice and frosted rock.

Radio emissions quite similar to the static heard on an AM car radio during an electrical storm were detected by the Voyager spacecraft. These emissions are typical of lightning but are believed to be coming from the planet's ring system rather than its atmosphere. No lightning was observed in Saturn's atmosphere. But as they had at Jupiter, the Voyager spacecraft saw a version of Earth's northem and southerm lights near Saturn's poles. In 1990 the Hubble Space Telescope took several hundred pictures of Saturn showing white spots on the planet growing into an immense storm that spread around the planet's equator.

The Voyager probes also studied Saturn's moon, detected undiscovered moons, found some that share the same orbit, and determined that Titan has a nitroger-based atmosphere. A far constituent of Titan's atmosphere is methane. The surface temperature of Titan appears to around the "triple" point of methane, meaning methane may be present on Titan in all three states: liquid, gaseous, and solid (ce). Methane, therefore, may play the same role on Titan that water plays on Earth.

Although the spacecraft's cameras could not peer through the dense haze that obscures the surface of Titan, measurements indicate Titan may be a place where rain or snow talls from methane clouds and rivers of methane cut through methane glaciens.

Continuing photochemistry due to solar radiation may be converting Titan's methane to ethan acetylene, ethylene, and, in combination with nitrogen, hydrogen cyaride. The latter is a building block to amino acids. Titan's temperature is believed to be too low to permit progres beyond this stage of organic chemistry. However, this condition may be similar to that which occurred in the atmosphere of the primeval Earth between 3 and 4 billion years ago.

URANUS

Four and a half years after visiting Saturn, the Voyager 2 spacecraft completed the first close observation of the Uranian system.

Uranus, third largest of the planets, is the odd-ball of the solar system. Unlike the other plan it lies tipped on its side with its north and south poles atternately facing the Sun during its 84-year swing around the solar system. During Voyager's flyby, the south pole taced the Sun

Voyager found that the planet's magnetic field does not follow the usual north-south axis four on the other planets. Instead, it is tilted 60 degrees, and offset from the planet's center

Uranus's atmosphere consists mainly of hydrogen, with about 12 percent helium and small amounts of armonia, methane and water vapor. Wind speeds range up to 200 meters per second (447 mph), and blow from the west instead of the east as previously expected. Temperatures near the cloud tops measure -200 degrees Celsius (-329 degrees Fahrenheit)

The sunlit south pole is shrouded in a kind of photo-chemical "smog" believed to be a combination of acetylene, ethane and other sunlight-generated chemicals. Surrounding the planet's atmosphere and extending thousands of kilometers into space is a mysterious ultraviolet sheen called and 'electrogiow'. About 8,000 kilometers (5,000 miles) below Uranus's cloud tops there is thought to be a scatkling ocean of water and dissolved ammonia some 10,000 kilometers (6,000 miles) deep. Beneath this ocean is an earth-sized molten core of heavier materials.

Voyager discovered 10 new moons orbiting Uranus, each about 40-170 kilometers (24-102 miles) in diameter. The planet's five known moons, Titania, Ariel, Miranda, Umbriel and Oberon, range in size from 480-1600 kilometers (300-1000 miles) across. The halt-icok spheres are a geological showcase, featuring 12-mile-high mountains, jagged cliffs and canyons, crater-pocked plains and winding valleys possibly carved out by glaciers. The planet was hhought to have 9 dark rings; Voyager found 11. In contrast to Satum's rings, which are composed of bright grain-sized particles, Uranus's rings are made up of boulder-sized churks.

NEPTUNE

Voyager 2 completed its Grand Tour of the solar system on August 25, 1989, when it swept to within about 1.280 kilometers (800 miles) of Neptune. The planet has two known moons, Nereid and Triton. Voyager 2's colose-up view of Neptune showed a bright blue planet with winds up to 1,500 miles per hour and six previously unknown moons. It was discovered that Triton, the poldest known body in the solar system, is one of the geologically most active with four ice volcances. Neptune is the fourth largest of the planets and is believed to be a twin of Uranus, and is 2.8 billion miles from Earth.

PLUTO

Puto is the most distant of the planets, yet the eccentricity of its orbit periodically carries it inside hat of Neptune's. The orbit also is highly inclined, well above and below the orbital plane of where planets. Pluto appears to be little more than a celestial snowball. Its diameter is calculated o be between 3,000 and 3,500 kilometers (1,864 and 2,175 milles), about the same as Earth's noon. Ground-based observations indicate that its surface is covered with methane ice. The lanet has one known satelitite, Charon. There are no plans to send a probe to Pluto.

THE SPACE EXPLORATION INITIATIVE

President Bush has a challenging vision of America's future in space -- A Space Exploration Initiative (SEI) that will enable the American people to journey together toward a permanent human presence beyond Earth orbit. The SEI will take us back to the Moon, this time to stay, and then to Mars. By first establishing a permanent base on the Moon, we will learn about living and working on another planetary surface, under harsh conditions. Then we will faunch both robotic and human missions to Mars to thoroughly study the planet, and especially to search for signs of life -- both past and present.

By advancing our technological competitiveness, ensuring our leadership position in the global marketplace, and utilmately improving our balance of trade through promoting innovative high-technology research and development, the SEI will help achieve our national goals.

The SEI will advance science as well. The Moon is an ideal location for astronomical observations, planetary geology, and life sciences research. On Mars, scientists will be able to learn more about planetary evolution, climate change, and the origin of life. Whether life has ever evolved on Mars is a major scientific question that cannot be answered until human crews thoroughly search the planet for any signs of life forms. By learning more about the Moon and Mars, scientists will better understand the evolution of our solar system and the history and nature of our own planet.

The SEI will draw on the collective expertise of government, academia, and industry. New ideas are being solicited from private companies and academic institutions for advanced technologies ranging from propulsion to energy production to waste recycling and life support. An outreach program is now underway to solicit bold new concepts that may enable quicker, cheaper, and better missions to the Moon and Mars. All tederally funded research that could contribute to the SEI is being reviewed. By means of an organized synthesis process, the innovative ideas collected through the outreach program will be analyzed, alternative architectures defined, technologies identified for demonstration, and early milestones identified.

The SEI provides an opportunity for the American people to work together toward a national goal, landing men and women on Mars no later than 2019, sharing the excitement of expanding human presence in space, learning more about our solar system and our own planet as we move beyond Earth orbit, and reaping the benefits of space technology for all of humankind.

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 1	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
Mariner 2	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Mariner 3	Mars Flyby	Nov 5, 1964		Shroud failed to jettison property; Sun and Canpous not acquired; did not encounter Mars. Entered solar orbit.
Mariner 4	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range pictures of Martian surface. Entered solar orbit.
Mariner 5	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Mariner 6	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Mariner 8	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Mariner 9	Mars Orbiter	May 30, 1971	Nov 18, 1971	Mapped the whole planet; provided detailed photos of Phobos and Deimos. Craft inoperable in Mars orbit.
Pioneer 10	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
Pioneer 11	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.

۰,

JSA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 10	Venus/Mercury Flyby	Nov 3, 1973	Feb 5, 1974 (Venus) Mar 29, 1974 (Mercury) Sep 21, 1974 (Mercury) Mar 16, 1975 (Mercury)	First dual-planet mission. Used gravity of Venus to attain Mercury encounter. Provided first ultraviolet photographs of Venus; returned close-up photographs and detailed data of Mercury. Transmitter was turned off March 24, 1975, when attitude control gas was depleted. Craft inoperable in solar orbit.
Viking 1	Mars Orbiter and Lander	Aug 20, 1975	Jul 19, 1976 (in orbit) Jul 20, 1976 (landed)	First U.S. attempt to soft land a spacecraft on another planet. Landed on the Plain of Chryse. Photographs showed an orange-red plain strewn with rocks and sand dunes. Orbiter 1 operated until August 7, 1980, when it used the last of its attitude control gas. Lander 1 ceased operating on November 13, 1983.
Viking 2	Mars Orbiter and Lander	Sep 9, 1975	Aug 7, 1976 (in orbit) Sep 3, 1976 (landed)	Landed on the Plain of Utopia. Discovered water frost on the surface at the end of the Manian winter. Orbiter 2 stopped operating on July 24, 1978, when its attitude control gas was depleted because of a leak. Lander 2 operated until April 12, 1980, when it was shut down due to battery degeneration.
Voyager 1	Tour of Jupiter and Saturn	Sep 5, 1977	Mar 5, 1979 (Jupiter) Nov 12, 1980 (Saturn)	Investigated the Jupiter and Saturn planetary systems. Returned spectacular photographs and provided evidence of a ring encircling Jupiter. Continues to return data enroute toward interstellar space.
Voyager 2	Tour of the Outer Planets	Aug 20, 1977	Jul 9, 1979 (Jupiter) Aug 25, 1981 (Saturn) Jan 24, 1986 (Uranus) Aug 25, 1989 (Neptune)	Investigated the Jupiter, Saturn and Uranus planetary systems. Provided first close-up photographs of Uranus and its moons. Used gravity-assist at Uranus to continue on to Neptune. Swept within 1280 km of Neptune on August 25, 1989. The spacecraft will continue into interstellar space.
Pioneer Venus 1	Venus Orbiter	May 20, 1978	Dec 4, 1978	Mapped Venus' surface by radar, imaged its cloud systems, explored its magnetic environment and observed interactions of the solar wind with a planet that has no intrinsic magnetic field. Provided radar altimetry maps for nearly all of the surface of Venus, resolving features down to about 50 miles across. Still operating in orbit around Venus.

USA Planetary Space Flights

.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer Venus 2	Venus Probe	Aug 8, 1978	Dec 9, 1978	Dispatched heat-resisting probes to penetrate the atmosphere at widely separated locations and measured temperature, pressure, and density down to the planet's surface. Probes impacted on the surface.
Magellan	Venus Radar Mapping	May 4, 1989 •	Aug 1990	Returned radar images that showed geological features unlike anything seen on Earth. One area scientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Will continue to map the entire surface and observe evidence of volcanic eruption into 1991.
Galileo	Jupiter Orbiter and Probe	Oct 18, 1989	Dec 8, 1990 (Earth) Feb 1991 (Venus)	A sophisticated two-part spacecraft; an Orbiter will be inserted into orbit around Jupiter to remotely sense the planet, its satellites and the Jovian magnetosphere and a Probe will descent into the atmosphere of Jupiter to make in situ measurements of its nature. Galileo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck and used the Earth's gravity to speed it on its way to Jupiter.

.

JSSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera l	Venus Probe	Feb 12, 1961		First Soviet planetary flight; launched from Sputnik 8. Radio contact lost during flight; not operating when it passed Venus.
Sputnik 19	Venus Probe	Aug 25, 1962		Unsuccessful Venus attempt.
Sputnik 20	Venus Probe	Sep 1, 1962		Unsuccessful Venus attempt.
Sputnik 21	Venus Probe	Sep 12, 1962		Unsuccessful Venus attempt.
Sputnik 22	Mars Probe	Oct 24, 1962		Spacecraft and final rocket stage blew up when accelerated to escape velocity.
Mars 1	Mars Probe	Nov 1, 1962		Contact was lost when the spacecraft antenna could no longer be pointed towards Earth.
Sputnik 24	Mars Probe	Nov 4, 1962		Disintegrated during attempt at Mars trajectory from Earth parking orbit.
Zond 1	Venus Probe	Apr 2, 1964		Communications lost; spacecraft went into solar orbit.
Zond 2	Mars Probe	Nov 30, 1964		Passed by Mars; failed to return data; went into solar orbit.
Venera 2	Venus Probe	Nov 12, 1965	Feb 27, 1966	Passed by Venus, but failed to return data.
Venera 3	Venus Probe	Nov 16, 1965	Mar 1, 1966	Impacted on Venus, becoming the first spacecraft to reach another planet. Failed to return data.
Venera 4	Venus Probe	Jun 12, 1967	Oct 18, 1967	Descent capsule transmitted data during parachute descent. Sent measurements of pressure, density, and chemical composition of the atmosphere before transmissions ceased.
Venera 5	Venus Probe	Jan 5, 1969	Mar 16, 1969	Entry velocity was reduced by atmospheric braking before deployment of main parachute. Capsule entered the atmosphere on the planet's dark side; transmitted data for 53 minutes while traveling into the atmosphere before being crushed.

٠

USSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 6	Venus Probe	Jan 10, 1969	Mar 17, 1969	Descent capsule entered the atmosphere on the planet's dark side; transmitted data for 51 minutes while traveling into the atmosphere before being crushed.
Venera 7	Venus Lander	Aug 17, 1970	Dec 15, 1970	Entry velocity was reduced aerodynamically before parachute deployed. After fast descent through upper layers, the parachute canopy opened fully, slowing descent to allow fuller study of lower layers. Gradually increasing temperatures were transmitted. Returned data for 23 minutes after landing.
Cosmos 359	Venus Lander	Aug 22, 1970		Unsuccessful Venus attempt; failed to achieve escape velocity.
Cosmos 419	.Mars Probe	May 10, 1971		First use of Proton launcher for a planetary mission. Placed in Earth orbit but failed to separate from fourth stage.
Mars 2	Mars Orbiter and Lander	May 19, 1971	Nov 27, 1971	Landing capsule separated from orbiter and made first, unsuccessful attempt to soft land. Lander carried USSR pennant. Orbiter continued to transmit data.
Mars 3	Mars Orbiter and Lander	May 28, 1971	Dec 2, 1971	Lander separated from parent capsule and landed in the southern hemisphere. A TV camera transmitted small panoramic view. Orbiter transmitted for 3 months
Venera 8	Venus Lander	Mar 27, 1972	Jul 22, 1972	As the spacecraft entered the upper atmosphere, the descent module separated while the service module burned up in the atmosphere. Entry speed was reduced by aerodynamic braking before parachute deployment. During descent, a refrigeration system was used to offset high temperatures. Returned data or temperature, pressure, light levels and descent rates. Transmitted from surface for about 1 hour.
Cosmos 482	Venus Lander	Mar 31, 1972		Unsuccessful Venus probe; escape stage misfired leaving craft in Earth orbit.
Mars 4 & 5	Mars Orbiters and Landers	<i>Jul 21, 1973</i> Jul 25, 1973	Feb 10, 1974 Feb 12, 1974	Pair of spacecraft launched to Mars. Mars 4 retro rockets failed to fire, as it passed the planet, it returned one swath of pictures and some radic occultation data. Mars 5 was successfully placed in orbit, but only operated only a few days. Returned photographs showing small portion of southern hemisphere.
JSSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mars 6 & 7	Mars Orbiters and Landers	Aug 5, 1973 Aug 9, 1973	Mar 12, 1974 Mar 9, 1974	Second pair of spacecraft launched to Mars. Mars 6 lander module transmitted measurements of the Martian atmosphere during descent. Telemetry ceased abruptly when the landing rockets were fired. Soviet report of Mars 7 said "the descent module was separated from the station because of a hitch in the operation of one of the onboard system, and passed by the planet."
Venera 9	Venus Orbiter and Lander	Jun 8, 1975	Oct 22, 1975	First spacecraft to transmit a picture from the surface of another planet. The lander's signals were transmitted to Earth via the orbiter. Utilized a new parachute system, consisting of six chutes. Signals continued from the surface for nearly 2 hours 53 minutes.
Venera 10	Venus Orbiter and Lander	Jun 14, 1975	Oct 25, 1975	During descent, atmospheric measurements and details of physical and chemical contents were transmitted via orbiter. Transmitted pictures from the surface.
Venera 11	Venus Orbiter and Lander	Sep 9, 1978	Dec 25, 1978	Arrived at Venus 4 days after Venera 12. The two landers took nine samples of the atmosphere at varying heights and confirmed the basic components. Imaging system failed; did not return photos. Operated for 95 minutes.
Venera 12	Venus Orbiter and Lander	Sep 14, 1978	Dec 21, 1978	A transit module was positioned to relay the lander's data from behind the planet. Returned data on atmospheric pressure and components. Did not return photos; imaging system failed. Operated for 110 minutes.
Venera 13	Venus Orbiter and Lander	Oct 31, 1981	Mar 1, 1982	Provided first soil analysis from Venusian surface. Transmitted eight color pictures via orbiter. Measured atmospheric chemical and isotopic composition, electric discharges, and cloud structure. Operated for 127 minutes.
Venera 14	Venus Orbiter and Lander	Nov 4, 1981	Mar 3, 1982	Transmitted details of the atmosphere and clouds during descent; soil sample taken. Operated for 57 minutes.
Venera 15	Venus Orbiter	Jun 2, 1983	Oct 10, 1983	Obtained first high-resolution pictures of polar area. Compiled thermal map of almost entire northern hemisphere.
Venera 16	Venus Orbiter	Jun 7, 1983	Oct 16, 1983	Provided computer mosiac images of a strip of the northern continent. Soviet and U.S. geologists cooperated in studying and interpreting these images.

USSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Vega 1 & 2	Venus/Halley	Dec 15, 1984 Dec 21, 1984	Jun 11, 1985 (Venus) Mar 6, 1985 (Halley) Jun 15, 1985 (Venus) Mar 9, 1985 (Halley)	International two-spacecraft project using Venusian gravity to send them on to Halley's Comet after dropping the Venusian probes. The Venus landers studied the atmosphere and acquired a surface soil sample for analysis. Each lander released a helium-filled instrumented balloon to measure cloud properties. The other half of the Vega payloads, carrying cameras and instruments, continued on to encounter Comet Halley.
Phobos 1 & 2	Mars/Phobos	Jul 7, 1988 Jul 12, 1988	Jan 1989 (Mars) Jan 1989 (Mars)	International two-spacecraft project to study Mars and its moon Phobos. Phobos 1 was disabled by a ground controller error. Phobos 2 entered Mars orbit in January 1989 to study the Martian surface, atmosphere, and magnetic field. On March 27, 1989 communication with Phobos was lost and efforts to contact the craft were discontinued.

JSA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer l	Lunar Orbit	Oct 11, 1958		Did not achieve lunar trajectory; launch vehicle second and third stages did not separate evenly. Returned data on Van Allen Belt and other phenomena before reentering on October 12, 1958.
Pioneer 2	Lunar Orbit	Nov 8, 1958		Third stage of launch vehicle failed to ignite. Returned data that indicated the Earth's equatorial region has higher flux and energy levels than previously believed. Did not achieve orbit.
Pioneer 3	Lunar Probe	Dec 6, 1958		First stage of launch vehicle cutoff prematurely; transmitted data on dual bands of radiation around Earth. Reentered December 7, 1958
Pioneer 4	Lunar Probe	Mar 3, 1959	Mar 4, 1959	Passed within 37,300 miles from the Moon; returned excellent data on radiation. Entered solar orbit.
Ranger 1	Lunar Probe	Aug 23, 1961		Flight test of lunar spacecraft carrying experiments to collect data on solar plasma, particles, magnetic fields, and cosmic rays. Launch vehicle failed to restart resulting in low Earth orbit. Reentered August 30, 1961.
Ranger 2	Lunar Probe	Nov 18, 1961		Flight test of spacecraft systems for future lunar and interplanetary missions. Launch vehicle altitude control system failed, resulting in low Earth orbit. Reentered November 20, 1961.
Ranger 3	Rough Landing	Jan 26, 1962		Launch vehicle malfunction resulted in spacecraft missing the Noon by 22,862 miles. Spectrometer data on radiation were received. Entered solar orbit.
Ranger 4	Rough Landing	Apr 23, 1962	Apr 26, 1962	Failure of central computer and sequencer system rendered experiments useless. No telemetry received. Impacted on far side of Moon.
Ranger 5	Rough Landing	Oct 18, 1962		Power failure rendered all systems and experiments useless; 4 hours of data received from gamma ray experiment before battery depletion. Passed within 450 miles of Moon; entered solar orbit.

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Ranger 6	Lunar Photo	Jan 30, 1964	Feb 2, 1964	TV cameras failed; no data returned. Impacted in Sea of Tranquility area.
Ranger 7	Lunar Photo	Jul 28, 1964	Jul 31, 1964	Transmitted high quality photographs, man's first close-up lunar views, before impacting in Sea of Clouds area
Ranger 8	Lunar Photo	Feb 17, 1965	Feb 20, 1965	Transmitted high quality photographs before impacting in Sea of Tranquility area.
Ranger 9	Lunar Photo	Mar 21, 1965	Mar 24, 1965	Transmitted high quality photographs before impacting in Crater of Alphonsus. Almost 200 pictures were shown live via commercial television in the first TV spectacular from the Moon.
Surveyor 1	Lunar Lander	May 30, 1966	Jun 2, 1966	First U.S. spacecraft to make a fully controlled soft landing on the Moon; landed in the Ocean of Storms area. Returned high quality images, from horizon views of mountains to close-ups of its own mirrors, and selenological data.
Lunar Orbiter 1	Lunar Orbiter	Aug 10, 1966	Aug 14, 1966	Photographed over 2 million square miles of the Moon's surface. Took first photo of Earth from lunar distance. Impacted on the far side of the Moon on October 29, 1966.
Surveyor 2	Lunar Lander	Sep 20, 1966	Sep 22, 1966	Spacecraft crashed onto the lunar surface southeast of crater Copernicus when one of its three vernier engines failed to ignite during a mid-course maneuver.
Lunar Orbiter 2	Lunar Orbiter	Nov 6, 1966	Nov 10, 1966	Photographed landing sites, including Ranger 8 landing point, and surface debris tossed out at impact. Impacted Moon on Oct 11, 1967.
Lunar Orbiter 3	Lunar Orbiter	Feb 4, 1967	Feb 8, 1967	Photographed. lunar landing sites; provided gravitational field and lunar environment data. Impacted Moon on October 9, 1967.

ISA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 3	Lunar Lander	Apr 17, 1967	Apr 19, 1967	Vernier engines failed to cut off as planned and the spacecraft bounced twice before landing in the Ocean of Storms. Returned images, including a picture of the Earth during lumar eclipse, and used a scoop to make the first excavation and bearing test on an extraterrestrial body. Returned data on a soil sample. Visual range of TV cameras was extended by using two flat mirrors.
Lunar Orbiter 4	Lunar Orbiter	May 4, 1967	May 8, 1967	Provided first pictures of the lunar south pole. Impacted the Moon on October 6, 1967.
Surveyor 4	Lunar Lander	Jul 14, 1967	Jul 17, 1967	Radio contact was lost 2-1/2 minutes before touchdown when the signal was abruptly lost; impacted in Sinus Medii.
Lunar Orbiter 5	Lunar Orbiter	Aug 1, 1967	Aug 5, 1967	Increased lunar photographic coverage to better than 99%. Used in orbit as a tracking target. Impacted the Moon on January 31, 1968.
Surveyor 5	Lunar Lander	Sep 8, 1967	Sep 10, 1967	Technical problems were successfully solved by tests and maneuvers during flight. Soft-landed in the Sea of Tranquility. Returned images and obtained data on lunar surface radar and thermal reflectivity. Performed first on-site chemical soil analysis.
Surveyor 6	Lunar Lander	Nov 7, 1967	Nov 9, 1967	Soft-landed in the Sinus Medii area. Returned images of the lunar surface, Earth, Jupiter, and several stars. Spacecraft engines were restarted, lifting the spacecraft about 10 feet from the surface and landing it 8 feet from the original site.
Surveyor 7	Lunar Lander	Jan 7, 1968	Jan 9, 1968	Landed near the crater Tycho. Returned some stereo pictures of the surface and of rocks that were of special interest. Provided first observation of artificial light from Earth.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	RDMARKS
Luna l	Lunar Impact	Jan 2, 1959		Intended to impact on the Moon; carried instruments for measuring radiation. Passed the Moon and went into solar orbit. This was only Russia's 4th space launch.
Luna 2	Lunar Impact	Sep 12, 1959	Sep 15, 1959	First spacecraft to reach another celestial body. Impacted East of the Sea of Serenity; carried USSR pennants.
Luna 3	Lunar Probe	Oct 4, 1959		First spacecraft to pass behind the Moon and send back pictures of the far side. Equipped with a TV processing and transmission system, returned pictures of far side including a composite full view of the far side. Reentered April 29, 1960.
Sputnik 25	Lunar Probe	Jan 4, 1963		Unsuccessful lunar attempt.
Luna 4	Lunar Orbiter	Apr 2, 1963		Attempt to solve problems of soft landing instrument containers. Contact lost as it passed by the Moon. Barycentric orbit.
Luna 5	Lunar Lander	May 9, 1965	May 12, 1965	First soft landing attempt. Retrorocket malfunctioned; spacecraft impacted in Sea of Clouds.
Luna 6	Lunar Lander	Jun 8, 1965		During midcourse correction maneuver, engine failed to switch off. Spacecraft missed the Moon and went into solar orbit.
Zond 3	Lunar Probe	Jul 18, 1965		Photographed lunar far side and transmitted them to Earth 9 days later. Entered solar orbit.
Luna 7	Lunar Lander	Oct 4, 1965	Oct 7, 1965	Retrorockets fired early; crashed in Ocean of Storms.
Luna 8	Lunar Lander	Dec 3, 1965	Dec 6, 1965	Retrorockets fired late; crashed in Ocean of Storms.
Luna 9	Lunar Lander	Jan 31, 1966	Feb 3, 1966	First successful soft landing; first TV transmission from the lunar surface. Three panoramas of the lunar landscape were transmitted from the eastern edge of the Ocean of Storms.
Cosmos 111	Lunar Probe	Mar 11, 1966		Unsuccessful lunar attempt. Reentered March 16, 1966.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 10	Lunar Orbiter	Mar 31, 1966		First lunar satellite. Studied lunar surface radiation and magnetic field intensity; monitored strength and variation of lunar gravitation. Selencoentric orbit.
Luna 11	Lunar Orbiter	Aug 24, 1966		Second lunar satellite. Data received during 277 orbits. Selenocentric orbit.
Luna 12	Lunar Orbiter	Oct 22, 1966		TV system transmitted large-scale pictures of Sea of Rains and Crater Aristarchus areas. Tested electric motor for Lunokhod's wheels. Selenocentric orbit.
Luna 13	Lunar Lander	Dec 21, 1966	Dec 24, 1966	Soft landed in Ocean of Storms and sent back panoramic views. Two arms were extended to measure soil density and surface radioactivity.
Luna 14	Lunar Orbiter	Apr 7, 1968		Studied gravitational field and "stability of radio signals sent to spacecraft at different locations in respect to the Moon". Made further tests of geared electric motor for Lunokhod's wheels. Selencentric orbit.
Zond 5	Circumlunar	Sep 15, 1968		First spacecraft to circumnavigate the Moon and return to Earth. Took photographs of the Earth. Capsule was recovered from the Indian Ocean on September 21, 1968. Russia's first sea recovery.
Zond 6	Circumlunar	Nov 10, 1968		Second spacecraft to circumnavigate the Moon and return to Earth "to perfect the automatic functioning of a manned spaceship that will be sent to the Moon". Photographed lunar far side. Reentry made by skip-glide technique; capsule was recovered on land inside the Soviet Union on November 17, 1968.
Luna 15	Lunar Sample Return	Jul 13, 1969	Jul 21, 1969	First lunar sample return attempt. Began descent maneuvers on its 52nd revolution. Spacecraft crashed at the end of a 4 minute descent in the Sea of Crises .
2ond 7	Circumlunar	Aug 7, 1969		Third circumlunar flight. Far side of Moon photographed. Color pictures of Earth and Moon brought back. Reentry by skip-glide technique on August 14, 1969.
Cosmos 300	Lunar Probe	Sep 23, 1969		Unsuccessful lunar attempt. Reentered September 27, 1969.
Cosmos 305	Lunar Probe	Oct 22, 1969		Unsuccessful lunar attempt. Reentered October 24, 1969.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 16	Lunar Sample Return	Sep 12, 1970	Sep 20, 1970	First recovery of lunar soil by an automatic spacecraft. Controlled landing achieved in Sea of Fertility; automatic drilling rig deployed; samples collected from lunar surface and returned to Earth on September 24, 1970.
Zond 8	Circumlunar	Oct 20, 1970		Fourth circumlunar flight. Color pictures taken of Earth and Moon. Russia's second sea recovery occurred on October 27, 1970, in the Indian Ocean.
Luna 17	Lunar Rover	Nov 10, 1970	Nov 17, 1970	Carrying the first Moon robot, soft landed in Sea of Rains. Lunokhod 1, driven by 5-man team on Earth, traveled over the lunar surface for 11 days and transmitted photos and analyzed soil samples.
Luna 18	Lunar Lander	Sep 2, 1971		Attempted to land in Sea of Fertility on September 11, 1971. Communications ceased shortly after command was given to start descent engine.
Luna 19	Lunar Orbiter	Sep 28, 1971		From lunar orbit, studied Moon's gravitational field; transmitted TV pictures of the surface. Selenocentric orbit.
Luna 20	Lunar Sample Return	Feb 14, 1972		Soft landed in Sea of Crises. Used "photo-telemetric device" to relay pictures of the surface. A rotary-percussion drill was used to drill into rock; samples were lifted into a capsule on ascent stage and returned to Earth on February 25, 1972.
Luna 21	Lunar Rover	Jan 8, 1973	Jan 15, 1973	Carrying improved equipment and additional instruments, the second Lunokhod rover soft landed on the edge of the Sea of Serenity. Lunar surface pictures were transmitted and experiments performed. Ceased operating on the 5th lunar day.
Luna 22	Lunar Orbiter	May 29, 1974	Jun 2, 1974	Initially placed in circular lunar orbit; orbit was lowered to obtain TV panoramas of high quality and good resolution. Simultaneously, altimeter readings were taken and chemical rock composition determined by gamma radiation. Selencentric orbit.
Luna 23	Lunar Sample Return	Oct 28, 1974		Landed on the southern part of the Sea of Crises on November 6, 1974. Device for taking samples damaged; no drilling or sample collection possible.
Luna 24	Lunar Sample Return	Ашд 9, 1976	Aug 14, 1976	Landed in Sea of Crises on August 18, 1976. Carried larger soil carrier. Core samples were drilled and returned. U.S. and British scientists were given samples for analyses.

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 1	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
Mariner 2	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Mariner 3	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canopus not acquired; did not encounter Mars. Entered solar orbit.
Mariner 4	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range pictures of Martian surface. Entered solar orbit.
Mariner 5	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Mariner 6	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Mariner 8	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Mariner 9	Mars Orbiter	May 30, 1971	Nov 18, 1971	Mapped the whole planet; provided detailed photos of Phobos and Deimos. Craft inoperable in Mars orbit.
Pioneer 10	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
Pioneer 11	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.

.

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD CURRENT ORBITAL PARAMETERS (km) (Mins.) Apogee Perigee Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
1958 Pioneer I (U)	Thor	Oct 11	DOWN OCT 12, 1958	34.2	1958 Measure magnetic fields around Earth or Moon. Error in
Eta I	Able I (U)				burnout velocity and angle, did not reach Moon. Returned 43 hours of data on extent of radiation band, hydromagneti oscillations of magnetic field, density of micrometeors in
Beacon I (U)	Jupiter C (U)	Oct 23	DID NOT ACHIEVE ORBIT	4.2	interplanetary space, and interplanetary magnetic field. Thin plastic sphere (l2-feet in diameter after inflation) to study atmosphere density at various levels. Upper others of aviant generated prior to firstheter by burnet
Pioneer II (U)	Thor Able I (U)	Nov 8	DID NOT ACHIEVE ORBIT	39.1	Measurement of magnetic fields around Earth or Moon. This stage failed to ignite. Its brief data provided evidence that equatorial region about Earth has higher flux and higher energy radiation than previously considered.
Pioneer III (U) Theta l	Juno II (U)	Dec 6	DOWN DEC 7, 1958	5.9	Measurement of radiation in space. Error in burnout velocity and angle; did not reach Moon. During its flight discovered second radiation belt around Earth.
1959					1959
Vanguard II (U) Alpha l	Vanguard (SLV-4) (U)	Feb 17	123.8 3140 558 32.9	9.4	Sphere (20 inches in diameter) to measure cloud cover. First Earth photo from satellite. Interpretation of data difficult because satellite developed precessing motion.
Pioneer IV (S) Nu l	Juno II (S)	Mar 3	HELIOCENTRIC ORBIT	6.1	Measurement of radiation in space. Achieved Earth-Moon trajectory; returned excellent radiation data. Passed within 37.300 miles of the Moon on Mar 4. 1959.
Vanguard (U) (SLV-5) (U)	Vanguard	Apr 13	DID NOT ACHIEVE ORBIT	10.6	Payload consisted of two independent spheres: A contained precise magnetometer to map Earth's magnetic field, B was 30-inch inflatable sphere for optical tracking. Second stage failed because of damage at stage separation.
Vanguard (U)	Vanguard (SLV-6) (U)	Jun 22	DID NOT ACHIEVE ORBIT	9.8	Magnesium alloy sphere (20 inches in diameter), to measure solar-Earth heating process which generates weather. Faulty second-stace pressure valve caused failure.
Explorer (S-1) (U)	Juno II (U)	Jul 16	DID NOT ACHIEVE ORBIT	41.5	To measure Earth's radiation balance. Destroyed by Range Safety Officer 5-1/2 seconds after liftoff; failure of power supply to guidance system.

IISSION/ ntl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT OF	Perigee	AMETERS (km) Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
xplorer 6 (S-2) S) Welta l	Thor-Able (S)	Aug 7		DOWN	APR 26,	1959	64.4	Carried instruments to study particles and meteorology. It helped in the discovery of three radiation levels, a ring of electric current circling the Earth, and obtained crude cloud cover images.
eacon II (U)	Juno II (U)	Aug 14		DID NO.	ACHIEVE	ORBIT	4.5	Thin plastic inflatable sphere (12-feet in diameter) to study atmosphere density at various levels. Premature fuel depletion in first stage caused upper stage malfunction.
lig Joe (Mercury) S)	Atlas (S)	Sep 9		SUBORB:	ITAL FLIGH	Т		Suborbital test of the Mercury Capsule. Capsule recovered successfully after reentry test.
anguard III (S) TA 1	Vanguard (SLV-7) (S)	Sep 18	127.6	3521	514	33.4	45.4	Solar-powered magnesium sphere with magnetometer boom; provided a comprehensive survey of the Earth's magnetic field, surveyed location of lower edge of Van Allen radiation belts, and provided an accurate count of micrometeorite impacts. Last transmission Dec 8, 1959.
ittle Joe 1 S)	Little Joe (L/V #6) (S	Oct 4		SUBORBI	TAL FLIGH	T		Suborbital test of the Mercury Capsule to qualify the booster for use with the Mercury Test Program.
xplorer 7 S-la) (S) ota l	Juno II (S)	Oct 13		DOWN JU	л.ү 16, 19	89	41.5	Provided data on energetic particles, radiation, and magnetic storms. Also recorded the first micrometeorite penetration of a sensor.
ittle Joe 2 S)	Little Joe (L/V #1A) (Nov 4 S)		SUBORBI	TAL FLIGH	т —		Suborbital test of Mercury Capsule to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. (WFF)
ioneer P-3 (U)	Atlas-Able (U)	Nov 26		DID NOI	ACHIEVE	ORBIT	168.7	Lunar Orbiter Probe; payload shroud broke away after 45 seconds.
ittle Joe 3 (S)	Little Joe (L/V #2) (S	Dec 4)		SUBORBI	TAL FLIGH	T		Suborbital test of the Mercury Capsule, included escape system and biomedical tests with monkey (Sam) aboard, to demonstrate high altitude abort at max q. (WRF)
960								1960
ittle Joe 4 (S)	Little Joe (L/V #1B)(S	Jan 21)		SUBORBI	TAL FLIGH	T		Suborbital test of Mercury Capsule included escape system and biomedical test with monkey (Miss Sam) aboard. (WFF)
icneer V (P-2) 3) lpha l	Thor- Able IV (S)	Mar 11		HELIOCE	NTRIC ORB	IT	43.0	Sphere, 26 inches in diameter, to investigate interplanetary space between orbits of Earth and Venus; test long-range communications; and determine strength of magnetic fields.

	~	~	
	u	-	r
R		u	s
-	-	-	

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer (S-46) (U)	Juno II (U) Mar 23		DID	NOT ACHIEVE	ORBIT	16.0	Analyze electron and proton radiation energies in a highly elliptical orbit. Telemetry lost shortly after first stace burnout: one of the upper staces failed to fire.
Tiros I (S) Beta 2	Thor-Able (S)	Apr l	98.7	717	673	48.4	122.5	First successful weather-study satellite. Demonstrated that satellites can be used to survey global weather conditions and study other surface features from space. Transmitted 22.952 good-multity cloud-cover photographs.
Scout X (U)	Scout X (U) Apr 18		SUBC	RBITAL FLIG	HT		Suborbital Launch Vehicle Development Test with live first and third stages. Vehicle broke up after first-stage burnout.
Echo A-10 (U)	Thor- Delta (U)	May 13		DID	NOT ACHIEVE	ORBIT	75.3	100-foot passive reflector sphere to be used in a series or communications experiments. During coast period, attitude control jets on second stage failed.
Scout I (S)	Scout (S)	Jul 1		SUBO	RBITAL FLIG	HT		Launch Vehicle Development Test; first complete Scout vehicle. (WFF)
Mercury (MA-1) (U)	Atlas (U)	Jul 29		DID	NOT ACHIEVE	ORBIT		Suborbital test of Mercury Capsule Reentry. The Atlas exploded 65 seconds after launch.
Echo I (A-11) (S) Iota 1	Thor- Delta (S)	Aug 12		DOWN	MAY 24, 19	68	75.3	First passive communications satellite (100-foot sphere). Reflected a pre-taped radio message from President Eisenhower across the Nation, demonstrating feasibility of global radio communications via satellite.
Pioneer (P-30) (U)	Atlas-Able (U)	Sep 25		DID	NOT ACHIEVE	ORBIT	175.5	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and Moon. Second stage failed due to malfunction in oxidizer system.
Scout II (S)	Scout (S)	Oct 4		SUBC	RBITAL FLIG	HT		Launch Vehicle Development Test; second complete Scout vehicle, reached altitude of 3,500 mi. (WFF)
Explorer 8 (S-30) (S) Xi 1	Juno II (S) Nov 3	106.1	1689	405	49.9	40.8	Contained instrumentation for detailed measurements of the ionosphere. Confirmed existence of a helium layer in the upper atmosphere.
Little Joe 5 (U)	Little Joe (L/V #5) (Nov 8 S)		SUBCI	RBITAL FLIG	HT		Suborbital test of Mercury Capsule to quality capsule system. Capsule did not separate from booster. (WFF)
Tiros II (S) Pi l	Thor- Delta (S)	Nov 23	97.2	668	583	48.5	127.0	Test of experimental television techniques and infrared equipment for global meteorological information system.
Explorer (S-56) (U)	Scout (U)	Dec 4		DID	NOT ACHIEVE	ORBIT	6.4	12-foot sphere to determine density of Earth's atmosphere. Second stage failed to ignite. (WFF)
B-64								

ISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km)	WEIGHT	REMARKS
intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Pioneer (P-31)	At las-	Dec 15	DID NOT ACHIEVE ORBIT	175.9	Highly instrumented probe, in lunar orbit, to investigate
(U)	Able (U)				environment between Earth and Moon. Vehicle exploded about
					70 seconds after launch due to malfunction in first stage.
fercury (MR-1A)	Redstone	Dec 19	SUBORBITAL FLIGHT		Unmanned Mercury spacecraft, in suborbital trajectory,
(S)	(S)				impacted 235 miles down range after reaching an altitude of
					135 miles and a speed of near 4,200 mph. Capsule recovered
10.01					about 50 minutes after launch.
1901	Ded at an	7 21		1.1.2	1961
recury (MR-2)	Reastone	Jan 31	SUBURBITAL FLIGHT	1315.0	Subordital test of Mercury capsule; 16-minute flight
(3) ·	(5)	Reb 16	DOTAL NOD 0 10CA		included blomedical test with chimpanzee (Ham) aboard.
wpiorer 9 (S)	SCOUP (S)	rep 16	DOWN APR 9, 1964	6.8	12-root sphere to determine density of Earth's atmosphere.
ACIUS I	111-2 (5)	Pab. 21	SUBODDUTAL ELICITE	1216 0	rirst spacecraft orbited by all-solid rocket. (WFF)
rectury (MA-2)	ACIAS (S)	reb 21	SUDURDITAL FLIGHT	1312*0	Supproital test of Mercury Lapsule; upper part of Atlas
					strengthened by o-inch wide stathless steel band. Capsule
oplorer (S-AS)	JUNO TI (III)	Feb 24	DID NOT ACHIEVE OPRIT	22.6	Investigate the charge of the ionosphere. Malfunction
(J-45)	00.0 11 (0)	100 24	SIS NOT ACHIEVE ORBIT	22.0	following booster generation resulted in loss of navload
,			-		to longity and third and fourth states failed to ignite.
ittle Joe 5A	Little Joe	Mar 18	SUBORBITAL FLIGHT	1315.0	Suborbital test of Mercury Capsule: escape rocket motor
U)	(L/V #5A) (0) (0		1010.0	fired prematurely and prior to capsule release. (WFF)
fercury (MR-BD)	Redstone	Mar 24	SUBORBITAL FLIGHT	1315.0	Suborbital test of launch vehicle for Mercury flight to
S)	(S)				acquire further experience with booster before manned
	•••				flight was attempted.
xplorer 10 (S)	Thor-	Mar 25	DOWN JUN 1968	35.8	Injected into highly elliptical orbit. Provided
Cappa 1	Delta (S)				information on solar winds, hydromagnetic shock waves, and
					reaction of the Earth's magnetic field to solar flares.
ercury (MA-3)	Atlas (U)	Apr 25	DID NOT ACHIEVE ORBIT	907.2	Orbital flight test of Mercury capsule. Destroyed after 40
U)					seconds by Range Safety Officer when the inertial guidance
					system failed to pitch the vehicle over toward the horizon.
xplorer 11 (S)	Juno II (S)	Apr 27	105.8 1578 485 28.8	37.2	Placed in elliptical orbit to detect high energy gamma rays
<u>u 1</u>	(4 stages)				from cosmic sources and map their distribution in the sky.
ittle Joe 5B	Little Joe	Apr 28	SUBORBITAL FLIGHT	1315.0	Suborbital flight test to demonstrate ability of escape and
S)	(L/V ≢5B) (S)			sequence systems to function properly at max q. (WPP)
ercury (S)	Mercury-	May 5	SUBORBITAL FLIGHT	1315.0	Manned suborbital flight with Alan B. Shepard, Jr. Pilot
Freedom 7)	Redstone-3	(S) _	LANDED MAY 5, 1961		and spacecraft recovered after 15 minute 22 second flight.

1961	
------	--

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	- (kg)	(All Launches from ESMC, unless otherwise noted)
Explorer (S-45a)	Juno II (U)	May 24		DID N	OT ACHIEVE	ORBIT	33.6	Investigate the shape of the ionosphere. Second stage
(U)								ignition system malfunctioned.
Meteoroid Sat A	Scout (U)	Jun 30		DID N	OT ACHIEVE	ORBIT	84.8	Evaluate launch vehicle; investigate micrometeoroid impact
Explorer (S-55)	(U)							and penetration. Third stage failed to ignite. (WFF)
Tiros III (S)	Thor-	Jul 12	100.1	801	730	47.9	129.3	Development of meteorological satellite system. Provided
Rho 1	Delta (S)							excellent quality photographs and infrared data.
								Photographed many tropical storms during 1961 hurricane
								season and credited with discovering Hurricane Esther.
Liberty Bell 7	Mercury-	Jul 21		SUBOR	BITAL FLIG	HT	1470.0	Manned suborbital flight with Virgil I. Grisson. After
(S)	Redstone-4			LANDE	D JUL 21,	1961		landing, spacecraft was lost but pilot was rescued from
	<u>(S)</u>							surface of water. Mission Duration 15 minutes 37 seconds.
Explorer 12 (S-3)) Thor-	Aug 16	_	DOWN	SEP 1963		37.6	First of a series to investigate solar winds,
(S)	Delta (S)							interplanetary magnetic fields, and energetic particles.
Upsilon 1								Identified the Van Allen Belts as a magnetosphere.
Ranger I (U)	At las-	Aug 23		DOWN	AUG 30, 19	61	306.2	Flight test of lunar spacecraft carrying experiments to
Phi l	Agena (U)							investigate cosmic rays, magnetic fields, and energetic
1								particles. Agena failed to restart, resulting in low
								Earth orbit
Explorer 13 (U)	Scout (U)	Aug 25		DOWN	AUG 28, 190	61	84.8	Evaluate launch vehicle; investigate micrometeoroid impact
Chi l								and penetration. Initial orbit lower than planned, (WFF)
Mercury (MA-4)	At Las (S)	Sep 13		DOWN	SEP 13, 190	61	1224.7	Orbital test of Mercury capsule to test systems and ability
(S)								to return capsule to predetermined recovery area after one
A-Alpha l								orbit. All capsule, tracking, and recovery objectives met.
Probe A (P-21)	Scout (S)	Oct 19		SUBOR	BITAL FLIG	-rr		Vehicle test/scientific Geoprobe. Reached altitude of
(S)								4,261 miles; provided electron density measurements, (WFF)
Saturn Test	Saturn I	Oct 27		SUBOR	BITAL FLIG	т		Suborbital launch vehicle development test of propulsion
(SA-1) (S)	(S)							system of the S-1 booster; verification of aerodynamic and
								structural design of entire vehicle.
Mercury (MS-1)	AF 609A	Nov 1		DID N	OT ACHIEVE	CRBIT	97.1	Orbital test of Mercury Tracking Network. First stage
(U)	Blue Scout	(U)						exploded 26 seconds after liftoff; other three stages
								destroyed by range safety officer 44 seconds after launch.
Ranger II (U)	At las	Nov 18		DOWN	NOV 20, 19	61	306.2	Flight test spacecraft systems designed for future lunar
A-Theta l	Agena (U)							and interplanetary missions. Inoperative roll gyro
1								prevented Agena restart resulting in a low Earth orbit.
I								

SSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km) WEIGHT	REMARKS
CI Desig	At lag (S)	LAIL 20	(MINS.) ADDGEE PERIGEE INCL (deg	<u>) (kg)</u>	(All Launches from ESAC, unless otherwise hoted)
)	Actus (3)	1404 23	LOWER 1800 25, 1901	1313.4	orbital flight, chimange Page on board Spacewaft and
/ Iota I					chimpanzee recovered after two orbits
62					1962
ho (AVT-1) (S)	Thor (S)	Jan 15	SUBORBITAL FLIGHT	256.0	Suborbital Communications Test. Canister ejection and
					opening successful, but 135-foot sphere ruptured.
nger TII (U)	At las-	Jan 26	HELIOCENTRIC ORBIT	329.8	Rough land instrumented capsule on Moon. Booster
pha 1	Agena (U)				malfunction resulted in spacecraft missing Moon by 22,862
					miles and going into solar orbit. TV pictures unusable.
ros IV (S)	Thor-	Feb 8	100.1 824 700 48.3	129.3	Continued research and development of meteorological
ta l	Delta (S)				satellite system. U.S. Weather Bureau initiated
					international radio facsimile transmission of cloud maps
					based on data received.
cury (MA-6)	Atlas (S)	Feb 20	LANDED FEB 20, 1962	1354.9	First U.S. manned orbital flight. John H. Glenn, Jr. made
riendship 7) (S	•				three orbits of Earth. Capsule and pilot recovered after
nma l			•		21 minutes in the water. Mission Duration 4 hours
					55 minutes 23 seconds.
entry I (U)	Scout (S)	Mar 1	SUBORBITAL FLIGHT		Launch vehicle development test/Reentry test, Desired
·····					speed not achieved. (WFP)
)-1 (S)	Thor-	Mar 7	DOWN OCT 8, 1981	207.7	Carried 13 instruments to study Sun-Earth relationships.
:a 1	Delta (S)				Transmitted almost 1,000 hours of information on solar
	Co				phenomena, including measurements on /5 solar flares,
жев (P-21a)	SCOUT (S)	Mar 29	SUBORBITAL FLIGHT		Suborbital vehicle test/scientific geoprope, keached an
, ,					altitude or 3,910 miles; provided electron density
1 (III)	147-0		THEN OTHER MOON ON AND 26 1062	221 1	measurements. (Wrr)
iger 4 (0)	ACLAS-	Apr 23	IMPACTED MOON ON APR 20, 1902	331.1	Second attempt to rough land instrumented capsule on Moon.
1	Agena (S)				rature of central computer and sequencer system rendered
					Flight of 64 hours
urn Test	Saturn T	Apr 25	SIDOBBITAL FLICHT	86167 0	Suborbital launch unbicle test. carried 95 tons of hallast
-2) (6)	(5)	npr 23	SOCADI ME PERMI	0010/20	water in unnew stance which was released at an altitude of
. 27 (07	(5)				65 miles to observe affect on unper region of the
					atmographere (Droject Wich Water)
					achegeloro (reojove lingli mesel/i

196

· .

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAM	ETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Ariel I (S)	Thor-	Apr 26		DOWN	MAY 24, 1976		59.9	Carried six British experiments to study ionosphere, sola
Omicron 1	Delta (S)							radiation, and cosmic rays. First International Satellit
·····	···-							Cooperative with UK.
Centaur Test 1	Atlas-	May 8		SUBOR	BITAL FLIGHT			Launch vehicle development test. Centaur exploded before
(AC-1) (U)	Centaur (U)							separation.
Aurora 7	Atlas (S)	May 24		LANDE	D MAY 24, 196	2	1349.5	Orbital Manned Flight with M. Scott Carpenter. Reentered
(MA-7) (S)								under manual control after three orbits. Mission Duratio
Tau I								4 hours 56 minutes 5 seconds.
Tiros V (S)	Thor-	Jun 19	99.8	916	583	58.1	129.3	Continued research and development of meteorological
A-Alpha 1	Delta (S)							satellite system. Extended observations to higher
								latitudes. Observed ice breakup in northern latitudes an
								storms originating in these areas.
Telstar 1 (S)	Thor-	Jul 10	157.8	5651	938	44.8	77.1	First privately built satellite to conduct communication
A-Epsilon	Delta (S)							experiments. First telephone and television experiments
								transmitted. Reimbursable.
Echo (AVT-2) (S)	Thor (S)	Jul 18		SUBOR	BITAL FLIGHT		256.0	Suborbital communications test. Inflation successful;
								radar indicated sphere surface not as smooth as planned.
Mariner I (P~37)	At las-	Jul 22		DID N	OT ACHIEVE OR	BIT	202.8	Venus Flyby. Vehicle destroyed by range safety officer
(U)	Agena (U)							about 290 seconds after launch when it veered off course.
Mariner II (P-38)	At las-	Aug 27		HELIO	CENTRIC ORBIT		202.8	Second Venus flyby. First successful interplanetary prob
(S)	Agena (S)							Passed Venus on Dec 14 at 21,648 miles, 109 days after
A-Rho 1								launch. Provided data on solar wind, cosmic dust density
								and particle and magnetic field variations.
Reentry II (U)	Scout (U)	Aug 31		SUBOR	BITAL FLIGHT			Reentry test at 28,000 fps: late third stage ignition;
								desired speed not achieved. (WFF
Tiros VI (S)	Thor-	Sep 18	98.1	679	653	58.3	127.5	Provide coverage of 1962 hurricane season. Returned high
A-Psi 1	Delta (S)							quality cloud cover photographs.
Alouette I (S)	Thor-	Sep 29	105.3	1025	989	80.5	145.2	Designed and built by Canada to measure variations in
B-Alpha 1	Agena B (S))						ionosphere electron density distribution. Returned
								excellent data to 13 Canadian, British, and U.S. stations
								(Cooperative with Canada)
Explorer 14	Thor-	Oct 2		DOWN (JUL 1, 1966		40.4	Monitor trapped corpuscular radiation, solar particles,
(S-3a)(S)	Delta (S)							cosmic radiation, and solar winds. Placed into a highly
B-Gamma 1								elliptical orbit; excellent data received.
L								
8-68								

1	٥	£	2
- 1	J	υ	~

SSION/	LAUNCH	LAUNCH	PERIOD CU	RRENT O	RBITAL PARA	METERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.) Ap	ogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
gma 7 (MA 8)	(S) Atlas (S)	Oct 3		LANDED	OCT 3, 196	52	1360.8	Manned Orbital Flight with Walter M. Schirra, Jr. Made six
Delta 1								orbits of the Earth. Mission Duration 9 hrs 13 min 11 sec.
nger V (U)	At las-	Oct 18		HELIOC	ENIRIC ORBI	IT	342.5	Rough land instrumented capsule on Moon. Malfunction
Eta l	Agena (S)							caused power supply loss after 8 hours 44 minutes. Passed
								within 450 miles of the Moon.
plorer 15	Thor-	Oct 27		DOWN (OCT 5, 19	67	44.5	Study location, composition, and decay rate of artificial
-3b) (S)	Delta (S)							radiation belt created by high altitude nuclear explosion
Lambda 1								over the Pacific Ocean. Despin device failed; considerable
							_	useful data transmitted.
turn (SA-3)	Saturn I	Nov 16		SUBORB	ITAL FLIGHT	r	86167.0	Suborbital launch vehicle development flight. Second
)	(S)							"Project High Water" using 95 tons of water released at an
								altitude of 90 n.mi.
Lay I (S)	Thor-	Dec 13	185.1	7440	1318	47.5	78.0	Test intercontinental microwave communication by low-
Upsilon l	Delta (S)							altitude active repeater satellite. Initial power failure
								overcome. Over 500 communication tests and demonstrations
								conducted.
plorer 16	Scout (S)	Dec 16	104.2	1166	747	52.0	100.7	Measure micrometeoroid puncture hazard to structural skin
-55b) (S)								samples. First statistical sample; flux level found to lie
chí 1								between estimated extremes. (WFP)
63								1963
ncom I (U)	inor-	FeD 14	CURRE	NT ELEM	enis not ma	UNTAINED	39.0	First test of communication satellite in geosynchronous
53 004A	Delta (S)							orbit. Initial communication tests successful; all
							· · · · · · · · · · · · · · · · · · ·	contact lost 20 seconds after command to fire apogee motor.
turn lest	Saturn I	Mar 28		SUBORB.	TIAL FLIGH			Suborbital launch vehicle development test. Programmed
4-4) (S)	(S)							in-flight cutoff of one of eight engines successfully
								demonstrated propellant utilization system function.
plorer 17	inor-	Apr 3		DOWN N	OV 24, 1966)	183.7	Measure density, composition, pressure and temperature of
+6) (S)	Delta (S)							Earth's atmosphere. Discovered belt of neutral helium
33 009A	These De Ite	Mar. 1		0007				around Earth.
ustar II (S)	inor-Deita	may /	225.3 1	0807	968	42.8	/9.4	Conduct wideband communication experiments. Color and 1963
MA.	(5)							black and white television successfully transmitted to
75.75	7) 7+1 70)						1260.0	Great Britain and France. Reimbursable.
cury (raith	/) ATLAS (S)	may 15		LANDED	MAX 10, 15	202	1390.8	Orbital manned flight with L. Gordon Cooper, Jr. Various
12 0151								tests and experiments performed. Capsule reentered after
ACIU 6	ORICIAL							22 orbits. Mission Luration 34 hrs 19 min 49 sec.
								B-69
	OF POO							
	0.100	n 20	7511 J					

MISSION/	LIAINCH LT	ALINALIA		TROOM	ODDTTAT DAD	METCOC (km)	WETCHT	DEMAD VC
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (dea)	(ka)	(All Launches from ESMC, unless otherwise noted)
RFD-1 (S)	Scout (S) M	lay 22	(112)207	SUBOR	BITAL FLIGH	r	217.6	Suborbital reentry flight test; carried AEC Reactor mocku Reimbursable.
Tiros VII (S)	Thor-Delta J	lun 19	95.8	560	557	58.2	134.7	Continued meteorological satellite development. Furnishe
1963 024A	(S)							over 30.000 useful cloud cover photographs, including
								pictures of Hurricane Ginny in early stages in mid-Octobe
QRL (USAF) (S)	Scout (S) J	lun 28		DOWN	DEC 14, 1983	3	99.8	Cambridge Research Lab geophysics experiment test.
1963 026A	•••							(Reimbursable)
Reentry III (U)	Scout (U) J	ul 20		SUBOR	BITAL FLIGH	r —		Suborbital reentry flight demonstration test of an ablati
								material at reentry speeds. Vehicle failed. (WFE
Syncom II (S)	Thor-Delta J	ul 26	C	URRENT ELE	MENTS NOT MA	AINTAINED	39.0	Geosynchronous communication satellite test. Voice,
1963 031A	(S)							teletype, facsimile, and data transmission tests conducted
Little Joe II	Little Joe A	Lug 28		SUBOR	BITAL FLIGH	r		Suborbital Apollo launch vehicle test. Booster
Test (S)	II #1 (S)	•						qualification test with dummy payload. (White Sands
Explorer 18 (S)	Thor-Delta N	lov 27		DOWN	DEC 30, 1965	5	62.6	First in a series of Interplanetary Monitoring Platforms
(IMP-A)	(DSV-3C) (S)							observe interplanetary space over extended period of sola
1963 046A								cycle. Discovered region of high-energy radiation beyond
1								Van Allen belts; reported stationary shock wave created
								interaction of the solar wind and geomagnetic field.
Centaur Test II	At las- N	lov 27	105.8	1585	473	30.4	4620.8	Launch vehicle development test. Instrumented with 2,000
(AC-2) (S)	Centaur (S)							pounds of sensors, equipment, and telemetry; performance
1963 047A								and structural integrity test.
Explorer 19	Scout 24 D	Dec 19		DOWN	MAY 10, 1981	1	7.7	Sphere, 12 feet in diameter, was optically tracked after
(AD-A) (S)	(S)							tracking beacon failed, to obtain long-term atmospheric
1963 053A								density data and study density changes. (WSW
Tiros VIII (S)	Delta 22 D	Dec 21	98.9	719	687	58.5	120.2	Continued meteorological satellite development; initial
1963 054A	(DSV-3B) (S)							flight testing of Automatic Picture Transmission (APT)
								camera system which made it possible to obtain local clou
1								cover pictures using inexpensive ground stations.
1964								19
Relay II (S)	Delta 23 J	lan 21	194.7	7511	1990	46.4	85.3	Modified communication satellite with a capability of TV
1964 003A	(DSV-3B) (S)							300 one-way voice transmissions or 12 two-way narrowband
1								communication. Completed more than 230 demonstrations an
								tests; also obtained over 600 hours of radiation data.
1								
B-70								

.

ISSION/	LAUNCH	LAUNCH	PERIOD CURRENT O	RBITAL PARAMETERS (km) WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee Incl (dec	1) (kg)	(All Launches from ESMC, unless otherwise noted)
no II (S)	Thor-	Jan 25	DOWN J	UN 7, 1969	348.4	Rigidized sphere, 135 feet in diameter, to conduct passive
64 004A	Agena (S)					communication experiments (radio, teletype, and facsimile
						tests). Good experiment results obtained; data exchanged
						with USSR. (WSMC)
iturn I (SA-5)	Saturn I	Jan 29	DOWN A	PR 30, 1966	17,554.2	Launch vehicle development test. Fifth flight of Saturn
;)	(S)					first Block II Saturn, first live flight of the LOX/LH,
64 005A						fueled second stage (S-IV). 1,146 measurements taken.
nger VI (U)	At las-	Jan 30	IMPACTED MOO	N ON FEB 2, 1964	364.7	Photograph lunar surface before hard impact. No video
64 007A	Agena (S)					signals received. Impacted on west side of Sea of
						Tranquility, within 20 miles of target, after 65.6 hour
						flight.
acon Explorer A	Delta 24	Mar 19	DID NO	T ACHIEVE ORBIT	54.7	Provide data on ionosphere and conduct laser and Doppler
-66) (U)	(U)					shift geodetic tracking experiments. Vehicle third stage
						malfunctioned.
iel II (UK) (S)	Scout 127	Mar 27	DOWN N	DV 18, 1967	74.8	Carried three British experiments to measure galactic radio
64 015A	(S)					noise. Cooperative with UK. (WFF)
mini I (S)	Titan II	Apr 8	89.2 328.2	160.9 32.6	3175.2	Qualification of Gemini spacecraft configuration and Gemini
64 018A	(S)					launch vehicle combination in launch environment through
						orbital insertion phase.
re I (S)	Atlas (S)	Apr 14	SUBORB.	ITAL FLIGHT	1995.8	Reentry Test to study the heating environment encountered
						by a body entering Earth's atmosphere at high speed.
ollo Abort	Little Joe	May 13	SUBORB	TAL FLIGHT		Vehicle development test to demonstrate Apollo spacecraft
001 (S)	(S)					atmospheric abort system capabilities. (White Sands)
turn I (SA-6)	Saturn I	May 28	88.5 225.2	199.5 31.8	17644.9	Vehicle development test. First flight of unmanned model
)	(S)					of the Apollo spacecraft. 106 measurements obtained.
64 025A						
ntaur Test III	Atlas	Jun 30	SUBORBI	TAL FLIGHT		Launch vehicle development test; performance and guidance
-3 (S)	Centaur (S)					evaluation.
RTI(S)	Scout (S)	Jul 20	SUBORBI	TAL FLIGHT		Test ion engine performance in space. Confirmed that high
						prevalence ion beams could be neutralized in space. (WFF)
nger VII (S)	At las-	Jul 28	IMPACTED MOON	I ON JUL 31, 1964	364.7	Photograph lunar surface before hard impact. Transmitted
64 041A	Agena (S)					4,316 high quality photographs showing amazing detail
						before impacting in Sea of Clouds; flight time 68 hours
						35 minutes 55 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBIT	AL PARAMETER	<u>us (km)</u>	WEIGHT	REMARKS
Recent my TV (C)	VEHICLE	DATE	(Mins.) Apogee Per	igee Inc.	L (deg)]	(Kg)	(All Launches from ESMC, unless otherwise noted)
Reentry IV (S)	SCOUL (S)	Aug 18	SUBURBITIAL	FLIGHI			Reencry lest; Delibistrated the ability of the Aporto
SUDOW TTT /S	Dolto 15	Num 10	AND DATE OF SMONTH	WYT MATATTATA	TED	65.9	Spacecraft to withstand reentry contribute at 27,550 ips.
1964 0474	(c)	Aug 19	CURRENT ELEMENTS	NOT MAINIAI	150	05.0	Provided live TV coverage of the Olympic games in Tokyo
1904 04//	(5)						conducted various communications tests.
Explorer 20 (S)	Scout 122	Aug 25	102 7 1007		70 0	44.5	Toposphere Explorer to obtain radio soundings of upper
1964 051A	(S)	Aug 25	105.7 1007	0.00		4413	ionosphere as part of the Tonside Sounder program.
Nimbus I (S)	Thor-	Aug 28	DOWN MAY 1	6. 1974		376.5	Improved meteorological satellite: Earth oriented to
1964 052A	Agena 386	Aug 20	DOWN THE I	0, 1974		5.015	provide complete global cloud cover images. Returned most
		(S)					than 27,000 excellent photos: APT system supplied davtir
		,					photos to low-cost ground stations.
0GO I (U)	At las-	Sep 4	CURRENT ELEMENTS	NOT MAINTAL	INED	487.2	Standardized spacecraft capable of conducting related
1964 054A	Agena (S)						experiments. Carried 20 instruments to investigate
1							geophysical and solar phenomena. Boom deployment anomaly
							obscured horizon scanner's view of Earth. Varving quality
							data received from all experiments.
Saturn I (SA-7)	Saturn I	Sep 18	DOWN SEP 2	2, 1964			Demonstrate Launch Vehicle/spacecraft compatibility and
(S)	(S)	•		• - ·			test launch escape system. Telemetry obtained from 131
1964 057A			•				separate and continuous measurements.
Explorer 21 (U)	Delta 26	Oct 4	DOWN JAN 3	0, 1966			Interplanetary Monitoring Platform to obtain magnetic
1964 060A	(U)						fields, radiation, and solar wind data. Failed to reach
							planned apogee, but provided good data.
RFD-2 (S)	Scout (S)	Oct 9	SUBORBITAL	FLIGHT		217.6	Reentry flight carried AEC Reactor Mockup. Reimbursable
Explorer 22 (S)	Scout 123	Oct 10	104.5 1060	877	79.7	52.6	Beacon Explorer; to provide data on variations in the
1964 064A	(S)						ionosphere's structure and relate ionospheric behavior to
							solar radiation. Low-cost ground stations throughout the
							world received uncoded radio signals. Laser tracking
							accomplished on October 11. (WSW
Mariner III (U)	At las-	Nov 5	HELIOCENTR	IC ORBIT		260.8	Mars flyby. Fiberglass shroud failed to jettison proper
1964 073A	Agena (U)						solar panels failed to extend, Sun and Canopus not
							acquired. Transmissions ceased 9 hours after launch.
Explorer 23	Scout S-12	3 Nov 6	DOWN JUN 2	9, 1983		133.8	Provided data on meteoroid penetration and resistance of
(S-55C) (S)	(S)						various materials to penetration. (WP
1964 074A							
L							

B-72

MISSION/	LAUNCH VEHICLE	LAUNCH DATE	PERIOD CURRENT ORBITAL PARAMET	TERS (km) WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
Explorer 24 (S)	Scout 135	Nov 21	DOWN OCT 18, 1968	8.6	First dual navload (Air Density/Injun): two satellites
1964 076A	(5)			0.0	provided detailed information on complex radiation-air
Explorer 25 (S)	·- ·		115.2 2401 524	81.3 34.0	density relationships in the upper atmosphere. (WSMC)
1964 076B					
Mariner IV (S)	Atlas	Nov 28	HELIOCENTRIC ORBIT	260.8	Second of two 1964 Mars flyby Launches. Encounter occurred
1964 077A	Agena (S)				on Jul 14, 1965, with closest approach at 6,118 miles of
					the planet. Transmitted 22 pictures.
Apollo Abort	Little Joe	Dec 8	SUBORBITAL FLIGHT	42593.0	First test of Apollo emergency detection system at abort
A-002 (S)	(S)				altitude. (White Sands)
Centaur (AC-4)(S)	A-Centaur	Dec 11	DOWN DEC 12, 1964	2993.0	Vehicle development flight carried mass model of Surveyor
1964 082A	(S)				spacecraft; propulsion and stage separation test.
San Marco 1 (S)	Scout (S)	Dec 15	DOWN SEP 13, 1965	115.2	Flight test of satellite to furnish data on air density and
1964 084A					ionosphere characteristics. Launch vehicle provided by
					NASA; launched by Italian Crew. (WFF)
Explorer 26 (S)	Delta 27	Dec 21	CURRENT ELEMENTS NOT MAIN	TAINED 45.8	Energetic Particles Explorer: carried five experiments to
1964 086A	(S)				provide data on high-energy particles.
1965					1965
Gemini II (S)	Titan II	Jan 19	SUBORBITAL FLIGHT	3133.9	Demonstrate structural integrity of reentry module heat
	(S)				protection during maximum heating rate reentry and
					demonstrate variable lift on reentry module.
Tiros IX (S)	Delta 28	Jan 22	119.0 2568 702	96.4 138.3	First "Cartwheel" configuration for Weather Bureau's
1965 004A	(S)				Operational system. Provided increased coverage of global
					cloud cover with pictures of excellent quality.
060 B-2 (S)	Delta (S)	Feb 3	DOWN ADG 9, 1989	244.9	Second in a series to measure frequency and energy of solar
1965 007A				electromagnetio	c radiation in ultraviolet, X-ray and gamma-
		·			ray regions of spectrum.
Pegasus I (S)	Saturn I	Feb 16	DOWN SEP 17, 1978	1451.5	Obtained scientific and engineering data on magnitude and
1965 009A	(SA-9) (S)				direction of meteoroids in near-Earth orbit.
kanger VIII (S)	At las-	Feb 17	IMPACTED MOON ON FEB 20, 1	1965 364.7	Photograph lunar surface before hard impact. Transmitted
1965 010A	Agena (S)				7,137 high quality photographs before impacting in Sea of
					Tranquility; flight time 64.54 hours.
Jentaur Test	A-Centaur	Mar 2	SUBORBITAL FLIGHT	2548.0	Vehicle development test; Atlas stage failed 4 seconds
(U) (AC-5)	(U)				after liftoff.

1965

MISSION/ Intl Desig	LAUNCH	LAUNCH	PERIOD	CURRENT OR	BITAL PARAME	ETERS (km) [nc] (dea)	WEIGHT	REMARKS (All Launches from FSMC, unless otherwise noted)
Ranger IX (S) 1965 023A	Atlas Agena (S)	Mar 21	1 (1110)/1	MPACTED MOON	ON MAR 24,	1965	364.7	Photograph lunar surface before hard impact. Transmitted 5,814 excellent quality pictures; about 200 pictures relayed live via commercial TV. Flight time 64.52 hours.
Gemini III (S) 1965 024A	Titan II (S)	Mar 23		LANDED	MAR 23, 196	5	3236.9	First manned orbital flight of the Gemini program, with astronauts Virgil I. Grisson and John W. Young. Manually controlled reentry after three orbits. Mission Duration 4 hours 53 minutes.
Intelsat 1 (F-1) (S) 1965 028A	Delta 30 (S)	Apr 6	C	URRENT ELEME	INTS NOT MAIN	TAINED	38.5	First operational satellite for Comsat Corp., to provide commercial trans-Atlantic communications. Reimbursable.
Explorer 27 (S) 1965 032A	Scout 136 (S)	Apr 29	107.8	1317	931	41.2	60.8	Beacon Explorer; obtained data on Earth's gravitational field. Also carried laser tracking experiments.
Apollo Abort A-003 (U)	Little Joe II (U)	May 19		SUBORBI	TAL FLIGHT			Demonstration of abort capability of Apollo spacecraft. Launch escape vehicle at high altitude not accomplished du to malfunction of Little Joe II Booster. (White Sands)
Fire II (S)	At las (S)	May 22		SUBORBI	TAL FLIGHT		2005,8	Second Reentry Test to study heating environment encountered by a body entering Earth's atmosphere at high speed.
Pegasus II (S) 1965 039A	Saturn I (SA-8) (S)	May 25		DOWN NO	w 3, 1979	······································	1451.5	Micrometeoroid detection experiment confirmed lower meteoroid density than expected.
Explorer 28 (S) 1965 042A	Delta 31 (S)	May 29		DOWN JU	л. 4, 1968		59.0	Third Interplanetary Monitoring Platform, carrying eight scientific instruments, to measure magnetic fields, cosmic rays, and solar wind beyond Earth's magnetoschere.
Gemini IV (S) 1965 043A	Titan II (S)	Jun 3		LANDED	JUN 7, 1965		3537.6	Second manned Gemini filght with James'A. McDivitt and Edward H. White. During flight, White donned pressure su and performed EVA using ZIP (Zero-G Integral Propulsion) Unit. EVA duration 22 minutes. Mission Duration 97 hours 56 minutes 11 seconds.
Tiros X (S) 1965 051A	Delta 32 (S)	Jul 1	100.3	817	728	98.6	127.0	First U.S. Weather Bureau-funded Tirce; obtained maximum coverage of 1965 hurricane and typhoon season.
Pegasus III (S) 1965 060A	Saturn I (SA-10) (S)	Jul 30		DOMN AL	KG 4, 1969		1451.5	Final micrometeoroid detection experiment. Results of Pegasus program indicated flux of small particles was less than expected, flux of large particles more than expected and flux of medium-sized particles about as predicted.

. .

MISSION/	LAUNCH	LAUN	H PERIOD	CURRENT	ORBITAL PAR	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DAT	Mins.) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Scout Test (S) Secor (S) 1965 063A	Scout S-131R (S)	Aug	10 122.2	2418	1136	69.2	20.0	Vehicle development test. Carried U.S. Army Secor geodetic satellite. Reimbursable.
Centaur Test (AC-6) (S) 1965 064A	A-Centaur (S)	Aug		BARY	CENTRIC ORB	IT	952.6	Vehicle development test. Carried Surveyor dynamic model. Direct-ascent test for guidance evaluation.
Gemini V (S) 1965 068A REP 1965 068C	Titan II (S)	Aug	21	LAND	ED AUG 29, 1	965	3175.2	Manned orbital flight with L. Gordon Cooper and Charles Conrad, Jr. Ejected rendezvous evaluation POD (REP) for simulated rendezvous maneuvers; participated in communications and other on-board experiments. Mission Duration 190 hours 56 minutes 14 seconds.
260-C (U)	Delta (U)	Augi	25	DID	NOT ACHIEVE	ORBIT	281.2	Third in a series to maintain continuity of observations during solar activity cycle. Vehicle third stage ignited prematurely.
200 II (U) 1965 081A	Thor-Agena (S)	Oct 1		DOWN	SEP 17, 198	31	507.1	Carried 20 experiments to investigate near-Earth space phenomena on an interdisciplinary basis. Failure of primary launch vehicle guidance resulted in higher than planned orbit. 19 experiments returned useful data. (NSMC)
Gemini VI (U)	At Las-Agena (U)	Oct 2	5	DID	NOT ACHIEVE	ORBIT		Agena target vehicle. Simultaneous countdown of Gemini spacecraft and Atlas/Agena Target Vehicle. Telemetry lost 375 seconds after launch of target vehicle; Gemini launch terminated at T-42 minutes.
xplorer 29 (S) 965 089A	Delta (S)	Nov 6	120.3	2273	1114	59.4	174.6	GEOS-A, part of U.S. Geodetic Satellite Program to provide new geodetic data about the Earth.
xplorer 30 (S) .965 093A	Scout 138 (S)	Nov]	8 100.4	881	676	59.7	56.7	Monitor solar X-rays and ultraviolet emissions during final portion of IQSY. Data acquired by NRL and foreign stations in 13 countries. Cooperative with NRL (WFP)
xplorer 31 (S) 965 098B	Thor-Agena (S)	Nov 2	9 120.5	2905	502	79.8	98.9	Make related studies of ionospheric composition and temperature variations. Provided excellent data from
louette II (S) 965 098A			119.3	2801	500	79.8	146.5	regions of the ionosphere never before investigated. Cooperative with Canada. (WSMC)
emini VII (S) 965 100A	Titan II (S)	Dec 4	DD D D D D D D D D 	LAND	ED DEC 18, 1	965	3628.8	Fourth manned mission with Frank Borman and James A. Lovell, Jr. Astronauts flew part of mission without pressure suits. Mission Duration 330 hrs 35 min 31 sec.
	OF POC	ne Dr (PAGE QUALI	is Ty				B-75

1965

.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
Incl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
French IA (S)	SCOUT 139	Dec 6	99.2	728	716	75.9	71.7	Study VLF wave propagation in the ionosphere and
A101 C061	(S)							magnetosphere and measure electron densities. Cooperative
CTTT IS A LOT								with France. (WSMC)
Genini VI-A (S)	Titan II	Dec 15		LANDE	D DEC 16, 19	65	3175.2	Fifth manned mission with Walter M. Schirra, Jr. and Thomas
1965 104A	(S)							P. Stafford. First rendezvous in space accomplished with
								Gemini VII spacecraft. Mission Duration 25 hours
								51 minutes 24 seconds.
Pioneer VI (S)	Delta 35	Dec 16		HELIC	CENIRIC ORBI	T	63.5	Operated in solar orbit to provide data on solar wind,
1965 105A	(S)							interplanetary magnetic field, Solar physics, and
								high-energy charged particles and magnetic fields.
1966								1966
Apollo Abort	Little Joe	Jan 20		SUBOR	BITAL FLIGHT		4989.0	Apollo development flight to demonstrate launch escape
A-004 (S)	(II #5) (S)							vehicle performance. Last unmanned ballistic flight.
								(White Sands)
ESSA I (S)	Delta 36	Feb 3	99.9	819	688	97.9	138.3	Sun-synchronous orbit permitted satellite to view weather
1966 008A	(S)			017				in each area of the globe each day, photographing a given
								area First Muanced Vidicon Camera System provided
								unlushing information shout wathow estteres and conditions
								Painhumahla (MCMC)
Poontart V (C)	Forth (C)	Pab 0		CI DO	Dimit DI TOUR		05.0	Month he investigate betting environment of hedr veerboring
KOONLEY V (3)	3000L (3)	reb 9		SUBUR	BUTAL FLIGHT		95.0	Test to investigate heating environment of body reentering
Annal I a Cathurn	Cabure 70	0-1 07					00000 1	Earth's autosphere at 27,000 rps.
Aporto Sacum	Saturn IB	red 26		SUBOR	BITAL FLIGHT		20820.1	Launch vehicle development flight; carried unmanned Apolic
(AS-201) (S)	(5)							spacecratt.
ESSA II (S)	Delta 37	FeD 28	113.4	1413	1352	101.0	131.5	Provided direct readout of cloud cover photos to local
1966 016A	. (S)							users. Along with ESSA I, completed initial global weather
						_		satellite_system Reimbursable. (WSMC)
Gemini VIII (U)	Titan II	Mar 16		LANDE	D MAR 17, 19	66	3788.0	Agena Target Vehicle Launched from Complex 14 and manned
1966 020A	(S)							Gemini launched from Complex 19. Astronauts Neil A.
GATV (S)	A-Agena	Mar 16		DOWN	SEP 15, 1967	1		Armstrong and David R. Scott accomplished rendezvous and
1966 019A	(S)							docking. Attitude and maneuver thruster malfunction cause
								docked spacecraft to tumble. Astronauts separated vehicle
								and terminated mission early: EVA not accomplished. First
								Pacific Ocean landing, Mission Duration 10 hours
								Al minutes 26 seconds.
								TI MINUCCI LO SOCOMOS
0.70								
0-70								

ISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARA	METERS (km)	WEIGHT	REMARKS
ntl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	[(kg)	(All Launches from ESMC, unless otherwise noted)
entaur Test	A-Centaur	Apr 8		DOWN M	AY 5, 1966		784.7	Launch vehicle development flight; carried Surveyor model.
AC-8) (U)	(U)							Second Centaur engine firing unsuccessful.
966 030A								
AOI(U)	A-Agena	Apr 8	100.8	799	788	35.0	1769.0	Carried four experiments to study UV, X-ray and gamma-ray
966 031A	<u>(S)</u>							regions. Primary battery malfunctioned.
imbus II (S)	Thor-Agena	May 14	108.0	1175	1092	100.4	413.7	Provided global weather photography on 24-hour basis for
966 040A	<u>(S)</u>							meteorological research and operational use. (WSMC)
emini IX (U)	A-Agena	May 17		DID NO	NT ACHIEVE O	RBIT	3252.0	Target vehicle for Gemini IX; vehicle failure caused by a
	(0)					·····		short in the servo control circuit.
xplorer 32 (S)	Delta 38	May 25		DOWN 1	EB 22, 1985		224.5	Atmosphere Explorer; carried 8 experiments to measure
966 U44A	(S)							temperatures, composition, density and pressures in upper
								atmosphere.
urveyor 1 (S)	A-Centaur	May 30		LANDED ON	MOON JUN 2,	1966	995.2	Achieved soft lunar landing in Ocean of Storms. Performed
966 U45A	(AC-10) (S)							engineering tests and transmitted photography. Landing
								pads penetrated lunar surface to maximum depth of 1 inch.
emini IXA (U)	Titan II	Jun 3		LANDEL) JUN 6, 196	6	3750.3	Seventh manned mission with Thomas P. Stattord and Eugene
966 047A	(S)							A. Cernan. Target vehicle shroud failed to separate,
AIV (U)	Atlas	Juni		DOWN J	UN 11, 1966			docking not achieved. EVA successful, but evaluation of
966 046A	(5)		·····					AMU not achieved. Mission Duration 72 hours 21 minutes.
30 111 (5)	A-Agena	Jun /	C	ORRENT ELEM	LENIS NOT MA	INTAINED	514.8	Carried 21 experiments to obtain correlated data on
966 U49A	(5)							geophysical and solar phenomena in Earth's atmosphere.
		· · · · · ·						First 3-axis stabilization in highly elliptical orbit.
V~3 (S)	scout (S)	Jun 9	143.0	4/11	647	40.8	173.0	Radiation Research Satellite. USAF Reimbursable. (WFF)
906 USZA	(Th							
sgeos ((5)	Inor-Agena	Jun 23	1//.0	5443	2/35	84.4	56.7	Sphere, 100 feet in diameter, to determine location of
ADC UDDA	(5)							continents, land masses, and other geographic points by
								world-wide triangulation network of stations. (Work)
(plorer 33 (S)	Delta (S)	JULI	a	URRENT ELEP	ENIS NOT MA	INTAINED	93.4	Interplanetary Monitoring Platform to study, at lunar
A8C0 008								distance, Earth's magnetosphere and magnetic tall. Planned
								anchored lunar orbit not achieved; useful data obtained
					P TREE			from Earth orbit.
xolio saturn	Saturn 18	JUI 5		DOWN J	UL 5, 1966		26535.4	Launch vehicle development flight; evaluate S-IVB stage
5-203 (S)	(S)							vent and restart capability.
766 059A								
	UHICINI		ACE					
2	N m = -		NUE	3				B-77
(JF POO	P 01	IAL IT	7.4				
		<u>v</u> u	/AL11	I				

1966

MISSION/	LAUNCH	LAUNCH	PERIOD CU	RENT ORBITAL I	PARAMETERS (km	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Ap	gee Perige	Incl (deg	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini X (S)	Titan II	Jul 18		LANDED JUL 21	, 1966	3762.6	Manned mission with John W. Young and Michael Collins.
1966 066A	(S)						Performed first docked vehicle maneuvers; standup EVA of 8
GATV (S)	A-Agena	Jul 18		DOWN DEC 29, 1	1966		minutes; umbilical EVA of 27 minutes. Mission duration
1966 065A	(S)						70 hours 46 minutes 39 seconds.
Lunar Orbiter I	A-Agena	Aug 10		DOWN OCT 29, 1	1966	385.6	Photograph landing sites for Apollo and Surveyor from luna
(S)	(S)	-					orbit. Photographed over 2 million square miles of Moon's
1966 073A							surface; took first two photos of Earth from distance of
							the Moon. Demonstrated maneuverability in lunar orbit.
Pioneer VII (S)	Delta 40	Aug 17		HELIOCENTRIC (RBIT	63.5	Second in a series of interplanetary probes to provide dat
1966 075A	(S)	_					on solar wind, magnetic fields, and cosmic rays.
Apollo Saturn	Saturn IB	Aug 25		SUBORBITAL FLI	IGHT	25809.7	Apollo launch vehicle and spacecraft development flight to
AS-202 (S)	(S)	-		•			test Command Module heat shield and obtain launch vehicle
							and spacecraft data.
Gemini XI (S)	Titan II	Sep 12		LANDED SEP 15,	, 1966	3798.4	Manned mission with Charles Conrad, Jr. and Richard F.
1966 081A	(S)	-					Gordon, Jr. Rendezvous and docking achieved. Umbilical
GATV (S)	A-Agena	Sep 12		DOWN DEC 30, 1	L966 ·		and standup EVA performed and well as tethered spacecraft
1966 080A ·	(S)	-					experiment. Mission Duration 71 hrs 17 min 8 sec.
Surveyor II (U)	A-Centaur	Sep 20	IMPAC	TED MOON ON SEE	23, 1966	1000.2	Second soft lunar landing planned. One vernier engine did
1966 084A	(AC-7) (S)						not fire for midcourse correction, sending spacecraft into
							tumbling mode. Spacecraft crashed southeast of crater
							Copernicus after 62.8 hour flight.
ESSA III (S)	Delta 41	Oct 2	114.5 1	484 1383	101.1	147.4	Replaced ESSA I in Tiros Operational Satellite (TOS) 1966
087A	(S)						system. Sophisticated cameras and sensors provided
							valuable information about world's weather patterns and
1							conditions. Reimbursable (WSMC)
Centaur Test	A-Centaur	Oct 26		DOWN NOV 6, 19	766	952.6	Launch vehicle development flight; Surveyor model injecte
(AC-9) (S)	(S)						into simulated lunar transfer orbit. Demonstrated two-bur
1966 095A							parking orbit operational capability.
Intelsat II F-1	Delta 42	Oct 26	717.7 37	3326	17.0	87.1	Comsat commercial communications satellite. Apogee motor
(0)	(S)						malfunction resulted in elliptical orbit. Reimbursable.
1966 096A							
Lunar Orbiter II	A-Agena	Nov 6		DOWN OCT 11, 1	967	385.6	Photographed lunar landing sites from lunar orbit; provide
(S)	(5)						new data on lunar gravitational field; photographed Ranger
1966 100A							VIII landing point and surface debris tossed out at impact
B-78							
- /0							

ISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km)	WEIGHT	REMARKS
ntl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
emini XII (S)	Titan II	Nov 11	LANDED NOV 15, 1966	3762.1	Last manned Gemini flight with James A. Lovell, Jr. and
966 104A	(S)		•		Edwin E. Aldrin, Jr. Rendezvous and docking achieved. Two
ATV (S)	A-Agena	Nov 11	DOWN DEC 23, 1966		EVA's performed. Mission duration 94 hours 35 minutes
966 103A	(S)				31 seconds.
TS I (S)	A-AGENA	Dec 7	1250.5 35251 28888 14.0	703.1	Perform various communication, meteorology, and control
966 110A	(S)				technology experiments and carry out scientific
					measurements of orbital environment. Experiments results
					outstanding. Spin-scan cloud camera photographed changing
					weather patterns: air-to-ground and air-to-air
					communications demonstrated for first time.
iosatellite T	Delta (S)	Dec 14	DOWN FEB 15, 1967	426.4	Carried biological specimens to determine effects of space
()		14			environment on life processes. Reentry vehicle separated
966 114A					but retro rocket failed, leaving cansule in orbit. No
					useful scientific data obtained.
967					1967
ntelsat II F-2	Delta 44	Jan 11	CURRENT ELEMENTS NOT MAINTAINED	87.1	Consat commercial communication satellite. Reached
S)	(S)				intended location on February 4. Reimburgable.
967 001A	,				
SSA IV (S)	Delta 45	Jan 26	113.4 1437 1324 102.0	131.5	Replaced ESSA II in TOS system. Provided daily coverage of
967 006A	(S)				local weather systems to APT receivers. Shutter
	(-)				malfunction rendered one camera inonerative. Reimburgable.
					(WENC)
unar Orbiter III	A-Agena	Peb 5	TOWN OCT 9 1967	385.6	Photographed lunar landing gites from lunar orbit: also
S)	(S)		LOAR (CC1), 1907	30310	returned 600,000 sq.mi, of front and 250,000 sq.mi, of back
967 008A	(0)				side lunar photography: provided gravitational field and
					limar environment data.
SO TTT (S)	Delta 46	Man 9	DOWN ADD 4 1982	284 4	Carried 9 experiments to study structure dynamics and
967 0208	(9)		LONG MER 47 1502	20414	chemical composition of gater solar atmosphere through
<i></i>	(0)				X-way, vigible, and IN radiation measurements.
ntelsat II F-3	Delta 47	Mar 22	CURPENT REEMENTS NOT MAINTAINED	87.1	Consat commercial communication satellite. Completed
S)	(5)		COULTE DEPENDIO NOT PREMIMEND	07.11	Inteleat II ovotom. Reimburgable.
967 0264	(0)				Theorem is a starting to the starting to the starting of the s

02

s • • •

MISSION/	LAUNCH	LAUNC	I PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ATS II (U)	A-Agena	Apr 6		DOWN	SEP 2, 1969		324.3	Test gravity gradient control system; microwave
1967 031A	(U)							communications, meteorological cameras, and 8 scientific
								experiments. Second stage failed to restart resulting in
								elliptical orbit. Limited data obtained.
Surveyor III	A-Centaur	Apr 1	,	LANDED OF	MOON AFR 20	0, 1967	1035.6	Vernier engines failed to cut off as planned; spacecraft
(S)	(AC-12) (S)							bounced twice before landing. Surface sampler used for
1967 035A								pressing, digging, trenching, scooping, and depositing
								surface material in view of camera. Returned over 6,300
								photos including pictures of Earth during lunar eclipse.
ESSA V (S)	Delta 48	Apr 2	113.5	1419	1352	101.8	147.4	Replaced ESSA III in TOS System. Furnished daily global
1967 036A	(S)							coverage of weather systems. Reimbursable. (WSMC
San Marco II	Scout S-153	Apr 2	5	DOWN	OCT 14, 196	7	129.3	First satellite launch attempt from mobile sea-based
(S)	(S)							platform in the Indian Ocean; launched conducted by Itali
1967 038A								crew. Spacecraft provided continuous equatorial air
								density measurements. Cooperative with Italy.
Lunar Orbiter IV	A-Agena	May 4		DOWN	OCT 6, 1967		385.6	Lunar orbit achieved. Photographed 99% of Moon's front
(S)	(S)							side and additional back side areas.
1967 041A								
Ariel III (S)	Scout	May 5		DOWN	DEC 14, 1970)	102.5	Pirst UK-built satellite to extend atmospheric and
1967 042A	(S)							ionospheric investigations. Cooperative with UK. (WSMC
Explorer 34 (S)	Delta 49	May 2	1	DOWN	MAY 3, 1969		73.9	Fifth in Interplanetary Monitoring Platform series to stu
1967 051A	(S)							Sun-Earth relationships. Elliptical orbit achieved.
								Useful data returned. (WSMC
ESRO II-A (U)	Scout (U)	May 2)	DID	OT ACHIEVE (RBIT	89.1	Carried 7 experiments to study solar and cosmic radiation
								Third stage vehicle failure. Cooperative with ESRO. (WSW
Mariner V (S)	A-Agena	Jun I	1	HELIC	CENTRIC ORBI	IT	244.9	Venus flyby. Returned data on planet's atmosphere,
1967 060A	(S)							radiation, and magnetic field environment.
Surveyor IV (U)	A-Centaur	Jul 1	I I	MPACTED MC	XON ON JUL 1	7, 1967	1037.4	Lunar soft landing mission. All systems normal until 2
1967 068A	(AC-11) (S)							seconds before retro rocket burnout (2-1/2 minutes before
		_						touchdown) when signal was abruptly lost.
Explorer 35 (S)	Delta (S)	Jul l	,	SELE	OCENIRIC OR	BIT	104.4	Interplanetary Monitoring Platform to study solar wind an
1967 070A								interplanetary fields at lunar distances. Lunar orbit
								achieved. Results indicated no shock front precedes Moon
								no magnetic field, no radiation belts or evidence of luna
								ionosphere.

IISSION/ Intl Desig	LAUNCH	LAUNCH DATE	PERIOD CUR	RENT ORBITAL PA	RAMETERS (km)	WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
GO IV (S) .967 073A	Thor-Agena (S)	Jul 28		DOWN AUG 16, 19	72	551.6	Study relationship between Sun and Earth's environment. Near-polar orbit achieved, 3-axis stabilized. (WSMC)
unar Orbiter V S) .967 075A	A-Agena (S)	Aug 1		DOWN JAN 31, 19	68	385.6	Fifth and final mission to photograph potential landing sites from lunar orbit. Increased lunar photographic coverage to better than 99%.
biosatellite II S) .967 083A	Delta (S)	Sep 7		DOWN SEP 9, 196	7	425.4	Carried 13 experiments to conduct biological experiments in low Earth orbit. Reentry initiated 17 orbits early because of communications difficulties and storm in recovery area. Air recovery successful.
kurveyor V (S) .967 084A	A-Centaur (AC-13) (S)	Sep 8	LAN	DED ON MOON SEP	11, 1967	1006.1	Lunar soft landing accomplished; returned TV photos of lunar surface; and data on chemical characteristics of lunar soil.
ntelsat II (F-4) S) .967 094A	Delta 52 (S)	Sep 28	CURRE	NT ELEMENTS NOT	MAINTAINED	87.1	Consat commercial communications satellite to provide 24-hour transoceanic service. Reimbursable.
ISO-IV (S) .967 100A	Delta 53 (S)	Oct 18		DOWN JAN 15, 19	82	276.7	Continuation of OSO program to better understand the Sun's structure and determine solar influence upon Earth. Obtained first pictures made of Sun in extreme ultraviolet.
AM C-1 (S)	Scout (S)	Oct 19		SUBORBITAL FLIG	ar	116.6	Reentry test to investigate communications problems on reentry. (WPP)
IS III (S) 967 111A	A-Agena (S)	Nov 5	1436.1 3	5842 35733	12.1	714.0	Further development of experiments and concepts in useful applications of space technology to communications, meteorology, navigation, and Earth resources management.
urveyor VI (S) 967 112A	A-Centaur (AC-14) (S)	Nov 7	LANI	DED ON MOON NOV	10, 1967	1008.3	Lunar soft landing achieved; pictures and soll analysis data transmitted. Vernier engines restarted, lifting spacecraft 10 feet from surface and landing 8 feet from original site, performing first rocket-powered takeoff from lunar surface.
pollo 4 (S) 967 113A	Saturn V (S)	Nov 9		DOWN NOV 9, 196	7	45506.0	Launch vehicle/spacecraft development flight. First Launch of Saturn V; carried unmanned Apollo Command/Service Module.
SSA VI (S) 967 114A OR	Delta 54 (S)	Nov 10	114.8	1483 1407	102.1	129.7	Replaced ESSA II and ESSA IV in the TOS system; used in central analysis of global weather. Reimbursable. (WSMC)
OF	POOR	QUA		-			B-8

	~	
- 1	м	r
•	•	

MISSION/	LAUNCH	LAUNCH	PERIOD CUR	RENT ORBITAL	PARAMETERS (km) WEIGHT	REMARKS
Pioneer VIII (S)	Delta (S)	Dec 13			OPATT (U		Third in parties of internlanatany probes to provide data
1967 1238	00100 (0)	DOC 15		SELECCEATINIC .		03.0	colar wind magnetic fields and commis raws. Carried
TETR-1 (S)				10 COLA 1 A DO	1969	20.0	TTC-1 first NASA nigratuate paylord
1967 1238				LONIN APR 20;	1900	20.0	113-1, TILSE MASA progyback paytoau.
1968		· · ·					190
Surveyor VII (S)	A-Centaur	Jan 7	LAND	ED ON MOON JA	N 9, 1968	1040.1	Lunar soft landing achieved; provided pictures of lunar
1968 001A	(AC-15) (S))			•		terrain, portions of spacecraft, experiment operations,
							stars, planets, crescent Earth as it changed phases, and
							first observation of artificial light from Earth.
Explorer 36 (S)	Delta (S)	Jan 11	112.2 1	572 1079	105.8	212.3	GEOS spacecraft to provide precise information about size
1968 002A			•				and shape of Earth and strength of and variations in
1							gravitational field; part of National Geodetic Program.
							(WSMC)
Apollo 5 (S)	Saturn IB	Jan 22		DOWN JAN 24,	1968	42,506.0	First flight test of Lunar Module; verified ascent and
1968 007A	(S)					•	descent stages, propulsion systems and restart operations
000 V (S)	A-Agena	Mar 4	CURREN	T ELEMENTS NO	T MAINTAINED	611.0	Provided measurements of energy characteristics in Earth
1968 014A	(S)						radiation belts; first evidence of electric fields in box
							shock.
Explorer 37 (S)	Scout (S)	Mar 5	DOWN	NOV 16, 199	0	89.8	Solar Explorer to provided data on selected solar X-ray a
1968 017A							ultraviolet emissions. NRL/NASA Cooperative. (WPI
Apollo 6 (U)	Saturn V	Apr 4	1	DOWN APR 4, 1	968	42856.0	Launch vehicle and spacecraft development flight. Launch
1968 025A	(U)						vehicle engines malfunctioned; spacecraft systems perform
							normally. Mission judged unsuccessful.
Reentry VI (S)	Scout (S)	Apr 27	:	SUBORBITAL FL	IGHT	272.0	Turbulent heating experiment to obtain heat transfer
							measurements at 20,000 FPS. (WP)
ESRO IIB (S)	Scout (S)	May 17	1	DOWN MAY 8, 1	971	89.1	Carried 7 experiments to study solar and cosmic radiation
1968 041A							in lower Van Allen belt. Cooperative with ESRO. (WSM
Nimbus B (U)	Thor-Agena	May 18	i	DID NOT ACHIE	VE ORBIT	571.5	Experimental meteorological satellite; also carried Sec
Secor 10 (0)	(0)					20.4	10 (DOD) secondary payload. Booster malfunctioned;
							destruct signal sent by range safety officer. (WSMK
Explorer 38 (S)	Delta 57	JUL 4	224.2 5	865 5828	120.8	275.4	Radio Astronomy Explorer to monitor low-frequency radio
1968 055A	(5)						signals originating in our own solar system and Earth's
1							magnetosphere and radiation belts.
1							,

ntl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins.)	CURRENT OF	BITAL PARAM	ETERS (km Incl (deg	1) WEIGHT	REMARKS (All Launches from ESAC, unless otherwise noted)
xplorer 39 (S) 968 066A xplorer 40 (S) 968 066B	Scout (S)	Aug 8	118.0	DOMAN JU 2506	N 22, 1981 678	80.7	9.3 69.4	Dual payload (Air Density/Injun) to continue the detailed scientific study of density and radiation characteristics of Earth's upper atmosphere. (WSWC)
ITS IV (U) 968 068A	A-Centaur (U)	Aug 10		DOWN O	CT 17, 1968		390.1	Evaluate gravity-gradient stabilization, simultaneous transmission of voice, TV, telegraph, and digital data. Centaur failed to reignite for second burn; spacecraft remained in parking orbit attached to Centaur.
SSA VII (S) 968 069A	Delta 58 (S)	Aug 16	114.9	1471	1429	101.5	147.4	Replace ESSA V as the primary stored data satellite in the TOS system. Reimbursable. (WSMC)
AM CII (S)	Scout (S)	Aug 22		SUBORBI	TAL PLIGHT		122.0	Measure electron and ion concentrations during reentry. (MPF)
ntelsat III F-1 U)	Delta (U)	Sep 18		DID NOT	ACHIEVE OR	BIT	286.7	Comsat commercial communications satellite. Vehicle failure. Reimbursable.
SRO LA (S) 968 084A	Scout (S)	Oct 3		DOWN JI	N 26, 1970		85.8	Carried 8 experiments to measure energies and pitch angles of particles impinging on polar ionosphere during megnetic storms and quiet periods. Concertive with ESRO. (WSWC)
pollo 7 (S) 968 089A	Saturn IB (S)	Oct 11		LANDED	OCT 22, 196	8	51,655.0	First manned flight of Apollo spacecraft with Walter M. Schirra, Jr., Donn F. Eisele, and Walter Cunningham. Performed Earth orbit operations. Mission Duration 260 hours 9 minutes 3 seconds.
ioneer IX (S) 968 100A ETR 2 (S) 968 100B	Delta (S)	Nov 8		HELIOCE DOWN SE	MIRIC ORBIT P 19, 1979		66.7	Deep space probe to collect scientific data on the electromagnetic and plasma properties of interplanetary space. Carried TETR 2 as secondary payload.
EOS A (S) 968 109A	Delta (S)	Dec 5		DOWN OC	T 28, 1975		108.8	Study interplanetary magnetic fields and solar cosmic ray particles. ESRO Reimbursable,
AO II (S) 968 110A	A-Centaur (AC-16) (S)	Dec 7	100.1	768	759	35.0	2016.7	Perform astronomy investigations of celestial objects in the ultraviolet region of the electromagnetic spectrum.
SSA VIII (S) 968 114A	Delta 62 (S)	Dec 15	114.6	1461	1411	101.5	136.1	Meteorological satellite for ESSA. Reimbursable. (WFF)
ntelsat III F-2 S) 968 116A	Delta 63 (S)	Dec 18	cu	RRENT ELEME	NTS NOT MAI	NTAINED	286.7	Initial increment of first global commercial communications satellite system for Comsat. Reimbursable.

.

-

MISSION/	LAUNCH	LAUNC	H PERIOD	CURRENT	RBITAL PAR	AMETERS (km) WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg) (kg)	(All Launches from ESMC, unless otherwise noted)
Apollo 8 (S)	Saturn V	Dec 2	1	LANDE	D DEC 27, 1	968	51655.0	First manned Saturn V flight with Frank Borman, James A.
1968 118A	(S)							Lovell, Jr. and William A. Anders. First manned lunar
								orbit mission; provided close-up look at Moon during 10
								lunar orbits. Mission Duration 147 hrs 0 min 42 sec.
1969								196
060 V (S)	Delta (S)	Jan 2	2	DOWN	AFR 2, 1984		288.5	Continuation of OSO program to study Sun's X-rays, gamma
1969 006A								rays, and radio emissions.
ISIS-A (S)	Delta 65	Jan 3	0 127.9	3489	574	88.4	235.9	Satellite built by Canada carried 10 experiments to study
1969_009A	(S)							the ionosphere. Cooperative with Canada. (WSMC
Intelsat III F-3	Delta 66	Feb 5	C	URRENT ELE	MENTS NOT M	AINTAINED	286.7	Second increment of Comsat's operational commercial
(S)	(S)							communication satellite system. Reimbursable.
1969 011A								
Mariner VI (S)	A-Centaur	Feb 2	5	HELIO	CENTRIC ORE	BIT	411.8	Mars flyby; provided high resolution photos of Martian
1969 014A	(AC-20) (S)							surface. Closest approach was 2,120 miles on July 31.
ESSA IX (S)	Delta 67	Feb 2	6 115.2	1503	1423	101.6	157.4	Ninth and last in the TOS series of meteorological
1969 016A	(S)							satellites. Reimbursable.
Apollo 9 (S)	Saturn V	Mar 3		LANDE	D MAR 13, 1	.969	51655.0	Earth orbital flight with James A. McDivitt, David R.
1969 018A	(S)							Scott, and Russell Schweickart. First flight of lunar
								module. Performed rendezvous, docking, and EVA. Mission
								Duration 241 hours 1 minute 54 seconds.
Mariner VII (S)	A-Centaur	Mar 2	7	HELIO	CENTRIC ORE	BIT	411.8	Mars flyby; provided high resolution photos of Martian
1969 030A	(AC-19) (S)							surface. Closest approach was 2,190 miles on August 5.
Nimbus III (S)	Thor-Agena	Apr 1	4 107.3	1130	1069	99.9	575.6	Provided night and day global meteorological measurements
1969 037A	(S)							from space. Secor (DOD) provided geodetic position
Secor 13 (S)			107.2	1127	1067	99.9	20.4	determination measurements.
(WSMC)								
1969 037B								
Apollo 10 (S)	Saturn V	May 1	8	LANDE	D MAY 26, 1	969	51655.0	Manned lunar orbital flight with Thomas P. Stafford, John
1969 043A	(S)							W. Young, and Eugene A. Cernan to test all aspects of an
1								actual manned lunar landing except the landing. Mission
								Duration 192 hours 3 minutes.
Intelsat III F-4	Delta (S)	May 2	1 0	URRENT ELE	MENTS NOT M	AINTAINED	143.8	Third increment of Comsat's operational commercial
(S)								communication satellite system. Reimbursable.
1969 045A								-

.

ISSION/	LAUNCH VEHICLE	LAUNCH	PERIOD (Mins.)	CURRENT O	RBITAL Perioe	ARAMETER	RS (km)	WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
GO VI (S)	Thor-Agena	Jun 5		DOWN	OCT 12, 1	979		631.8	Last in the OGO series to provide measurements of energy
969 051A	(S)								characteristics in Earth's radiation belts; first evidence
xplorer 41 (S) 969 053A	Delta 69 (S)	Jun 21		DOWN 1	DEC 23, 1	1972		78.7	Seventh Interplanetary Monitoring Platform to continue the study of the environment within and beyond the Earth's mannetesphere. (WSMC)
icsatellite III U) 969 056A	Delta (S)	Jun 28		DOWN 3	JUL 7, 19	969		696.3	Conduct intensive experiments to evaluate the effects of weight lessness with a pigtall monkey onboard. Spacecraft deorbited after 9 days because monkey's metabolic condition was deteriorating rapidly. Monkey expired 8 hours after recovery presumably from a massive heart attack brought on by dehydration. Mission judged unsuccessful.
pollo 11 (S) 969 059A	Saturn V (S)	Jul 16		LANDEI	D JUL 24,	, 1969		51655.0	First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Brwin A. Aldrin. Landed in the Sea of Tranquility on July 20, deployed TV camera and EXSEP experiments, performed EVA, returned lunar soil samples. Mission Duration 195 hours 18 minutes 35 seconds.
ntelsat III F-5 U) 969 064A	Delta (U)	Jul 26		DOWN (oct 14, 1	1988		146.1	Fourth increment of Consat's operational commercial communication satellite system. Third-stage malfunctioned; satellite did not achieve desired orbit. Reimbursable.
SO VI (S) 969 068A	Delta (S)	Aug 9		DOWN N	MAR 7, 19	81		173.7	Continuing study of Sun's X-rays, gamma rays, and radio emissions. Carried PAC experiment to stabilize spent
AC (S) 969 068B				DOWN 2	APR 28, 1	977		117.9	Delta stage.
IS V (U) 969 069A	A-Centaur (AC-18) (S)	Aug 12	1464.5	38298	34383		9,5	432.7	Evaluate gravity-gradient stabilization for geosynchronous satellites. Anomaly after apogee motor firing resulted in counterclockwise spin; gravity-gradient booms could not be deployed. Nine of 13 experiments returned useful data.
ioneer E (U) TETR C) (U)	Delta (U)	Aug 27		DID N	OT ACHIEV	E ORBIT		67.1 18.1	Deep space probe to study magnetic disturbances in interplanetary space. Vehicle malfunctioned; destroyed 8 min 3 sec into powered flight by range safety officer.
RO 1B (S)	Scout (S)	Oct 1		DOWN N	NOV 23, 1	969		85.8	Fourth European-designed and built satellite to study
									regions. Reimbursable. (WSHC)
	WWAL P	AGE	15						B-85

OF POOR OUALITY

MISSION/	LAUNCH	LAUNCH	PERIO	CURRENT	ORBITAL PA	RAMETERS (km)	WEIGHT	REMARKS
GRS-A (S) 1969 097A	Scout (S)	Nov 7	115,1	2538	379	102.8	72.1	Study Inner Van Allen belt and aucoral zones of the Northern Hemisphere. Cooperative with Germany. (WSMC
Apollo 12 (S) 1969 099A	Saturn V (S)	Nov 14		LANDE	D NOV 24,	1969	51655.0	Second Nanned Lunar landing and return with Charles Conra Jr., Richard F. Gordon, and Alan P. Bean. Landed in the Ocean of Stoms on Nov 19; deployed TV camera and ALSEP experiments; two EVA's performed; collected core sample a lunar materials; photographed and retrieved parts from Surveyor III spacecraft. Mission duration 244 hours 36 minutes 25 seconds.
Skynet A (S) 1969 101A	Delta (S)	Nov 21		ELDME	NTS NOT AV	AILABLE	242.7	Communication satellite for the United Kingdom. Reimbursable.
1970								
Intelsat III F-6 (S) 1970 003A	Delta (S)	Jan 14		CURRENT EL	ements not	MAINTAINED	155.1	Part of Comsat's operational commercial communication satellite system. Reimbursable.
ITOS I (S) 1970 008A	Delta (S)	Jan 23	115.0	1477	1432	101.5	306.2	Second generation meteorological satellite to provide daytime and nightime cloud cover observations in both
Oscar 5 (S) 1970 008B			115.0	1475	1432	101.5	9.1	direct and stored modes. Oscar (Australia), carried pigg back, used by radio amateurs throughout the world. WSMC)
SERT II (U) 1970 009A	Thor-Agena (S)	Feb 3	106.0	1046	1038	99.3	503.5	Ton engine test. Fell short of mission duration objectiv by less than 1 month. (WSMC
NATOSAT I (S) 1970 021A	Delta 77 (S)	Mar 20	1436.2	36491	35086	9.4	242.7	Communications satellite for NATO. Reimbursable
Nimbus D (S) 1970 025A	Thor-Agena (S)	Apr 8	107.1	1097	1086	99.7	619.6	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data
TOPO 1 (S) 1970 025B			106.9	1085	1082	99.5	21.8	TOPO, carried as piggyback, for triangulation exercises. (WSMC)
Apollo 13 (U) 1970 029A	Saturn V (S)	Apr 11		LANDE	D APR 17,	1970	51655.0	Third manned lunar landing attempt with James A. Lovell, Jr., John L. Swigert, Jr., and Fred W. Haise, Jr. Pressu lost in SM oxygen system; mission aborted; IM used for If support. Mission Duration 142 hours 54 minutes 41 second
Intelsat III F-7 (S) 1970 032A	Delta (S) (S)	Apr 22		CURRENT ELE	MENTS NOT	MAINTAINED	290.3	Part of Comsat's operational communication satellite system. Reimbursable.
B-86								
								「「「「」「「」」「「」」「「」」「」」「」」「「」」」

B-86

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	- ()kg)	(All Launches from ESMC, unless otherwise noted)
telsat III F-8	Delta (S)	Jul 23	1408.2	36650	33823	12.2	290.3	Part of Comsat's operational commercial communication
)								satellite system. Malfunctioned during apogee motor
70 055A								firing; failed to achieve desired orbit. Reimbursable.
ynet 2 (U)	Delta (S)	Aug 19	C	URRENT ELE	MENTS NOT M	AINTAINED	242.7	Communication satellite for the United Kingdom, Telemetary
70_062A								terminated following apogee motor failure. Reimbursable.
M CIII (S)	Scout (S)	Sep 30		SUBOR	BITAL FLIGH	Т	134.0	Reentry test of radio blackout.
OI(S)	Scout (S)	Nov 9		DOWN	MAY 9, 1971		132.9	Orbiting Frog Otolith (OFO) in which frogs were used to
70 094A								study effects of weightlessness on the inner ear, which
S (S)				DOWN	FEB 7, 1971		21.0	controls balance. Radiation Meteoroid Spacecraft (RMS)
70 094B								provided data on radiation belts. (WFF)
OB(U)	A-Centaur	Nov 30		DID N	OT ACHIEVE (ORBIT	2122.8	Perform stellar observations in the UV region. Centaur
	<u>(U)</u>							nose fairing failed to separate; orbit not achieved.
OSA (S)	Delta 81	Dec 11	114.8	1471	1421	101.5	306.2	To augment NDAA's satellite world-wide weather observation
70 106A	(S)							capabilities. Reimbursable. (WSMC)
plorer 42 (S)	Scout 175C	Dec 12		DOWN	AFR 5, 1979		142.0	Small Astronomy Satellite to catalog celestial X-ray
70 107A	(S)							sources within and outside the Milky Way. First X-ray
								satellite. (San Marco)
71								
telsat IV F-2	A-Centaur	Jan 25		ELEMENT	S NOT AVAIL	ABLE	1387.1	Fourth generation satellite to provide increased capacity
)	(S)							for Comsat's global commercial communications network.
71 006A								Reimbursable.
5110 14 (5)	Saturn V	Jan 31		LANDE	D FEB 9, 197	71	51655.0	Third Manned lunar landing with Alan B. Shepard, Jr.,
71 008A	(S)							Stuart A. Roosa, and Edgar D. Mitchell. Landed in the Fra
? (S)	SM			IMPACTED	MOON FEB 4,	1971		Mauro area on Feb 5; performed EVA, deployed lunar
/1 008B								experiments, returned lunar samples. P&P Subsatellite
								spring-launched from SM in lunar orbit. Mission duration
								216 hours 1 minute 57 seconds.
IOSAT 2 (S)	Delta 82	Feb 2	1435.8	41063	30496	8.7	242.7	Second communications satellite for NATO. Reimbursable
1 009A	<u>(S)</u>							
blorer 43 (5)	Delta 83	Mar 13		DOWN	OCT 2, 1974		288.0	Second generation Interplanetary Monitoring Platform to
1 019A	(5)							extend man's knowledge of solar-lunar relationships.
SB(S)	Deita (S)	Mar 31	113.5	1423	1354	88.2	264.0	Study electron production and loss, and large scale
'I U24A								transport of ionization in ionosphere. Cooperative with
.								Canada. (WSMC)
091	CIBIAL_	pler						
		1. 4756	: 13					B-87

OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
San Marco C (S)	Scout 173C	Apr 24		DOWN	NOV 29, 1971		163.3	Study atmospheric drag, density, neutral composition, and
1971 036A	(S)							temperature. Cooperative with Italy. (San Marco
Mariner H (U)	A-Centaur	May 8		DID N	OT ACHIEVE O	RBIT	997.9	Mariner Mars '71 Orbiter mission to map the Martian
	(AC-24) (U))						surface. Centaur stage malfunctioned shortly after laund
Mariner I (S)	A-Centaur	May 30		AREOC	ENTRIC ORBIT		997.9	Second Mariner Mars '71 Orbiter mission to map the Martia
1971 051A	(AC-23) (S))						surface. Achieved orbit around Mars on Nov 13, 1971.
								Transmitted 6,876 pictures.
PAET (S)	Scout (S)	Jun 20		SUBOR	BITAL FLIGHT		62.1	Test to determine structure and composition of an
		<u>``</u>						atmosphere from a probe entering at high speed. (WFF
Explorer 44 (S)	Scout (S)	Jul 8		DOWN	DEC 15, 1979		115.0	Solar radiation spacecraft to monitor Sun's X-ray and
1971 058A		_		_				ultraviolet emissions. Cooperative with NRL. (WFF
Apollo 15 (S)	Saturn V	Jul 26		LANDE	D AUG 7, 197	1	51655.0	Fourth manned lunar landing with David R. Scott, Alfred M
1971 063A	(S)							Worden, and James B. Irwin. Landed at Hadley Rille on Ju
P&F Subsat (S)	SM	Aug 4		SELEN	OCENTRIC ORB	IT	36.3	30; performed EVA with Lunar Roving Vehicle; deployed
1971 063D		-						experiments. Mission Duration 295 hrs 11 min 53 sec.
CAS/EOLE (S)	Scout (S)	Aug 16	100.2	870	662	50.1	85.0	Obtain data on winds, temperatures, and pressures using
1971 071A		-						instrumented balloons launched from Argentina and a
								satellite. Cooperative with France. (WFF
BIC (S)	Scout 166C	Sep 20		SUBOR	BITAL FLIGHT		31.7	Barium Ion Cloud Project to study Earth's magnetic field.
	(S)	-						Cooperative with Germany. (WFF
OSOH(S)	Delta (S)	Sep 29		DOWN	JUL 9, 1974		635.0	Observe active physical processes on the Sun and how it
1971 083A		-						influences the Earth and its space environment.
TETR4 (S)				DOWN	SEP 21, 1978		20.4	•
1971 083B								
TTOS B (U)	Delta 86	Oct 21		DOWN	JUL 21, 1972		31.7	To augment NOAA's satellite world-wide weather observation
1971 091A	(U)							capabilities. Second stage failed. Reimbursable. (WSMC
Explorer 45 (S)	Scout (S)	Nov 15	322.8	18149	272	3.2	50.0	Small Scientific Satellite to study magnetic storms and
1971 096A								acceleration of charged particles within the inner
	_							magnetosphere. (San Marco
UR-4 (S)	Scout (S)	Dec 11		DOWN	DEC 12, 1978		102.4	Study interactions between plasma and charged particle
1971 109A								streams in the atmosphere. Cooperative with UK. (WSMC
Intelsat IV F-3	A-Centaur	Dec 20	1454.6	36645	35649	3.9	1387.1	Fourth generation satellite to provide increased capacity
(S)	(S)							for Comsat's global commercial communications network.
1971 116A								Reimbursable.
ſ								
B.00								
000								
1972								

SION/	LAUNCH	LAUNCH	PERIOD	CURRENT	RBITAL PAR	AMETERS ()m)	WEIGHT	REMARKS
2	Vincen		(11/21/2017)	1 40000	reingee	I Ther (deg)	<u>(, (, , , , , , , , , , , , , , , , , ,</u>	(All Laurenes from ESAC, unless ocherwise foced)
elsat IV E	-4 A-Centaur (S)	Jan 22	1438.0	35851	35797	5.3	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable.
SA-2(S) 2005A	Delta (S)	Jan 31		DOWN	AUG 2, 1974		117.0	Carried 7 experiments provided by various European organizations to investigate particles and micrometeorites in space. Reimburgable. (KSMC)
meer 10 (S '2 012A	S) A-Centaur (S)	Mar 2	SC	LAR SYSTEM	ESCAPE TRA	JECTORY	258.0	Jupiter Flyby. First spacecraft to flyby Jupiter and return scientific data.
1 (S) 2 014A	Delta (S)	Mar 11		DOWN	JAN 9, 1980		470.8	Western European satellite to obtain data on high-energy emissions from stellar and galactic sources. ESRO Reimbursable. (WSMC)
1 <u>lo 16 (</u> S) 2 031A	Saturn V (S)	Apr 16		LANDE	D AFR 27, 1	972	51655.0	Fifth manned lunar landing mission with John W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on Apr
'Subsat (S 2 031D	;) SM	Apr 16		IMPACTED I	MOON MAY 29	, 1972	36.3	20. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed PSF Subsatellite in lunar orbit. Mission Duration 255 bours 51 minutes 59 seconds.
elsat IV F	-5 A-Centaur (S)	Jun 13	1438.3	35852	35807	6.3	1387.1	Fourth generation satellite to provide increased capacity for Consat's global commercial communications network.
S-A (S) 2 058A	Delta (S)	Jul 23	103.1	909	899	99.1	941.0	Demonstrate remote sensing technology of Earth's surface on a global scale and on a repetitive basis. (WSMC)
lorer 46 (2 061A	S) Scout (S)	Aug 13		DOWN 2	NOV 2, 1979		206.4	Meteoroid Technology Satellite to measure meteoroid penetration rates and velocity. (WFP)
3 (S) 2 065A	A-Centaur (S)	Aug 21	99.4	735	726	35.0	2200.0	Study interstellar absorption of common elements in the interstellar gas, and investigate ultraviolet radiation emitted from young hot stars.
nsit (S) 2 069A	Scout (S)	Sep 2	100.2	816	721	90.0	94.0	Navigation Satellite for U.S. Navy. Reimbursable. (WSMC)
lorer 47 (2 073A	S) Delta 90 (S)	Sep 22	C	URRENT ELE	MENTS NOT M	AINTAINED	375.9	Interplanetary Monitoring Platform; an automated space physics lab to study interplanetary radiation, solar wind and energetic particles.
	DRIGINIAL	DAO						

OF POOR QUALITY

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km) WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS D (S)	Delta 91	Oct 15	114.9	1453	1447	101.7	345.0	To augment NOAA's satellite world-wide weather observation
1972 082A	(S)							capabilities. Oscar, amateur radio satellite, carried a
OSCAR (S)		Oct 15	114.9	1453	1446	101.7	15.9	piggyback. Reimbursable. (WSM
1972 082B	· <u> </u>							· · · · · · · · · · · · · · · · · · ·
Telesat A (ANIK)	Delta 92	Nov 9	1457.5	36257 .	36150	4.6	544.3	First of a series of domestic communications satellites
(S)	(S)							for Canada. Reimbursable.
1972 090A								
Explorer 48 (S)	Scout 170C	Nov 15		DOWN	AUG 20, 198	0	186.0	Small Astronomy Satellite; carried gamma ray telescope i
1972 091A	(S)							bulbous dome to study gamma rays. Launched by Italian c
							·	from San Marco.
ESRO IV (S)	Scout (S)	Nov 21		DOWN	APR 15, 197	4	114.0	Carried five experiments to investigate the ionosphere,
1972 092A								near magnetosphere, auroral, and solar particles.
							····	Reimbursable. (WSM
Apollo 17 (S)	Saturn V	Dec 7		LANDE	D DEC 19, 1	972	51655.0	Sixth and last manned lunar landing mission with Eugene
(AS-512/CSM-	(S)							Cernan, Ronald E. Evans, and Harrison H. (Jack) Schmitt.
114/LM-12)								Landed at Taurus-Littrow on Dec 11. Deployed camera and
1972 096A								experiments; performed EVA with lunar roving vehicle.
								Returned lunar samples. Mission duration 301 hours
								51 minutes 59 seconds.
Nimbus E (S)	Delta (S)	Dec 11	107.1	1100	1087	99.6	716.8	Stabilized, Earth-oriented platform to test advanced
1972 097A								systems for collecting meteorological and geological dat
								(WSMC)
AFROS	Scout (S)	Dec 16		DOWN	AUG 22, 197	3	125.7	Study state and behavior of upper atmosphere and
(German A-2) (S)								ionosphere. Cooperative with Germany. (WSMC
1972 100A								
1973								
Ploneer G (S)	A-Centaur	Apr 5	SOL	AR SYSTEM	ESCAPE TRA	JECTORY	259.0	Investigate interplanetary medium beyond the orbit of Ma
1973 019A	(S)							the Asteroid Belt, and the near-Jupiter environment.
Telesat B	Delta 94	Apr 20	1443.0	35973	35870	5.1	544.3	Second domestic communications satellite for Canada.
(ANIK-2) (S)	(S)							Reimbursable.
1973 023A								
Skylab Workshop	Saturn V	May 14		DOWN	JUL 11, 197	9	71500.0	Unmanned Launch of first U.S. Space Station. Workshop
(S)	(S)							incurred damage during launch. Repaired during follow-o
1973 027A								manned missions.
B-90								
- ••								
								· .

		1973

MISSION/	LAUNCH	LAUNCH	PERIOD	, current or	BITAL PARAME	.TERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee 7	Perigee I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Skylab 2 206/CSM-116 (S) 1973 032A	Saturn IB (S)	May 25		LANDED J	JUN 22, 1973		29750.0	First manned visit to Skylab workshop with Charles (Pete) Conrad, Jr., Joseph P. Kerwin, and Paul J. Weitz. Deployed parasol-like thermal blanket to protect hull and reduce
								jammed with debris. Mission duration 672 hours 49 minutes 49 seconds.
2xplorer 49 (S) 1973 039A	Delta 95 (S)	Jun 10		SELENOCE	MIRIC ORBIT		328.0	Radio Astronomy Explorer to measure low frequency radio noise from galactic and extragalactic sources and from the Sun, Earth and Jupiter.
ITOSE (U)	Delta (U)	Jul 16		DID NOT	ACHIEVE ORB	IT	333.8	To augment NOAA's satellite world-wide weather observation capabilities. Vehicle second stage malfunctioned. Reimbursable. (WSMC)
3kylab 3 207/CSM-117 (S) 1973 050A	Saturn IB (S)	Jul 28		LANDED S	SEP 25, 1973		29750.0	Second manned visit to Skylab Workshop with Alan L. Bean, Owen K. Garriot, and Jack R. Lousma. Performed systems and operational tests, conducted experiments, deployed thermal shield. Mission Duration 1427 hours 9 minutes 4 seconds.
Intelsat IV F-7 (S) 1973 058A	A-Centaur (AC-31) (S)	Aug 23	1466.3	38057	34693	5.7	1387.1	Fourth generation satellite to provide increased capacity for Consat's global commercial communications network. Reimbursable.
xplorer 50 (S) 1973 078A	Delta 98 (S)	Oct 25		ELEMENTS	NOT AVAILA	BLE	397.2	Last Interplanetary Monitoring Platform to investigate Earth's radiation environment.
Transit (S) 1973 O81A	Scout (S)	Oct 30	105.3	1133	887	89.9	95.0	Navigation satellite for the U.S. Navy. Reimbursable. (WSMC)
tariner 10 Mariner/Venus/ Mercury) (S) 1973 085A	A-Centaur (AC-34) (S)	Nov 3		HELIOCEN	FRIC ORBIT		504.0	Venus and Mercury flyby mission; first dual planet mission. Photographed Earth and the Moon on its flight to Venus; Venus encounter (at 5,800 km) on Peb 5; Mercury encounter (at 704 km) on Mar 29, 1974; second Mercury encounter (at 48,069 km) on Sep 21, 1974; hird Mercury encounter (at 27 km) on Mar 16, 1975. Engineering tests conducted before attitude control gas was depleted and transmitter commanded off on Mar 24, 1975.
TOS F (S) .973 086A	Delta 98 (S)	Nov 6	116.1	1508	1499	101.9	345.0	To augment NDAA's satellite world-wide weather observation capabilities. Reimbursable. (WSMC)

MISSION/ Intl Desig	LAUNCH	LAUNO	CH PER 3 (Mi	IOD CURRENT O	RBITAL PARAM	ETTERS ()or Incl (dec	n) WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
Skylab 4 (S) 1973 090A	Saturn IB (S)	Nov 1	6	LANDED	PEB 8, 1974		29,750.0	Third manned visit to Skylab Workshop with Gerald P. Carr. Edward G. Gibson, and William R. Pogue. Performed inflig experiments; obtained medical data on crew; performed fou EVA's. Mission duration 2017 hours 15 minutes 32 seconds.
Explorer 51 (S) 1973 101A	Delta (S)	Dec 1	6	DOMN D	EC 12, 1978		663.0	Atmosphere Explorer; carried 14 instruments to study energy transfer, atomic and molecular processes, and chemical reactions in the atmosphere. (WENC
1974								1974
Skynet II-A (U) 1974 002A	Delta (U)	Jan	18	DOWN J.	AN 25, 1974		435.5	Communication satellite for the United Kingdom. Short circuit in electronics package caused vehicle failure. Reimbursable.
Centaur Proof Flight (U)	Titan III E Centaur (U)	Feb]	1	DID NO	T ACHIEVE OR	BIT		Launch vehicle development test of the Titan IIIE/Centaur (TC-1); carried simulated Viking spacecraft and Sphinx. Liquid oxygen boost pump failed to operate during Centaur starts. Destruct command sent 748 seconds after liftoff.
San Marco C-2 (S) 1974 009A	Scout S-190C (S)	Feb 1	18	DOWN M	AY 4, 1976		170.0	Measure variations of equatorial neutral atmosphere density, composition, and temperature. Cooperative with Italy. (San Marco)
UK-X4 (S) 1974 013A	Scout (S)	Mar 8	3 100	.6 890	688	97.9	91.6	Three-axis stabilized spacecraft to demonstrate technolog involved in design and manufacture of this type platform for use on small spacecraft, Reimbursable. (WSWC
Westar A (S) 1974 022A	Delta 101 (S)	Apr 1	1441	.6 35942	35846	4.1	571.5	Domestic communications satellite for Western Union. Reimbursable.
SMS A (S) 1974 033A	Delta 102 (S)	May]	17	ELEMENT	S NOT AVAILA	BLE	628.0	Geostationary environmental satellite to provide Earth imaging in visible and IR spectrum. First weather observ to operate in fixed geosynchronous orbit about the Equator Cooperative with NDAA.
ATS F (S) 1974 039A	Titan III (Centaur (S)	May	80 1412	.0 35433	35195	8.8	1403.0	Applications Technology Satellite capable of providing goo quality TV signals to small, inexpensive ground receivers Carried over 20 technology and science experiments.
Explorer 52 (S) 1974 040A	Scout (S)	Jun 3	3	DOWN A	PR 28, 1978		26.6	"Hawkeye" spacecraft to investigate the interaction of the solar wind with the Earth's magnetic field. (WSMC
AEROS B (S) 1974 055A	Scout (S)	Jul 1	.6	DOWN S	EP 25, 1975		125.7	German-built satellite to study the state and behavior of upper atmosphere and ionosphere. Reimbursable. (WSMC

ISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
nci besig	VEHICLE	LATE NUR 20	(M105.)]	Apogee	Perigee	Inci (deg)	<u>{kg}</u>	(All Launches from ESAC, unless otherwise noted)
NO A (5)	SCORE 105C	nug 50		LOWER	JUN 14, 19//		129.8	Study the sky in ultraviolet and A-ray indu above the
Datar B (C)	(5) Dolta (6)	Oct 10	1442 0	26017	35996		- E71 E	atmosphere. Cooperative with the Mether Lakis. (Work)
074 075x	Derca (3)	0.01	1442.0	33917	33000	4.4	5/1+5	Boimburgable
K-5 (S)	Scout 187C	Oct 15		DOWN	MAR 14. 1980	· · · · · · · · · · · · · · · · · · ·	120 2	Measure enectrum polarization and culsar features of
974 077A	(S)			20.01		•	130.3	non-solar X-ray sources. Cooperative with UK. (San Marco)
TOS-G (S)	Delta 104	Nov 15	114.9	1456	1443	101.6	345.0	ITOS-G - To augment NOAA's satellite world-wide weather
974 089A	(S)							observation capabilities. Reimburgable. Intasat - Conduct
NTASAT (S)	(114.8	1457	1439	101.6	20.4	worldwide observations of ionospheric total electron
974 089B								counts. Cooperative with Spain. Oscar - provide
SCAR (S)			114.8	1457	1438	101.6	28.6	communications for amateur radio enthusiasts around the
974 089C	-							world. (WSMC)
ntelsat IV F-8	A-Centaur	Nov 21	1443.1	35946	35901	3.6	1387.1	Fourth generation satellite to provide increased capacity
S)	(AC-32) (S)							for Consat's global commercial communications network.
974 093A								Reimbursable.
kynet II-B (S)	Delta (S)	Nov 22	1434.5	35773	35736	7.7	435.0	Communication satellite for the United Kingdom.
974 094A							_	Reimbursable.
elios A (S)	Titan III	Dec 10		HELI	CENTRIC ORBI	T	370.0	Study the Sun from an orbit near the center of the solar
974 097A	Centaur (S)							system. Cooperative with West Germany.
ymphonie A (S)	Delta 106	Dec 18	1435.0	36658	34871	3.6	402.0	Joint French-German communications satellite to serve North
974 101A	(S)							and South America, Europe, Africa and the Middle East.
								Reimbursable.
975		7 00	100 1					1975
andsat 2 (S)	Deita (S)	Jan 22	103.1	913	901	98.8	953.0	Second Earth Resources Technology Satellite to locate, map,
975 UU4A								and measure Earth resources parameters from space and
								demonstrate the applicability of this approach to the
		Rah (177 1340				management of the worlds resources. (WSHC)
757B (5)	Derca 100	rep o		ELEMI	INTE NOT AVAI	LABLE	628.0	Together with SMS-A, provide cloud-cover pictures every 30
975 UIIA	(5)	Fab. 20		DTD 1	TYP ACTIVITY OF	N D T T	1004 1-	minutes to weathermen at NOAA. Cooperative with NOAA.
icersac iv r-o	A-Cencaut	reo 20		010 (WI ACTIEVE C	RBII	1387.1	Fourth generation satellite to provide increased capacity
5)	(AC-33) (0)							for consat's global commercial communications hecwork.
200 C (C)	Dollar (C)	Amr 0	101 7	057	916	115.0		Launch venicie mairunctioned. Reinbursable.
	Derra (S)	Apr 9	101.7	607	910	112.0	340.0	Oceanographic and geodetic satellite to measure ocean
713 V2/A								copography, sea state, and other reacures. (Nonc)

1	9	7	ŝ

MISSION/	LAUNCH	LAUN	αi	PERIOD	CURRENT	ORBITAL PAR	RAMETERS (km) WEIGHT	REMARKS
Intl Desig	VEHICLE	DAT	E	(Mins.)	Apogee	Perigee	Incl (deg) (kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 53 (S)	Scout	May	7		DOWN	APR 9, 1979	9	196.7	Small Astronomy Satellite to study X-ray sources within a
1975 037A	S194C (S)								beyond the Milky Way galaxy. (San Marco
Telesat C (S)	Delta 109	May	7	1439.6	35867	35842	3.8	544.3	Third domestic communications satellite for Canada.
1975 038A	<u>(S)</u>								Reimbursable.
Intelsat IV F-1	A-Centaur	May	22	1450.8	36120	36028	3.6	1387.1	Fourth generation satellite to provide increased capacity
(S)	(AC-35) (S)	}							for COMSAT's commercial communications network. Last of
1975 042A									the IV series. Reimbursable.
Nimbus F (S)	Delta (S)	Jun	12	107.4	1111	1100	99.6	827.0	Stabilized, Earth-oriented platform to test advanced
1975 052A									systems for collecting meteorological and geological data
									(WSMC)
OSO I (S)	Delta (S)	Jun	21		DOWN	JUL 9, 198	6	1088.4	Observe active physical processes on the Sun and how it
1975 057A									influences the Earth and its space environment.
Apollo Soyuz	Saturn IB	Jul	15		DOWN	JUL 24, 19	75	14,856.0	Manned Apollo spacecraft with Thomas P. Stafford, Vance D
Test Project (S)	(S)								Brand and Donald K. Slayton rendezvoused and docked with
1975 066A									Soyuz 19 spacecraft with Aleksey Leonov and Valeriy Kubas
									on July 17, 1975. Mission Duration 217 hrs 28 min 23 sec
COS B (S)	Delta 113	Aug	8	C	URRENT ELE	MENTS NOT N	AINTAINED	277.5	Cosmic ray satellite to study extraterrestrial gamma
<u>1975 072A</u>	(S)								radiation. ESA Reimbursable. (WSMC
Viking A (S)	Titan III	Aug	20		AEROC	ENTRIC ORBI	IT	2324.7	Mars Orbiter and Lander mission to conduct systematic
1975 075A	Centaur (S)								investigation of Mars. U.S. first attempt to soft land a
LANDER (S)					LANDED ON	MARS JUL 20], 1976	571.5	spacecraft on another planet achieved on July 20, 1976.
<u>1975 075C</u>									First analysis of surface material on another planet.
Symphonie B (S)	Delta 114	Aug	29	1440.5	35879	35864	8.1	402.0	Second joint French-German communications satellite to
1975 077A	(S)								serve North and South America, Europe, Africa and the
									Middle East. Reimbursable.
Viking B (S)	Titan III	Sep	9		AEROC	ENTRIC ORB	IT	2324.7	Second Mars Orbiter and Lander mission to conduct
1975 083A	Centaur (S)					_			systematic investigation of Mars. Soft landed on Mars on
Lander					LANDED ON	MARS SEP 3,	, 1976	571.5	Sep 3, 1976. Returned excellent scientific data.
1975 083A									
Intelsat IVA F-1	A-Centaur	Sep	25	1441.1	35896	35870	3.6	1515.0	Improved satellite with double the capacity of previous
(S)	(AC-36) (S))							Intelsats for Comsat's global commercial communications
1975 091A			-						network. Reimbursable.
Explorer 54 (S)	Delta 115	Oct	6		DOWN	MAR 12, 197	76	675.0	Atmosphere Explorer to investigate the chemical processes
1975 096A	(S)								and energy transfer mechanisms which control Earth's
l			-						atmosphere. (WSMC

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Transit (S)	Scout	Oct 12	96.8	677	529	90.4	161.9	Second in a series of improved navigation satellite for
1975 099A	S-195C (S)							U.S. Navy. Reimbursable. (WSMC)
SMS-C/GOES A (S)	Delta 116	Oct 16	1435.6	35780	35771	7.6	628.0	First operational satellite in NOAA's geosynchronous
1975 100A	(S)							weather satellite system. Reimbursable.
Explorer 55 (S)	Delta (S)	Nov 20		DOWN	JUN 10, 198	1	719.6	Atmosphere Explorer to investigate the chemical processes
1975 107A								and energy transfer mechanisms which control Earth's
								atmosphere.
Dual Air Density	Scout	Dec 5		DID N	OT ACHIEVE	ORBIT		Measure global density of upper atmosphere and lower
Explorer (U)	S-196C (U)						35.3	exosphere. Malfunction during third stage burn resulted in
								loss of vehicle control; destroyed by range safety officer
								at 341 seconds. (WSMC)
RCAA(S)	Delta 118	Dec 13	1445.9	36074	35880	3.7	867.7	First RCA domestic communications satellite. Reimbursable.
1975 117A	(5)							1076
1976								19/6
191105 B (S)	Titan III	Jan 15		HELIC	CENTRIC ORB	uT	3/4./	Carried II scientific instruments to study the Sun.
1976 003A	Centaur (S)	1 7	1406.0	35050	164100			Cooperative with Germany.
15 (5)	Delta (S)	Jan I/	1430.3	32828	35/32	8.2	347.0	Experimental high-powered communication satellite roz
1976 UU4A			1111				1516 0	communication in remote areas. Cooperative with Canada.
Intelsat IVA F-2	A-Centaur	Jan 29	1444.0	32802	35941	3.8	1515.0	Second improved satellite with double the capacity of
1076 0108	(AC-37) (S)							previous intensats for consat's global connercial
1976 UTUA	De 14 - 100	R.L. 10	1426 2	25000				communications network. Reimbursable,
1076 0175		reb 19	1436.2	32800	35776	0.5	655.4	Consat Maritime Satellite to provide rapid, high-quality
1976 UI/A	(5)							communications between snips at sea and adme offices.
CA P (C)	Do 14 a 101	Mar. 36	1406 1	36536	25072		967 7	Reimbursable.
1076 020x		Mar 20	1400.1	20220	35973	3.2	00/./	Second KCA domestic domainications saterifice.
VATO TITA (C)	15/ Dolto 100	1 22	1436 0	32900	36703	21	270 0	Third generation communications gatellite for VATO
1976 0358	10)	Apr 22	1430.0	33788	33703	0.1	0/0.0	Reisburgehble
	13) Dolto (6)	Maria	225 A	5045	5927	100.0	411 0	Folid montaniani presive estallite to provide a reference
1976 0398	Derta (5) .	may 4	223.4	3343	5657	109.9	411.0	point for lacer ranging experiments (WSWC)
Sometar 14 (S)	A_Contaur	Mary 12	1442 6	25025	25002	2.6	1400 1	First demostic communications satellite for Compat.
1976 0424	(AC=38) (c)	ridy 15	1442.0	33323	33902	3.0	1450.1	Pointurgable
Air Force P76-5	Scout	May 22	105.5	1049	985	99.6	72.6	Furlicate propagation effects of disturbed plasmas on radar
(5)	S-179C (S)	ray 22	10343	1045	305	····	/2.0	and communications systems. Reimburgable. (WENC)
1976 0474	3-1190 (8)							and chinamicacious systems. Keinoursable. (More)
UTO VEIA								

 $(1-\delta_{H^{-1}})^{-1} = 0$

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Marisat B (S)	Delta 124	Jun 9	1436.1	35799	35776	5.4	655.47	Second Comsat Maritime Satellite to provide rapid,
1976 053A	(S)							high-quality communications between ships at sea and home
I								offices. Reimbursable.
Gravity Probe A	Scout	Jun 18		SUBC	RBITAL FLIG	HT	102.5	Scientific probe to test Einstein's Theory of Relativity.
<u>(S)</u>	S-193C (S)							(WFP)
Palapa A (S)	Delta 125	Jul 8	1435.9	36028	35537	2.3	573.8	Communication Satellite for Indonesia. Reimbursable.
1976 066A	(S)							
Comstar B (S)	A-Centaur	Jul 22		GEOS	YNCHRONOUS (RBIT	1490.1	Second domestic communications satellite for Comsat.
1976 073A	(AC-40) (S)							Reimbursable.
ITOS H (S)	Delta 126	Jul 29	116.2	1519	1503	101.8	345.0	Second generation satellite for NOAA's world-wide weather
1976 077A	(S)							observation. Reimbursable. (WSMC)
TIP III (S)	Scout	Sep 1		DOWN	MAY 30, 19	81	166.0	Improved Transit Navigation Satellite for the U.S. Navy.
1976 089A	S-197C (S)							Reimbursable. (WSMC)
Marisat C (S)	Delta 127	Oct 14	1436.2	35797	35780	6.9	655.4	Third Comsat Maritime Satellite to provide rapid,
1976 101A	(S)							high-quality communications between ships at sea and home
								offices. Reimbursable.
1977								1977
NATO IIIB (S)	Delta 128	Jan 27	1436.0	35790	35779	5.7	670.0	Third-generation communications satellite for NATO.
1977 005A	(S)							Reimbursable.
Palapa B (S)	Delta 129	Mar IO		GEOS	YNCHRONOUS (RBIT	573.8	Second Communication Satellite for Indonesia.
1977 018A	(S)							Reimbursable.
GEOS/ESA (U)	Delta 130	Apr 20	734.1	38475	2682	26.6	571.5	ESA scientific satellite; carried seven experiments to
1977 029A	(U) .							investigate Earth's magnetosphere. Malfunction during
1								second stage/third stage spinup placed GEOS in unusable
								orbit. Reimbursable.
Intelsat IVA F-4	A-Centaur	May 26	1436.2	35802	35774	2.5	1515.0	Improved satellite with double the capacity of previous
(S)	(AC-39) (S)	•						Intelsats for Comsat's global commercial communications
1977 041A								network. Reimbursable.
GOES/NOAA (S)	Delta (S)	Jun 16	1436.3	35824	35754	5.8	635.0	Visible/infrared spin-scan radiometer provided day and
1977 048A								night global weather pictures for NOAA. Reimbursable.
GMS (S)	Delta 132	Jul 14	1436.2	35796	35779	6.0	669.5	Operational weather satellite; Japan's contribution to
1977 065A	(S)							Global Atmosphere Research Program (GARP). Reimbursable.
HEAOA (S)	A-Centaur	Aug 12		DOWN	MAR 15, 19	79	2551.9	High Energy Astronomy Observatory to study and map X-rays
1977 075A	(S)	-			•			and gamma rays.
I .								

•

ISSION/ htl Desig	LAUNCH VEHICLE	LAUNCH	PERIOD (Mins.)	Apogee	ORBITAL PAR	AMETERS (km)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
oyager 2 (S)	T-IIIE	Aug 20	SOL	AR SYSTEM	ESCAPE TRA	JECTORY	2086.5	Investigate the Jupiter and Saturn planetary systems and
977 076A	Centaur (S)							the interplanetary medium between Earth and Saturn.
					•			Jupiter flyby occurred on July 9, 1979; Saturn flyby
								occurred on Aug 25, 1981; Uranus flyby occurred on
								Jan 24, 1986; Neptune flyby planned for Aug 24, 1989.
RIO (S)	Delta 133	Aug 25	1435.6	35793	35759	1.9	398.0	Italian scientific satellite to study propagation
977 080A	(S)							characteristics of radio waves transmitted at super high
								frequencies during adverse weather. Reimbursable.
oyager 1 (S)	T-IIIE	Sep 5		HELIC	CENTRIC ORE	SIT	2086.5	Investigate the Jupiter and Saturn planetary systems and
977 08 4 A	Centaur (S)							the interplanetary medium between Earth and Saturn.
								Jupiter flyby occurred on Mar 5, 1979; Saturn flyby
	•							occurred on Nov 12, 1980; departed Saturn at a high angle
								to the ecliptic plane to observe large cloud-covered moon
								Titan. Will not be involved in any more planetary
								encounters.
SA/OTS (U)	Delta 134	Sep 13		DID N	OT ACHIEVE	ORBIT	865.0	ESA experimental communications satellite. Vehicle
	(0)							exploded at 54 seconds after liftoff. Reimbursable.
ntelsat IVA F-5	A-Centaur	Sep 29		DID N	OT ACHIEVE	ORBIT	1515.0	Improved satellite with double the capacity of previous
0)	(AC-43) (U)							Intelsats for Comsat's global commercial communications
								network. Launch vehicle failed. Reimbursable.
SEE A/B	Delta 135	Oct 22						Dual payload International Sun Earth Explorer to study
9// 102A (S)	(S)			E	UWN SEP 26,	, 1987	329.0	interaction of interplanetary medium with Earth's immediate
977 102B (S)				D	OWN SEP 26	, 1987	157.7	environment. Cooperative with ESA.
cansat (5)	SCOUL	OCt 27	106.9	1101	1060	89.9	93.9	Improved Transit navigation satellite for the U.S. Navy.
1// 106A	S-200C (S)							Reimbursable. (WSMC)
steosat (S)	Delta 136	NOV 22	1437.2	35875	35741	7.0	695.3	ESA Meteorological satellite; Europe's contribution to the
1// 108A	(S)	B		2005				Global Atmospheric Research Program (GARP). Reimbursable.
s/Japan (S)		Dec 14	1455,9	30182	30159	5.3	67/.0	Experimental communication satellite for Japan.
A011 110A	(5)							Reimbursable.
10	A Contau-	7 6	1476 2	25702	35703		1010 0	1978
icetsat IVA P-3	(AC_46) (C)	Jan b	1430.2	35/92	33/83	1.9	1212.0	Provide increased telecommunications capacity for
70 000	(AL-90) (S)							Incersar's grobal network. Reimbursable.
7/8 UUZA								
	riginal	PA	GF IS					
								R-07

...OF POOR QUALITY

1	9	7	8
---	---	---	---

MTSSTON /	ETAINOU I					AND THE (Im)	WETCHE	D DWAD VC
Int] Decia	VENTCLE	DATE	(Ning.)	ADDITION	Domigno	Tral (dea)	(kg)	(All Launchos from FCMC unlass otherwise noted)
TIE-A (C)	Dolta (S)	Tan 26	1436 1	42026	20526	20 9	698 5	International Illtraviolet Evolorer to obtain high
1978 0125	Derta (D)	0411 20	1450.1	43030	20000	30.5	0,0,0	resolution data of stars and planets in the ultraviolet
15/10 0124								region of the spectrum Cooperation with FSA
FLISATIONA (S)	Accentaur	Feb 9	1436 5	35807	35774	6.1	1863 3	Provide communications canability for USAF and USN for
1978 0164	(AC=44) (S)		143013	33007	33774	0.1	100515	fleet relay and fleet broadcast Reimburgable
Landsat-C (S)	Delta (S)	Mar 5	103.1	917	897	98.8	900.0	Third Earth Resources Technology Satellite to study Earth'
1978 026A	(/				•••			natural resources: measure water, anricultural fields, and
OSCAR-8 (S)			103.0	908	896	98.9	27.3	mineral deposits. Carried Lewis Research Center Plasma
1978 026B					••••			Interaction Experiment (PIX-I) and AMSAT Oscar Amateur
PIX-I (S)			c	TRRENT EL	EMENTS NOT	A INTA INED	34.0	Radio communications relay satellite.
1978 0260						11111111111111	0.10	
Intelsat IVA F-6	A-Centaur	Mar 31	1437.6	35860	35769	1.7	1515.0	Provide increased telecommunications capacity for (S)
(AC-48) (S)								Intelsat's global network. Reimbursable.
1978 035A								
BSE/Japan (S)	Delta 140	Apr 7	1433.7	37702	33775	4.5	665.0	Japan's Broadcasting Satellite/Experimental for conducting
1978 039A	(S)	•						TV broadcast experiments. Reimbursable.
HOMM/AEM-A (S)	Scout (S)	Apr 26		DOWN	DEC 22, 198	81	134,3	Heat Capacity Mapping Mission to test the feasibility of
1978 041A		-						measuring variations in the Earth's temperatures. (WSMC)
OTS-B (S)	Delta 141	May 11	1436.1	35802	35722	4.1	865.0	Orbital Test Satellite to conduct communications
1978 044A	(S)	-						experiments for ESA. Reimbursable.
Pioneer Venus-A	A-Centaur	May 20		ELEM	ENTS NOT AV	AILABLE	582.0	One of two Pioneer flights to Venus in 1978; was placed
(Orbiter) (S)	(S)							in orbit around Venus for remote sensing and direct
1978 051A								measurements of the planet and its surrounding environment
GOES-C/NOAA (S)	Delta 142	Jun 16	1436.0	35795	35775	4.7	635.0	Part of NOAA's global network of geostationary
1978 062A	(S)							environmental satellites to provide Earth imaging, monito
								the space environment, and relay meteorological data to
L								users. Reimbursable.
Seasat-A (S)	Atlas-F	Jun 26	100.4	779	775	108.0	2300.0	Demonstrate techniques for global monitoring of oceano-
1978 Q64A	(S)							graphic phenomena and features. After 106 days of
1								returning data, contact was lost with the satellite when a
								short circuit drained all power from batteries. (WSMC)
Comstar C (S)	A-Centaur	Jun 29	1451.7	36168	36012	1.7	1516.0	Third domestic communications satellite for Comsat.
1978 Q68A	(AC-41) (S)							Reimbursable.
1								

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARIOS
tl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
OS-B/ESA (S)	Delta 143	Jul 14	1449.1	36066	36016	6.9	575.0	Positioned on magnetic field lines to study magnetosphere
78 071A	(S)							and correlate data with ground station, balloon, and
								sounding rocket measurements. Reimbursable.
oneer/Venus-B	A-Centaur	Aug 8		PROBES I	ANDED DEC 9	, 1978	904.0	Second Pioneer flight to Venus in 1978 to determine nature
ultiprobe) (S)	(AC-51) (S)						and composition of the atmosphere of Venus. All four
78 078A								probes and the bus transmitted scientific data. The large
								probe, north probe, and night probe went dead upon impact,
								but the day probe continued to transmit for 68 minutes
T A 781	B-11- 174	10						after impact.
EE-C (S)	Uelta 144	AUG 12		HELIOC	ENTRIC ORBI	t.	479.0	Monitored characteristics of solar phenomena about 1 hour
10 U/YA	(5)							Defore ISEE-A and B to gain knowledge of now the Sun
								controls the Earth's near space environment. Cooperative
100-N (C)	Atlan-R	Oat 17	101 0	051	0.26	00.0	1405 6	WICH EDA.
208-N (5) 79 0063	AC185-F	000 13	101.6	169	020	33.0	1402.0	iniro generation polar orbiting environmental spacecrait to
10 0304	(3)							provide improved meteorological and environmental data.
nhue C (S)	Delta (S)	Oct 24	104.0	970	025	00 A	007 A	(Nonc)
78 0984	bered (5)	001 24	104.0	370	925	22.4	907.0	experiments in pollution monitoring, oceanous the
MEO			104.0	970	925	99.4		meteorolomy. FGA received and processed data direct.
78 098B			~~	5.0	525			After separation from Nimbus-G. Delta webicle released
								lithium over Northern Scandinavia and barium over Northern
								Alaska as part of Project CAMED (Chemically Active Material
								Ejected in Orbit). (WSMC)
MO-B (S)	A-Centaur	Nov 13		DOWN M	AR 25, 1982		3152.0	Second High Energy Astronomical Observatory; carried large
78 103A	(S)							X-ray telescope to study the high energy universe, pulsars,
								neutron stars, black holes, quasars, radio galaxies, and
								supernovas.
NO ITIC (S)	Delta 146	Nov 18	1436.1	35792	35782	3.2	706.0	Third-generation communications satellite for NATO.
78 106A	(S)							Reimbursable
lesat D (S)	Delta 147	Dec 15	1442.9	36022	35818	1.3	887.2	Fourth domestic communications satellite for Canada.
<u>/8 116A</u>	(S)							Reimbursable.
79								1979
THA (S)	Delta 148	Jan 30	1415.7	42425	28348	5.5	658.6	Spacecraft Charging at High Altitudes (SCATHA) carried 12
'9 007A	(S)							experiments to investigate electrical static discharges
	MAL D	80C	io			_		that affect satellites. USAF Reimbursable.
		HUE	13			-		B-99
	ററ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ	TAL IT	~~					2.00
	JUR U	JALII	T					

		_						
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAME	TERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
SAGE/AEM-2 (S)	Scout (S)	Feb 18		DOWN A	FRIL 11, 1989		127.0	Stratospheric Aerosol and Gas Experiment Applications
1979 013A								Explorer Mission, to map vertical profiles of ozone,
								aerosol, nitrogen dioxide, and Rayleight molecular
								extinction around the globe(WF
FLISATCOM B (S)	A-Centaur	May 4	1436.1	35837	35736	4.7	1876.1	Provide communications capability for USAF and USN for
1979 038A	(AC-47) (S)	_						fleet relay and fleet broadcast. Reimbursable.
UK-6 (S)	Scout	Jun 2		DOWN	SEP 23, 199	0	154.5	Measure ultra-heavy cosmic ray particles and study low-
1979_047A	S-198C (S)							energy cosmic X-rays. UK Reimbursable. (WF
NOAA-6 (S)	Atlas-F (S)	Jun 27	101.0	813	797	98.5	1405.0	To provide continuous coverage of the Earth and provide
1979 057A								high-accuracy worldwide meteorological data. NOAA
								Reimbursable. (WSM
WESTAR C (S)	Delta 149	Aug 9	1436.2	35793	35782	0.0	571.5	Domestic communications satellite for Western Union.
1979 072A	(S)	5						Reimbursable.
HEAO 3 (S)	A-Centaur	Sep 20		DOWN I	EC 7, 1981		2898.5	High Energy Astronomy Observatory carried two cosmic ray
1979 082A	(AC-53) (S)	-						experiments and one gamma ray spectrometer to obtain dat
								on cosmic rays observed across the far reaches of space.
MAGSAT/AEM-3 (S)	Scout (S)	Oct 30		DOWN J	UN 11, 1980		183.0	Magnetic Field Satellite, Applications Explorer Mission
1979 094A					•			to map the magnetic field of the Earth. (WSM
RCA-C (U)	Delta 150	Dec 6	789.0	35495	8314	10.5	895.4	Third RCA domestic communications satellite. Contact lo
1979 101A	(S)							shortly after apogee motor firing. Reimbursable.
1980								19
FLTSATCOM C (S)	A-Centaur	Jan 17	1436.1	35804	35767	4.3	1864.7	Provide communications capability for USAF and USN for
1980 004A	(AC-49) (S)							fleet relay and fleet broadcast. Reimbursable.
SMM-A (S)	Delta 151	Feb 14		DOWN D	DEC 2, 1989		2315.0	Solar Maximum Mission carried seven instruments to study
1980 014A	(S)							solar activity during the maximum of solar flares and
								related phenomena.
NOAA-7 (U)	At las-F (U)	May 29		DOWN	MAY 3, 1981		1405.0	A companion to TIROS N to provide continuous coverage of
1980 043A		-			•			the Earth and provide high-accuracy worldwide
								meteorological data. Launch vehicle malfunctioned; fai
								to place satellite into proper orbit. NOAA Reimbursable
								(WSMC)
GOES D (S)	Delta 152	Sep 9	1436.2	35795	35780	4.1	832.0	Part of NOAA's global network of geostationary 1980 074A
(S)		-						environmental satellites to provide Earth imaging, monit
								the space environment, and relay meteorological data.
								Reimbursable.
B-100								

1 1811

197

٠,

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	AMETERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
TSATCOM D (S)	A-Centaur	Oct 30	1436.2	35811	35765	4.0	1863.8	Provide communications capability for USAF and USN for
80 087A	(AC-52) (S)							fleet relay and fleet broadcast. Reimbursable.
S-A (S)	Delta 153	Nov 15	1436.1	35797	35777	0.7	1057.0	Satellite Business Systems (SBS) to provide fully switched
980 091A	(S)							private networks to businesses, government agencies, and
								other organizations with large, varied communications
								requirements. Reimbursable.
TELSAT V-A F-2	A-Centaur	Dec 6	1436.2	35810	35765	0.0	1928.2	Advanced series of spacecraft to provide increased
	(AC-54) (S)							telecommunications capacity for Intelsat's global network.
A8 098A					<u></u>			Reimbursable.
81								1981
MSTAR D (S)	A-Centaur	Feb 21	1436.2	35794	35784	1.9	1484.0	Fourth domestic communications satellite for Comsat.
81 018A	(AC-42) (S)			<u>.</u>				Reimbursable.
S-1 (S)	Shuttle (S)	Apr 12		LANDED A	IDFRF APR 1	4, 1981		First Manned orbital test flight of the Space
181 034A	(Columbia)							Transportation System with John W. Young and Robert L.
								Crippen to verify the combined performance of the Shuttle
								vehicle. Mission duration 54 hours 20 minutes 32 seconds.
WA-1 (S)	Scout	May 15		ELEM	ents not ava:	ILABLE	166.9	Improved Transit satellite for the Navy's operational
81 044A	S-192C (S)							navigation system. Reimbursable. (WSMC)
ESE (S)	Delta 154	May 22	1436.1	35792	35782	1.2	837.0	Part of NOAA's Geostationary Operational Environmental
81 049A	(5)							Satellite system to provide near continual, high resolution
					00000			visual and infrared imaging over large areas. Reimbursable.
telsat V-B F-1	A-Centaur	May 23	1436.2	35809	35/68	0.0	1928.2	Advanced series of spacecraft to provide increased
	(AC-56) (S)							telecommunications capacity for Intelsat's global network.
81 050A	1.1.2. 8 701		101 0					Reimbursable.
AA-C (S)	At Las-F (S)	Jun 23	101.8	855	835	99.1	1405.0	To provide continuous coverage of the Earth and provide
81 059A								high-accuracy worldwide meteorological data, work
				·				Reimbursable. (WoMC)
namics explorer	Delta (S)	Aug 3						Dual spacecraft to study the Earth's electromagnetic
and B								fields. (WSMC)
BI 070A (S)			410.4	23339	495	89.4	424.0	
BI 070B (S)	A Contain	1.00	1400	26204	FEB 19, 198.	3	420.0	The for IIChE and IICh For
	A-Centaur	Aug 6	1400.0	30284	30222	4.0	1803*8	Provice communications capability for USAF and USA for
DI 0/34	(AC-39) (S)							fier relay and fier proadcast. Reimbursable.
AD	CINAL	DAC						
	NAME OF T	<u>CHia</u>	G{}					P 10
								8.10

OF POOR OUALITY

198

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
SBS-B (S) 1981 096A	Delta 156 (S)	Sep 24	1436.1	35789	35785	0.0	1057.0	Satellite Business Systems (SBS) to provide fully switche private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimburgable.
SME (S)	Delta (S)	Oct 6	94.7	504	502	97.7	437.0	Solar Mesosphere Explorer, an atmospheric-research
1981 100A UOSAT 1 (S) 1981 100B				DOWN OCT	r 13, 1989		52.0	satellite to study reactions between sunlight, ozone, and other chemicals in the atmosphere. Carried UcSat-Oscar 9 (UK) Amateur Radio Satellite as secondary pavload.
STS 2 (S) 1981 111A	Shuttle (S) (Columbia)	Nov 12		LANDED AT	DERF NOV 14,	1981		Second Manned orbital test flight of the Space Transportation System with Joe H. Engle and Richard H. Truly to verify the combined performance of the Shutle vehicle. OSTA-1 payload demonstrated capability to cond scientific research in the attached mode. Mission durat: 54 hours 13 minutes 13 seconds.
RCA-D (S) 1981 114A	Delta 158 (S)	Nov 19	1436.2	35791	35785	0.1	1081.8	Fourth RCA domestic communications satellite. Reimbursable.
Intelsat V F-3 (S) 1981 119A	A-Centaur (AC-55) (S)	Dec 15	1436.3	35809	35771	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network Reimbursable.
1982							·	19
RCA C' (S) 1982 004A	Delta 159 (S)	Jan 16	1436.3	35795	35784	0.1	1081.8	RCA domestic communications satellite. Reimbursable.
Westar IV (S) 1982 014A	Delta 160 (S)	Feb 25	1436.2	35796	35778	0.1	1072.0	Second generation domestic communications satellite for Western Union. Reimbursable.
Intelsat V-D F-4 (S) 1982 017A	A-Centaur (AC-58) (S)	Mar 4	1436.1	35808	35767	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network Reimbursable.
STS 3 (S) 1982 022A	Shuttle (S) (Columbia)	Mar 22		LANDED AT	WHITE SANDS	MAR 30, 1982		Third Manned orbital test flight of the Space Transportation System with Jack R. Lousma and C. Gordon Fullerton to verify the combined performance of the Shut vehicle. OSS-1 scientific experiments conducted from th caroo bay. Mission duration 192 hours 4 minutes 45 secon
Insat 1-A (U) 1982 031A	Delta 161 (S)	Apr 10	1434.2	35936	35562	0.1	1152.1	Multipurpose telecommunications/meteorology spacecraft for India. Reimbursable.
B-102								

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
t1 Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee	Incl (deg)	<u> (kg)</u>	(All Launches from ESMC, unless otherwise noted)
star V (S)	Delta 162	Jun 8	1436.2	35796	35778	0.1	1105.0	Western Union domestic communications satellite.
82 058A	(5)							Reimbursable.
S 4 (S)	Shuttle (S)	Jun 27		LANDED AT	DERF JUL 4,	1982		Fourth and last manned orbital test flight of the Space
82 065A	(Columbia)							Transportation System with Thomas R. (Ken) Mattingly II and
								Henry W. Hartsfield to verify the combined performance of
								the Shuttle vehicle. Carried first operational Getaway
								Special canister for Utah State University and payload DOD
								82-1. Mission duration 169 hours 4 minutes 40 seconds.
ndsat D (5)	Delta 163	JUI 16	98.8	702	698	98.3	1942.0	Earth Resources Technology Satellite to provide continuing
82 072A	(S)							Earth remote sensing data. Instruments included a
								multispectral scanner and thematic mapper. (WSMC)_
lesat G (S)	Delta 164	Aug 25	1436.0	35796	35776	0.0	1238.3	Commercial communications satellite for Canada.
92 082A	<u>(S)</u>							Reimbursable.
telsat V-E F-5	A-Centaur	Sep 28	1436.1	35805	35769	0.1	1928.2	Advanced series of spacecraft to provide increased
)	(AC60) (S)							telecommunications capacity for Intelsat's global network.
82 097A								Carried Maritime Communications Services (MCS) package for
								INMARSAT. Reimbursable.
A-E (S)	Delta 165	Oct 27	1436.2	35791	35784	0.0	1116.3	RCA domestic communications satellite. Reimbursable.
82 105A	(S)							
5 5 (S)	Shuttle (S)	NOV 11		LANDED AT	DFRF NOV 16	, 1982		First operational flight of STS with Vance Brand, Robert
82 110A	(Columbia)							Overmyer, Joseph Allen and William Lenoir. Two satellites
S-C (S)		NOV 11	1436.1	35788	35786	0.0	3344.8	deployed: SBS-C (Commercial Reimbursable) and Telesat-C
82 110B								(Canada Reimbursable). Demonstrated ability to conduct
lesat-E (5)		Nov 12	1436.1	35794	35779	0.0	4443.4	routine space operations. Mission duration 122 hours
82 110C								14 minutes 26 seconds.
83								1983
AS (S)	Delta 166	Jan 25	102.9	905	887	99.1	1075.9	Infrared Astronomical Satellite to make the first all-sky
83 004A	(S)							survey for objects that emit infrared radiation and to
(II (S)			102.4	886	855 .	100.1		provide a catalog of infrared sources and infrared sky
33 004B								maps. Lewis Research Center Plasma Interaction Experiment
								(PIX), to investigate interactions between high voltage
								systems and space environment, activated by Delta after
								IRAS separation. Cooperative with the Netherlands.
 0ii	GINAL	-PAC)E IS					
05	DOOD	<i><u><u></u></u></i>	1 1377					D-100
	ruuk	VUP	LIIY					

198

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NQAA-8 (S) 1983 022A	Atlas-E (S) Mar 28	101.2	825.5	805	98.6	1712.0	Advanced Tircs-N spacecraft to provide continuous coverag of the Earth and provide high-accuracy worldwide meteorological data, NQAA Reimburgable. (WSW
STS 6 (S)	Shuttle (S	Apr 4		LANDED AT	DFRF AFR 9.	1983		Second operational flight of the STS with Paul Weitz, Kar
1983 026A	(Challenge	r)						Bobko, Donald Peterson, and Story Musgrave. Deployed
TURS-A (S)		Apr 4	1436.3	35804	35776	2.3	17014.0	Tracking and Data Relay Satellite (TDRS) to provide
1983 026B								improved tracking and data acquisition services to spacecraft in low Earth orbit; performed EVA. Mission duration 120 hours 23 minutes 42 seconds.
RCAF(S)	Delta 167	Apr 11	1436.1	35790	35781	0.1	1116.3	RCA domestic communications satellite. Reimbursable.
1983 030A	<u>(S)</u>							
GOES 6 (S) 1983 041A	Delta (S)	Apr 28	1436.4	35891	35776	0.1	838.0	Part of NOAA's Geostationary Operational Environmental Satellite system to provide near continual, high resoluti visual and infrared imaging over large areas. Reimbursable.
Intelsat V-F F-6 (S) 1983 047A	A-Centaur (AC-61) (S	May 19)	1436.2	35810	35765	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network Carried Maritime Communications Services (MCS) package for INWARSAT. Reimbursable.
EXOSAT (S) 1983 051A	Delta 169 (S)	May 26		DOWN	MAY 6, 1986		500.0	ESA X-ray satellite to provide continuous observations of X-ray sources. Reimbursable. (WSM
STS 7 (S) 1983 059A	Shuttle (S (Challenge) Jun 18 r)		LANDED AT	DFRF JUN 24	, 1983		Third operational flight of STS with Robert L. Crippen, Frederick H. Hauck, John M. Fabian, Sally K. Ride (first
Telesat-F (S) 1983 059B		Jun 18	1436.0	35791	35782	0.0	4443.4	woman astronaut), and Norman E. Thagard. Deployed two communications satellites. Telesat (Canada-Reimbursable
Palapa-B-1 (S) 1983 059C		Jun 18	1436.1	35788	35783	0.0	4521.5	and Palapa (Indonesia - Reimbursable). Carried out experiments including launching and recovering SPAS 01
SPAS-01 (S) 1983 059F		Jun 18		RETRIE	VED JUN 24,	1983		(FRG). Mission duration 146 hours 23 minutes 59 seconds
AF P83-1 (S) 1983 063A	Scout S-205 (S)	Jun 27	100.9	834	765	82.0	112.6	Air Force HIAT satellite to evaluate propagation effects of disturbed plasmas on radar and communication systems. Reimbursable. (NSM
Galaxy 1 (S) 1983 065A	Delta 170 (S)	Jun 28	1436.2	35797	35782	0.0	519.0	Hughes Communications, Inc. communications satellite. Reimbursable.
B-104								

dia Ny In

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT O	RBITAL PARA	METERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	- (kg)	(All Launches from ESMC, unless otherwise noted)
lstar 3A (S) 83 077A	Delta 171 (S)	Jul 28	1436.1	35796	35778	0.0	635.0	AT&T communications satellite. Reimbursable.
S8(S)	Shuttle (S)	Aug 30	I	ANDED AT I	WRF SEP 5,	1983		Fourth operational flight of STS with Richard H.
83 089A	(Challenger	c)						Truly, Daniel C. Brandenstein, Dale A. Gardner, Guion S.
SAT-B (S)	_	Aug 31	1436.2	35819	35755	0.1	3391.0	Bluford (first black astronaut), and William E. Thornton.
83 089B								First night launch and landing. Deployed satellite, INSAT
								(India-Reimbursable), performed tests and experiments.
								Mission duration 145 hours 8 minutes 43 seconds.
AG(S)	Delta 172	Sep 8	1436.2	35797	35778	0.0	1121.3	RCA domestic communications satellite. Reimbursable.
83 094A	(S <u>)</u>							
laxy 2 (S)	Delta 173	Sep 22	1436.2	35799	35782	0.0	579.0	Hughes Communications Satellite. Reimbursable.
83 098A	(<u>s</u>)							
S-9 (S)	Shuttle (S) Nov 28	1	ANDED AT I	DFRF DEC 8,	1983		Fifth operational flight of STS with John W. Young,
acelab-1	(Columbia)							Brewster W. Shaw, Jr., Owen K. Garriott, Robert A. R.
83 116A								Parker, Byron K. Lichtenberg, and Ulf Merbold (ESA).
								Spacelab-1, a multidiscipline science payload, carried in
								Shuttle Cargo Bay. Cooperative with ESA. Mission Duration
								247 hours 47 minutes 24 seconds.
84								1984
S 41-B (S)	Shuttle (S)	Feb 3		ANDED AT 1	SC FEB 11,	1984		Fourth Challenger flight with Vance D. Brand, Robert L.
84 011A	(Challenger	c)						Gibson, Bruce McCandless, Ronald E. McNair and Robert L.
STAR 6 (U)		Feb 3	RET	RIEVED NO	DV 16, 198	34 (51-A)	3309.0	Stewart. Deployed WESTAR (Western Union-Reimbursable), and
84 011B								Palapa B-2 (Indonesia-Reimbursable). Both PAM's failed;
T (S)		Feb 3		DOWN FI	28 11, 1984		234.0	both satellites retrieved on 51-A mission. Rendezvous
84 011C								tests performed with IRT, using deflated target. Evaluated
lapa B-2 (U)		Feb 6	RET	RIEVED NO)V∙16, 198	14 (51–A)	3419.0	Manned Maneuvering Unit (MMU) and Manipulator Foot
84 011D								Restraint (MFR). First STS landing at KSC. Mission
								duration 191 hours 15 minutes 55 seconds.
NDGAT 5 (S)	Delta 174	Mar 1	98.8	702	697	98.2	1947.0	Earth resources technology satellite to provide continuing
84 021A	(S)							Earth remote sensing data. Instruments included a
SAT (S)			98.4	691	674	98.1	52.0	multispectral scanner and thematic mapper. UoSAT sponsored
B4 021B								by AMSAT. NOAA Reimbursable. (WSMC)
								-

198

: '

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METTERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 41-C (S)	Shuttle (S)) Apr 6		LANDED AT	DFRF AFR 13,	1984		Fifth Challenger flight with Robert L. Crippen, Frances R
1984 034A	(Challenger	c)						Scobee, Terry J. Hart, George D. Nelson and James D. Van
LDEP (S)		Apr 6	RET	RIEVED JA	N 20, 1990	(STS-32)	9670.0	Hoften. LDEF deployed; SMM retrieved and repaired in Car
1984 034B		-						Bay, redeployed Apr 12. Mission duration 167:40:07 .
Intelsat V-G F-9	A-Centaur	Jun 9		DOWN O	CT 24, 1984		1928.2	Advanced series of spacecraft to provide increased
(U)	(AC-62) (U))			-			telecommunications capacity for Intelsat's global network
1984 057A								Carried Maritime Communications Services (MCS) package for
								INMARSAT. Vehicle failed to place satellite in useful
								orbit. Reimbursable.
AMPTE	Delta (S)	Aug 16						Three active magnetospheric particle tracer explorers:
CCE (S)			939.4	49817	974	3.8	242.0	Charge Composition Explorer (CCE) provided by The U.S.: I
1984 088A								Release Module (IRM) provided by The Federal Republic of
TRM (S)			2653.4	113818	402	27.0	605.0	Cermany (FOR): and United Kingdom: Subsatellite (UKS)
1984 088B			205514	115010		2/10	00510	provided by The United Kingdom: to study the transfer
								of mass from the solar wind to the magnetosphere
1984 0880			2659.6	113417	1002	26.9	77.0	International Cooperative.
STS 41-D (S)	Shuttle (S)	Aur 30		TANDED AT	FAPR SPD 5	1984		First Discovery flight with Henry W Hartsfield, Michael
1984 0934	(Discovery))		Gradeo ni	and our of			Coate Richard M. Mullane, Steven & Rawley Judith &.
SBS-A (S)	(Discovery)	A 100 31	1436 1	35703	35781	0.0	3344 0	Posnik and Charles D Walker Denloyed SBS (Commercial-
1984 0938		nug 51	1450.1	35/95	55/01	v.v	3344.0	Reimburgshle) [FASAT (Commercial Reimburgshle) and Talst
SUDCOM TV-2 (S)		Aur 31	1436 0	35788	35782	0.7	6899 0	(ATET-Reimburgable), carried out experiments including
1984 0930		nug Ji	143010	35700	33702	0.7	0009.0	OAST-1 colar array structural testing. Mission duration
Taletar 3-C (S)		Son 1	1426 1	25701	25792	0.0	3402 0	144 hours 56 minutes A seconds
1984 093D		Sep 1	1430.1	33/31	33702	0.0	5402.0	144 nours 50 minutes 4 seconds.
Galary C (S)	Dolta 176	Sen 21	1436 2	25702	35783	0.0	519.0	Hughes Communication, Inc., Communications Satellite.
1984 1014	(c)	965 FI	1430.2	33132	33703	v. v	515.0	Reinburgable
STS 41-G (S)	Shuttle (S)	Oct 5		LANDED AT	RSC OCT 13.	1984		Sixth Challenger flight with Robert L. Crippen, Jon A.
1984 1088	(Challenger	,			100 001 157	1901		McBwide Kathrun D. Sullivan Sally K. Ride, David C.
	(Gianeiger		06.0	607	500	57.0	2440.0	Locates Daul D. Caulty-Daway and Marc Carnosu (Canada)
1094 1099		001 5	90.0	007	333	57.0	2447.0	Deplement FURS to provide clobal manufacture of the Sun's
1904 1005								adiation reflected and absorbed by Farth, performed
								radiation reflected and absorbed by sarch; performed
								Sciencific experiments using USIA-5 and Other instruments
THE THE ICA	- Chanat	Oct 11	100.0	1000	- 1140	00.0	193 9	Mission duration 197 His 23 min 33 Bec
1004 1105	SCOUT	002 11	108.9	1200	1149	90.0	1/3./	Improved transit wavigation Satellite for U.S. Navy.
1704 IIUA	5-2080 (5)			_				Kenindissore. (WSR
B-106								

IISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
ntl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
TS 51-A (S)	Shuttle (S)	Nov 8		LANDED AT	KSC NOV 16,	1984		Second Discovery flight with Frederick H. Hauck, David M.
984 113A	(Discovery)	1						Walker, Joseph P. Allen, Anna L. Fisher, Dale A. Gardner.
elesat-H (S)		Nov 9	1436.1	35795	35788	0.0	3420.0	Deployed Telesat (Canada-Reimbursable) and Syncom
984 113B								IV-1 (Hughes-Reimbursable). Retrieved and returned Palapa
yncom IV-1 (S)		Nov 10	1436.0	35890	35679	0.9	6889.0	B-2 and Westar 6 (Launched on 41-B). Mission duration
984 113C								191 hours 44 minutes 56 seconds.
ATO III-D (S)	Delta 177	Nov 13	1436.1	35788	35783	3.2	761.0	Fourth in a series of communication satellites for NATO.
984 115A	(S)							Reimbursable.
QAA-9 (S)	Atlas-E (S)	Dec 12	102.2	863	839	99.1	1712.0	Advanced TIROS-N spacecraft to provide continuous coverage
984 123A								of the Earth and provide high-accuracy worldwide
					-			meteorological data, NOAA. Reimbursable. (WSMC)
985								1985
TS 51-C (S)	Shuttle (S)	Jan 24	_	LANDED AT	r KSC JAN 27	, 1984		Third Discovery flight with Thomas K. Mattingly, Loren J.
985 010A	(Discovery)	ł						Shriver, Ellison S. Onizuka, James F. Buchli, and Gary E.
00 (S)				ELEME	INTS NOT AVA	ILABLE		Payton. Unannounced payload for DOD. (Reimbursable).
985 010B								Mission duration 73 hours 33 minutes 23 seconds
ntelsat V-A F-10	A-Centaur	Mar 22	1436.1	35807	35768	0.0	1996.7	First in a series of improved Commercial Communication
S)	(AC-36) (S)							Satellites for Intelsat. Reimbursable.
985 025A								
IS 51-D (S)	Shuttle (S)	Apr 12		LANDED AT	KSC APR 19	, 1985		Fourth Discovery flight with Karol J. Bobko, Donald F.
985 O28A	(Discovery)							Williams, M. Rhea Seddon, S. David Griggs, Jeffrey A.
∋lesat−I (S)	•	Apr 13	1436.0	35796	35777	0.3	3350.0	Hoffman, Charles D. Walker, and E.J. "Jake" Garn (U.S.
985 028B								Senator). Deployed Syncom (Hughes-Reimbursable) and
yncom IV-3 (S)		Apr 12	1436.2	35809	35768	1.4	6889.0	Telesat (Canada-Reimbursable). Syncom Sequencer failed to
985 028C		-						start, despite attempts by crew; remained inoperable until
								restarted by crew of 51-I. Mission duration 167 hrs 54 min.
IS 51-B (S)	Shuttle (S)	Apr 29		LANDED AT	DFRF MAY 6	, 1985		Sixth Challenger flight with Robert F. Overmyer, Frederick
pacelab-3	(Challenger)				•		D. Gregory, Don Lind, Norman E. Thagard, William E.
385 034A								Thornton, Lodewijk Vanderberg, and Taylor Wang. Spacelab-3
ISAT (S)				DOWN	DEC 15. 19	86	47.6	mission to conduct applications, science, and technology
185 034B								experiments. Deployed Northern Utah Satellite (NUSAT).
								Global Low Orbiting Message Relay Satellite (GLOWR) failed
								to deploy and was returned. Mission duration 167 hours
ABIA		38 AF						55 minutes 23 seconds
URIC	MINAL I	<u>"AGE</u>						
No. of Concession, Name								B 10

OF POOR QUALITY

B-107

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
STS 51-G (S)	Shuttle (S)	Jun 17	(mins.	LANDED A	T FAFE TIN	24, 1985	<u> (kg)</u>	Fifth Discovery flight with Daniel C. Brandenstein, John
1985 048A	(Discovery)	04.1 17				,		Creighton, Shannon W. Lucid, John M. Fabian, Steven R.
MORELOS-A (S)		Jun 17	1436.2	35793	35782	0.0	3443.0	Nagel, Patrick Baudry (France), and Prince Sultan Salman
1985 048B								Al-Saud (Saudi Arabia). Deployed MORELOS (Mexico -
ARABSAT-A (S)		Jun 18	1436.2	35807	35768	0.0	3499.0	Reimbursable), ARABSAT (ASCO-Reimbursable) and TELSTAR
1985 048C								(AT&T-Reimbursable). Deployed and retrieved SPARTAN 1.
TELSTAR 3-D (S)		Jun 19	1436.1	35804	35770	0.0	3437.0	Mission duration 168 hours 08 minutes 46 seconds
1985 0480								
SPARTAN I (S)		Jun 20		RETRI	EVED JUN 24	, 1985	2051.0	
Inteleat VA F-11	A.Contour	7	1426 1	26002			1000 7	Constant I and improved Compared all Compared and land
(S)	(AC=64) (S)	Jun 29	1430+1	35802	35/72	0.0	1990./	Second in a series of improved commercial communications
1985 055A	(AC-04) (3)							Saterifies for intersat. Kelibursable.
STS 51-F (S)	Shuttle (S)	Jul 29		LANDED AT	FAFE MIC 6	1985		Seventh Challenger flight with Charles G. Fullerton, Roy
Space Lab-2	(Challenger	•)				/		Bridges, Jr., Karl G. Heinze, Anthony W. England, F. Sto
1985 063A	·	•						Musgrave, Loren W. Acton, and John-David F. Bartow.
PDP (S)				RETRI	EVED JUL 29	, 1985		Conducted experiments in Spacelab-2. Deployed Plasma
1985 063B								Diagnostic Package (PDP) which was retrieved 6 hours late
								Mission duration 190 hours 45 minutes 26 seconds.
Navy SOOS-I	Scout	Aug 2						Two Navigation Satellites for U.S. Navy. Reimbursable.
1985 066A (S)	S-209C (S)		107.9	1257	1002	89.9	64.2	(WSMC)
1985 066B (S)			107.9	1258	1002	89.9	64.2	
515 51-1 (5)	Shuttle (S)	Aug 27		LANDED AT	EAFB SEP 3	, 1985		Sixth Discovery flight with Joe H. Engle, Richard O. Cow
1965 0/6A	(Discovery)		1426 0	25704				James D. VanHoften, William F. Fisher, John M. Lounge.
1085 0769		Aug 2/	1436.2	35/94	35/81	0.0	3445.5	Deployed Aussat (Australia-Reimbursable), ASC (American
1903 070B		No. 27	1476 1	25706	26333	<u> </u>	2406.3	Satellite Co Keimbursable), and Syncon IV-4 (Hugnes =
1985 0760		Aug 27	1430.1	32/96	35/1/	0.1	3406.1	Reimpursable). After reaching Geosynchronous Orbit,
Syncom TV-4 (II)		Aug 20	1476 1	26402	25070	1.4	6904 7	(Invested by El-D) Mission duration 170 hours
1985 076D		huy 25	1450.1	30493	33079	1.4	0054.7	17 minutes 42 seconds
Intelsat VA F-12	A-Centaur	Sep 28	1436.1	35802	35772	0.0	1996.7	Third in a series of improved connercial Communications
(S)	(AC-65) (S)	00p =0			33172	••••	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Satellites for Intelsat. Reimbursable.
1985 087A	,, (-,							
1								
L								

198

a the the state of the state of

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	CRBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
	Shuttle (6)	Oct 3	[(mina.)	LANDED A	T FARB OCT 7	1985	(Kg)	First Atlantic flight with Karol J Bobko Ronald L Grabe
a 21-0 (3)	(Atlentic)	UCL 5		LANDED A		, 1905		Pohert & Charmet David C Wilmong and William & Dailage
85 0928	(ACIAICIS)							DOD mission Mission duration 97 hrs 14 min 38 sec.
S 61-A (S)	Shuttle (S)	Oct 30		LANDED A	F FAFB NOV 6	1985		Fighth Challenger flight with Henry W. Hartsfield, Steven
acelah D~l	(Challenger))				, 1902		R Nacel Bonnie J Dunbar James F. Buchli, Guion S.
85 104A	(charachiger)	,						Bluford Front Messerschmid (Cermany), Reinhard Furrer
OMR (S)				DOWN	DEC 26, 198	6	267.6	(Cermany), and Wibbo Ockels (Ditch), Spacelab D-1 mission
85 104B						•	20710	to conduct scientific experiments. Denloyed GLOMR.
								Carried Materials Experiment Assembly (MEA) for on-orbit
								processing of materials science experiment specimens.
								Mission duration 168 hours 44 minutes 51 seconds.
S 61-B (S)	Shuttle (S)	Nov 26		LANDED A	T EAFB DEC 3	, 1985		Second Atlantis Flight with Brewster H. Shaw, Bryan D.
85 109A	(Atlantis)							O'Conner, Mary L. Cleave, Sherwood C. Spring, Jerry L.
RELOS-B (S)		Nov 27	1436.1	35794	35780	1.1	4539.6	Ross, Rudolfo Neri Vela (MORELOS), Charles D. Walker
85 1098								(MDAC). Deployed MORELOS (Mexico-Reimbursable), Aussat
ssat-2 (S)		Nov 27	1436.2	35794	35780	0.0	4569.1	(Australia-Reimbursable), and Satcom (RCA-Reimbursable).
85 109C								Demonstrated construction in space by manually assembling
tcan (S)		Nov 28	1436.2	35796	35781	0.0	7225.3	EASE and ACCESS Experiments. Deployed Station Reeping
85 109D								Target (OEX) to conduct advanced Station Keeping Tests.
X Target								Mission duration 165 hours 4 minutes 49 seconds.
85 109£			DOM	MAR 2,	1987			
-16	Scout	Dec 12						Air Force instrumented test vehicle. (Dual Payload)
85 114A (S)	S-207C (S)		94.6	691	311	37.1		Reimbursable. (WFF)
85 114B (S)			DOW	AUG 9,	1987			
56	Ch. 11 701			C BANDON BA	0.000 THE 1	- 1002		1966
5 61-0 (5)	Snuttle (S)	Jan 12		LANDED A	LEAPB JAN I	8, 1980		Seventh Columbia flight with Robert L. Gibson, Charles F.
30 UU3A	(Columbia)	* 10	1426.2	25705	36700		7005 0	Bolden, Jr., Franklin R. Chang-Diaz, George D. Nelson,
		Jan 12	1430.2	33/93	35780	0.0	1225.3	Steven A. Hawley, Robert J. Cenker (RCA), and C. William
36 UU3B								Nelson (Congressman), Deployed SATCUM (RCA-Keinbursable).
								Evaluated material science lab payload carrier and
								processing facilities. Carried AHG-1 to accommodate GAS
			OF I	~				payloads. Mission duration 146 nours 3 minutes 31 seconds
C	JRIGINA	LPF	IGE IS	>				
				,				
)F F001	t Qt			· · · · · · · · · · · · · · · · · · ·			B-10
-								

		_						
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Inti Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	[Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
S15 51-L (U)	Shuttle (U	Jan 28		DID N	OF ACHIEVE	ORBIT	2202.2	Ninth Challenger flight with Francis R. Scopee, Michael J
(1RS-8)(0)	(Challenge)	c)					2103.3	Smith, Judith A. Resnik, Ellison S. Onizuka, Ronald E.
								McNair, Gregory Jarvis (Hughes) S. Christa McAulitte
								(Teacher). Approximately 73 seconds into flight, the
2000 0 700								Shuttle exploded.
GOES-G (U)	Delta (U)	May 5		DID N	OF ACHIEVE	ORBIT	840.0	Provide systematic worldwide weather coverage for NOAA.
	-		· · · · · · · · · · · · · · · · · · ·					Vehicle failed. Reimbursable.
	Deita (U)	sep 5		DOWN	SEP 28, 198	0		Carried DOD experiment. Reimbursable
1986 069A							1	
NUAA-G (S)	At las-E (S)	sep 1/	101.2	823	804	98.7	1712.00	Operational environmental satellite for NDAA. Included
1986 073A								ERBE instrument to complement data being acquired by ERBS
								launched in 1984. Carried search and rescue instruments
								provided by Canada and France. Reimbursable. (WSMC
AF P8/-11 (S)	Scout (S)	NOV 13	104.9	1018	957	89.5		Scientific satellite to study atmospheric effects on
Polar Bear	S-199							electromagnetic propagation. USAF Reimbursable. (WSMC
1986 088A								
FLISATCOM (F-7)	A-Centaur	Dec 4	1436.2	35875	35703	4.3	1128.5	Provide communications between aircraft ships, and ground
(S)	(AC-66) (S)						stations for DOD. Reimbursable.
1986 096A								······································
1987						<u> </u>		198
GOES-H (S)	Delta 179	Feb 26	1436.3	35796	35/83	0.1	840.0	Operational environmental satellite to provide systematic
1987 022A	<u>(S)</u>							worldwide weather coverage. NOAA Reimbursable.
PALAPA B2-P	Delta 180	Mar 20	1436.2	35788	35788	0.0	652.0	Provide communication coverage over Indonesia and the
1987 029A							1000 0	Asian countries. Reimbursable.
FLISATUM (F-6)	A-Centaur	Mar 26		DID N	OL VOLLEAS	ORBIT	1038.7	Part of worldwide communications system between aircraft,
(0)	67 (U)							ships, and ground stations for DOD. Telemetry lost short
								after launch; destruct signal sent at 70.7 seconds into
								flight. An electrical transient, caused by lighting stri
								on launch vehicle, most probable cause of loss.
								Reimbursable.
S005-2	Scout (S)	Sep 16						Two transit navigation satellites in a stacked configura-
1987 080A (S)	S204C		107.2	1175	1017	90.3	64.5	tion for the U.S. Navy. Reimbursable. (WSMC)
1987 080B (S)			107.2	1181	1014	90.3	64.5	
B-110			- ,					
-								

B-110

SSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	RAMETERS (km)	WEIGHT	REMARKS
tl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
88								1988
D (SDI) (S) 88 008a	Delta 181 (S)	Feb 8	90.1	333	223	28.6		Strategic Defense Initiative Organization (SDIO) Payload. Reimbursable.
n Marco D/L(S)	Scout (S)	Mar 25		DOWN	DEC 6, 1	988	273	Explore the relationship between solar activity and
38 026A	S-206C							meteorological phenomena. Cooperative with Italy. (San Marco)
06-3	Scout (S)	Apr 25					129.6	Two Transit navigation satellites in a stacked configura-
38 033A (S) 38 033B(S)	S-211C							tion for the U.S. Navy. Reimbursable (WSMC)
/a II	Scout (S)	Jun 16					170.5	Improved Transit Navigation Satellite for the U.S. Navy.
38 052A	S-213C							Reimbursable. (WSMC)
xs-4	Scout (S)	Aug 25					128.2	Two Transit navigation satellites in a stacked configura-
38 074A (S)	S-214C							tion for the U.S. Navy. Reimbursable (WSMC)
38 074B (S)	·							
AHI (S),	Atlas-E (S)	Sep 24	_				1712.0	Operational environmental satellite for NOAA. Carried
38 089A								Search and Rescue instruments provided by Canada and
/								France. Reimbursable. (WSMC)
5-26 (S)	Shuttle (S)	Sep 29		LANDED A	г еагв ост	3, 1988		Sixth Discovery flight with Frederick H. Hauck, Richard O.
38 091A	(Discovery)							Covey, John M. Lounge, David C. Hilmers, and George D.
85-3 (S)		Sep 29	1434.8	35803	35719	0.1	2224.9	Nelson. Deployed TDRS-3. Performed experiment activities
38 091B				-				for commercial and scientific middeck experiments. Mission Duration 97 hours 00 minutes 11 seconds
5-27	Shuttle (S)	Dec 2		LANDED A	LEALB DEC	6, 1988		Third Atlantis flight with Robert L. Gibson, Guy S.
38 106A	(Atlantis)							Gardner, Richard M. Mullane, Jerry L. Ross and William M.
)								Shepherd. DOD Mission. Mission Duration 105 hours:
8 106B			_					05 minutes 37 seconds
9								1989
-29	Shuttle (S)	Mar 13		LANDED A	CEAFB MAR	18, 1989		Eighth Discovery flight with Michael L. Coats, John E.
9 021A	(Discovery)							Blaha, James Bagian, James F. Buchli, Robert Springer.
S-D			1436,1	35808	35768	0.0	2224	Deployed a new Tracking and Data Relay Satellite.
9 021B			-			-		Performed commercial and scientific experiments. Mission
								Duration 119 hours 38 minutes 52 seconds
		DAC						
- Oh	IGINAL	- PA(SI JK					
		_						

OF POOR QUALITY

MISSION/ INTL DESIG	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins)	CURRENT OF	RBITAL PARA Perigee	METERS (km) Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise not
STS-30 1989 33A Magellan 1989 33B	Shuttle (S) (Atlantis)	May 4	4	LANDED	AT EAFB MA	Y 8, 1989 JECTORY		Fourth Atlantis flight with David M. Walker, Ronald J. Grabe, Mary L. Cleve, Mark C. Lee, Norman E. Thagard. Deployed the Magellan spacecraft on a mission toward Venus. Perform commercial and scientific middeck experiments. Mission Duration: 96 hrs 56 mins 25 secs.
STS-28 1989 61A	Shuttle (S) (Columbia)	Aug 8		LANDED	AT EAFB AUG	G 13, 1989		Ninth Columbia flight with Brewster H. Shaw, Richard N. Richards, David C. Leetsma, James C Adamson, Mark N. Brown. DOD Mission. Mission Duration: 121 hours 00 minutes 09 seconds.
FLTSATCOM 1989 77A	Atlas/ Centaur (S)	Sep 25	1436.2	35898	35677	4.1	1863	Navy Communications satellite to provide communications between aircraft, ships and ground stations for DOD.
STS-34 1989 84A Galileo 1989 84B	Shuttle (S) (Atlantis)	Oct 18		LANDED ELEMI	AT EAFB OC	T 23, 1989 VAILABLE		Fifth Atlantis flight with Donald E. Williams, Michael J. McCulley, Ellen Baker, Shannon N. Lucid and Franklin Chang-Diaz. Deployed the Galileo spacecraft on a mission toward Jupiter Performed experiment activities for commercial and scientific middeck experiments. Mission Duration: 119 hours 39 minutes 24 seconds.
COBE 1989 89A	Delta 2 (S)	Nov 18	102.6	889	877	99.0	2206	Cosmic Background Explorer spacecraft to provid the most comprehensive observations to date of the radiative content of the universe.
STS-33 1989 90A DOD 1989 90B	Shuttle (S) (Discovery)	Nov 23		LANDED ELEMI	AT EAFB NO ENTS NOT AV	V 28, 1989 /AILABLE		Ninth Discovery flight with Frederick Gregory, John E. Blaha, Manly L. Carter, Franklin S. Musgrave and Kathryn C. Thorton. DOD Mission. Mission Duration: 120 hours 6 minutes 49 seconds.
B-112								

£

SSION/	LAUNCH VEHICLE	LAUNCH	PERIOD (Mins)		ORBITAL PARA Perigee	METERS (km) Incl (deg)	WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
S-32 90 2A NCOM IV-5 90 2B	Shuttle (S) (Columbia)	Jan 9	1436,1	LANDED 35799	AT EAFB JAN 35744	20, 1990 3.0	6953.46	Tenth Columbia flight with Daniel C. Brandenstein, James D. Wetherbee, Bonnie J. Dunbar, Marsha S. Ivins and G. David Low. Deployed SYNCOM IV-5, a geostationary
								communications satellite also known as LEASAT, for the U.S. Navy. Also retrieved the Long Duration Exposure Facility (LDEF) deployed on STS-41C Apr 6, 1984. Mission Duration: 261 hours 37 seconds.
S-36 90 19A D	Shuttle (S) (Atlantis)	Feb 28		LANDEI) AT EAFB MAH MENTS NOT AVA	R 4, 1990 AILABLE		Sixth Atlantis flight with John D. Creighton, John H. Casper, David C. Hilmers, Richard M. Mullane and Pierre J. Thuot. DOD Mission.
GSAT 990 28A	Pegasus (S) (Orb Sci)	Apr 5	95.6	645	453	94.1		A 50-foot rocket (Pegasus), dropped from the wing of a B-52 aircraft flying over the Pacific Ocean, launched the PEGSAT satellite in the first demonstration flight of the Pegasus launch vehicle. The PEGSAT science investigations are part of the Combined Release and Radiation Effects Satellite (CRRES), a joint NASA/DOD program.
S-31 90 37А Т 90 37В	Shuttle (S) (Discovery)	Apr 24	97.0	LANDED 619	AT EAFB APR 610	29, 1990 28.5	11355.4	Tenth Discovery flight with Loren J. Shriver, Charles F. Bolden, Bruce McCandless, Steven A. Hawley, Kathryn D. Sullivan. Deployed the Edwin P. Hubble Space Telescope (HST) astronomical observatory. Designed to operate above the Earth's turbulent and obscuring atmosphere, HST will observe celestial objects at ultraviolet, visible and near-infrared wavelengths. Joint NASA/ESA mission. Mission Duration: 121 hours 16 minutes 05 seconds.
CSAT 90 43A/B	Scout M-1 (S)	May 9	98.5 PAGE	765 IS	605	3.0	89.9	Two Multiple Access Communications Satellites (MACSATs) to provide global store-and-forward message relay capability for DOD Users. (VAFB)
	OF P	OOR	OUAL	ITY				B-113

199

.

· · · · ·

MISSION/ INTL DESIG	LAUNCH VEHICLE	LAUNCH DATE	PERIOD (Mins)	CURRENT Apogee	ORBITAL PAR	AMETERS (km Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise note
ROSAT 1990 49A	Delta 2 (S) (MacDac)	Jun 1	96.1	578	560	53.0	2421.18	Roentgen Satellite (ROSAT), an Explorer class scientific satellite configured to accommodate large x-ray telescope, to study x-ray emissions from non-solar celestial objects. Internationa cooperative program.
CRRES 1990 65A	Atlas/ Centaur (S)	Jul 25	591.0	33575	323	18.2		Combined Release and Radiation Effects Satellit (CRRES) which uses chemical releases to study the Earth's magnetic fields and the plasmas, or ionized gases, that travel through them. Joint NASA/DOD program.
STS-41 1990 90A Ulysses 1990 90B	Shuttle (S) (Discovery)	Oct 6		LANDED HE	AT EAFB OCT	10, 1990 DRBIT	20079.51	Eleventh Discovery flight with Richard N. Richards, Robert D. Cabana, Bruce E. Melnick, William M. Shepard and Thomas D. Akers. Deployed the Ulysses spacecraft, a joint NASA/ESA mission to study the poles of the Sun and interplanetary space above and below the poles. Mission Duration: 98 hours 11 minutes.
STS-38 1990 97A DOD 1990 97B	Shuttle (S) (Atlantis)	Nov 15		LANDED	AT KSC NOV	20, 1990 Ailable		Seventh Atlantis flight with Richard O. Covey, Robert C. Springer, Carl J. Meade, Frank L. Culbertson and Charles D. Gemar. DOD Mission. Mission Duration: 117 hours 55 minutes.
STS-35 1990 106A	Shuttle (S) (Columbia)	Dec 2		LANDED	AT EAFB DEC	11, 1990		Eleventh Columbia flight with Vance D. Brand, John M. Lounge, Jeffrey A. Hoffman, Robert A. Parker, Guy S. Gardner, Ronald A. Parise and Samuel T. Durrance. Carried Astro-1, a Space Shutle attached payload to acquire high priority astrophysical data on a variety of celestial objects. Mission Duration: 215 hour 6 minutes.

Section C

 $^{\circ}$

Procurement, Funding and Manpower

J.S. Geographical Distribution of NASA Prime Contract Awards *

* Excludes smaller procurements, generally those of \$25,000 or less; also excludes awards placed through other Government agencies, awards outside the U.S., and awards on the JPL contracts.

NASA Contract Awards By State

(FY 1990) STATE	TOTAL (THOUSANDS)	BUSINESS (THOUSANDS)	EDUCATIONAL & NONPROFIT (THOUSANDS)	STATE	TOTAL (THOUSANDS)	BUSINESS (THOUSANDS)	EDUCATION & NONPROF (THOUSAND
Alabama	1,121,914	1,101,162	20,752	Nevada	976	729	24
Alaska	7,702	21	7,681	New Hampshire	12,517	3,218	9,2
Arizona	28,028	6,543	21,485	New Jersey	186,176	181,017	5,19
Arkansas	197	15	182	New Mexico	54,456	47,996	6,4
California	3,147,758	2,994,879	152,879	New York	77,776	52,128	25,6
Colorado	235,470	217,749	17,721	North Carolina	12,206	2,405	9,8
Connecticut	67,116	64,906	2,210	North Dakota	62		
Delaware	2,216	513	1,703	Ohio	214,031	186,394	27,6
District of Columbia	81,666	56,491	25,175	Oklahoma	4,041	531	3,5
Florida	1,340,936	1,331,263	9,673	Oregon	5,128	2,505	2,6
Georgia	16,653	10,807	5,846	Pennsylvania	228,605	214,149	14,4
Hawaii	7,204	324	6,880	Rhode Island	3,018	606	2,4
Idaho	1,717		1,717	South Carolina	1,202	207	9
Illinois	25,226	13,085	12,141	South Dakota	432	85	3
Indiana	19,455	14,729	4,726	Tennessee	29,535	23,203	6,3
lowa	5,187	327	4,860	Texas	1,250,982	1,175,035	75,9
Kansas	8,727	7,497	1,230	Utah	509,201	507,139	2,0
Kentucky	2,493	1,444	1,049	Vermont	480	364	1
Louisiana	359,370	358,130	1,240	Virginia	371,805	338,219	33,5
Maine	673	45	628	Washington	68,013	60,426	7,5
Maryland	802,463	740,078	62,385	West Virginia	1,526	144	1,3
Massachusetts	96,398	26,302	70,096	Wisconsin	40,200	26,993	13,2
Michigan	24,234	8,964	15,270	Wyoming	259		2
Minnesota	7,362	4,239	3,123				
Mississippi	103,907	100,174	3,733	TOTAL	\$10,607,982	\$9,900,002	\$707,9
Missouri	19,794	16,440	3,354	Note: Excludes en	aller omourements der	erally those of \$25	000
Montana	772	326	446	or less also	anor procurements, ger	through other Go	vernment
Nebraska	717	56	661	agencies, aw	vards outside the U.S., a	ind actions on the	IPL contracts

64 GEMENT CONTRACTOR FRANKINGERS CONTRACTOR LA LA LA

Procurement Activity

			AWARDS TO BUSINESS FIRMS BY TYPE OF EFFORT						
TOTAL PROCUP	REMENT BY INSTA		(FY 1990) CATAGORY	NUMBER OF CONTRACTS	TOTAL (MILLIONS)				
	(FY 1990)		TOTAL	5.080	9.900.1*				
	(, , , , , , , , , , , , , , , , , , ,		Research and Development	1.822	3.885.3				
	AWARDS		Aeronautics & Space Technology Space Science & Applications	825 364	931.0 404.4 1 390 1				
INSTALLATION	(MILLIONS)	PERCENT	Snace Operations	67	378.0				
			Commercial Programs	28	43.6				
TOTAL	\$12 565 2	100.0	Space Station	22	401.3				
TOTAL	212.303.2	100.0	Other Space R&D	375	316.4				
Marshall Space Flight Center	3,154.6	25.1	Other R&D	39	20.5				
Johnson Snada Cantar	2 760 4	22.0	Services	1.393	3.627.5				
Johnson Space Center	2,700.4	22.0	ADP & Telecommunication	125	361.6				
Goddard Space Flight Center	1,823.6	14.4	Maint., Repair & Rebidg. of Equip.	210	1,041.8				
			Operation of Gov't-owned Facilities	41	366.0				
Kennedy Space Center	1,275.9	10.2	Protessional, Admin. & Mgmt Support	186	934.4				
			Constr. of Stouctures & Eacilities	100	3323				
NASA Resident Office/JPL	1,138.5	9.1	Maint, Repair Alter of Real Prop	244	147.7				
Lewis Research Center	730.6	5.8	Other Services	335	216.2				
			Supplies and Equipment	1.865	2.387.3				
Headquarters	686.5	5.5	Ammunition & Explosives	7	151.2				
have D and Dambar	400.0		Space Vehicles	44	1,209.9				
Ames Hesearch Center	402.0	3.8	Engines, Turbines & Components	13	719.7				
Landev Research Center	399.7	32	Commun., Detection, & Coherent Radiation Equip.	125	28.2				
Langidy research contor		0.4	Electrical & Electronic Equip. Components	63	15.3				
Stennis Space Center	112.6	.9	ADD Equip activers Suppliers Support Equip	363	J4.5 1630				
			Fuele Lubricante Oile & Waxee	30	22.6				
			Other Supplies & Equipment	429	41.7				
			* Excludes smaller procurements, generally those of \$25,000 or less						

Distribution of NASA Procurements

(In Millions of Dollars)				FISC	al years 19	61 - 1990						
	FY 61	FY 62	FY 63	FY 64	FY 65	FY 66	FY 67	FY 68	FY 69	FY 70	FY 71	FY 72
Total Business	423.3	1,030.1	2,261.7	3,521.1	4,141.4	4,087.7	3,864.1	3,446.7	3,022.3	2,759.2	2,279.5	2,143.3
(Small Business)	(63.5)	(123.6)	(191.3)	(240.3)	(286.3)	(255.9)	(216.9)	(189.6)	(162.8)	(161.2)	(178.1)	(160.9)
Educational	24.5	50.2	86.9	112.9	139.5	150.0	132.9	131.5	131.3	134.3	133.9	118.8
Nonprofit			15.3	29.1	25.3	27.7	39.6	33.6	32.3	33.0	29.3	28.0
JPL	86.0	148.5	230.2	226.2	247.2	230.3	222.2	207.2	156.3	179.8	173.3	210.8
Government	221.7	321.8	628.5	692.6	622.8	512.5	366.9	287.0	279.0	265.8	212.5	207.8
Outside U.S.		(*)	7.9	12.0	11.2	23.4	25.2	26.7	30.8	33.5	29.7	29.1
Total	755.5	1,550.6	3,230.5	4,593.9	5,187.4	5,031.6	4,650.9	4,132.7	3,652.0	3,405.6	2,858.2	2,737.8
	FY 73	FY 74	FY 75	FY 76	FY 7T_	FY 77		FY 79	FY 80	FY 81	FY 82	FY 83
Total Business	2,063.8	2,118.6	2,255.0	2,536.1	663.2	2,838.1	2,953.8	3,416.4	3,868.3	4,272.8	4,805.6	5,586.0
(Small Business)	(155.3)	(181.2)	(216.0)	(218.3)	(68.4)	(255.0)	(281.5)	(325.4)	(384.6)	(409.4)	(430.1)	(482.3)
Educational	111.7	97.8	111.4	123.0	27.7	125.5	137.2	147.2	177.0	192.5	187.0	211.3
Nonprofit	26.4	39.3	33.0	32.0	7.6	32.0	42.8	50.8	82.2	155.1	108.8	102.5
JPL	202.3	215.2	234.5	263.7	63.6	289.0	283.8	338.6	397.2	410.8	426.3	454.9
Government	235.2	208.6	198.3	222.4	63.9	223.2	216.0	221.4	271.8	321.9	308.1	394.2
Outside U.S.	34.0	34.1	34.2	27.4	3.8_	24.5	26.0	37.4	46.1	55.2	47.9	47.9
Total	2,673.4	2,713.6	2,866.4	3,204.6	829.8	3,532.3	3,659.6	4,211.8	4,842.6	5,408.3	5,883.7	6,796.8
	FY 84	FY 85	FY 86	FY 87	FY 88	FY 89	FY 90					
Total Business	5,967.4	6,652.9	6,356.0	6,540.5	7,274.9	8,567.6	10,071.5					
(Small Business)	(556.2)	(644.7)	(671.3)	(786.3)	(801.4)	(857.3)	(924.3)					
Educational	22.6	256.9	276.6	315.4	370.3	464.2	513.6					
Nonprofit	98.6	103.1	119.0	119.1	129.5	180.0	200.6					
JPL	533.1	724.6	891.3	1,005.6	979.9	1,058.1	1,106.8					
Government	494.3	535.1	489.7	594.9	734.6	543.2	610.4					
Outside U.S.	38.1	35.4	47.1	34.3	55.9	63.3	62.3					
Total	7 154 1	8 308 0	8 179 7	8 609 8	9 545 1	10.876.4	12 565 2		*1	ncluded in G	overnment	

incipal Contractors (Business Firms)

One Hundred Contractors (Business Firms) Listed According To Total Awards Received									
_	A14/A		1 (990)	AW	ARDS				
<u>CONTRACTOR AND PRINCIPLE</u> ACE OF CONTRACT PERFORMANCE	(THOUSANDS)	PERCENT	CONTRACTOR AND PRINCIPLE _PLACE OF CONTRACT PERFORMANCE_	(THOUSANDS)	PERCENT				
TAL AWARDS TO BUSINESS FIRMS	\$10.071.530	100.00	15. FORD AEROSPACE CORP	\$174,485	1.73				
ROCKWELL INTERNATIONAL CORP Downey, CA	1,746,840	17.34	16. BOEING COMPUTER SUPPORT SERV	164,616	1.63				
MCDONNELL DOUGLAS CORP Huntington Beach, CA	850,639	8.45	17. BENDIX FIELD ENGINEERING CORP	155,960	1.55				
LOCKHEED SPACE OPERATIONS CO Kennedy Space Center, FL	583,473	5.79	18. UNITED TECHNOLOGIES CORP West Palm Beach FL	136,099	1.35				
MARTIN MARIETTA CORP	507,292	5.04	19. INTERNATIONAL BUSINESS MACHINES	101,521	1.01				
THIOKOL CORP	498,437	4.95	20. GRUMMAN AEROSPACE CORP	85,637	.85				
GENERAL ELECTRIC CO	401,589	3.99	21. SVERDRUP TECHNOLOGY INC	79,373	.79				
BOEING CO Marghall Space Flight Al	398,881	3.96	22. TELEDYNE INDUSTRIES INC	73,426	.73				
ROCKWELL SPACE OPERATIONS INC	308,708	3.07	23. CONTEL CORP	64,952	.64				
LOCKHEED MISSILES & SPACE CO	293,908	2.92	24. PAN AMERICAN WORLD SERV INC	64,794	.64				
T R W INC Bedondo Beach CA	241,408	2.40	25. CAE LINK CORP	53,038	.53				
LOCKHEED ENGRG & SCIENCE CO	233,702	2.32	26. FAIRCHILD INDUSTRIES INC	44,340	.44				
USBIBOOSTER PRODUCTION CO	232,860	2.31	27. CRAY RESEARCH INC	43,135	.43				
E G & G FLORIDA INC	191,087	1.90	28. BAMSI INC	(D) 38,367	.38				
COMPUTER SCIENCES CORP Greenbelt, MD	182,613	1.81	Marshall Space Flight, AL 29. N S I TECHNOLOGY SERV CORP Mottett Field, CA	37,597	.37				

Principal Contractors (Business Firms)

One Hundred Contractors (Business Firms) Listed According To Total Awards Received (Cont)

(FY 1990)

PLACE OF CONTRACT PERFORMANCE (THOUSANDS) PERCENT PLACE OF CONTRACT PERFORMANCE (THOUSANDS) PERCENT 30. UNISYS CORP \$37,003 37 45. AIR PRODUCTS & CHEMICALS INC \$19,556 19 31. BUNCHTICS CORP (S) 36,398 .38 48. BUL CORP 19,465 .19 Marshall Space Fight, AL S2 ORBITAL SCIENCES CORP (S) 34,484 .35 45. AIR PRODUCTS & CHEMICALS INC \$19,556 .19 Marshall Space Fight, AL S2 ORBITAL SCIENCES CORP (S) 34,686 .33 .45. AIR PRODUCTS & CHEMICALS INC \$19,556 .19 Boulder, CO .36 NERAL DYNAMICS CORP 33,696 .33 .46. LOCKHEED CORP .17,680 .18 St STSTEMS CORP (S) (D) 32,693 .32 .49. HONEYWELL FEDERAL SYSTEMS INC .17,540 .17 Attington, WA STSTODDARD HAMILTON AIRCRAFT (S) .25,57 .32 .30 .51. DIGITAL EQUIPMENT CORP .17,640 .17 38. STETELING SOFTWARE INC .29,732 .30 .32 .53. BOEING	CONTRACTOR AND PRINCIPLE			AW	ARDS		CONTRACTOR AND PRINCIPLE	_	AWA	ARDS
30. UNISYS CORP \$37,003 37 45. AIR PRODUCTS & CHEMICALS INC \$19,556 19 31. BIONETICS CORP (S) 36,398 .36 Alentown, PA Alentown, PA Alentown, PA 32. ORBITAL SCIENCES CORP (S) 34,848 .35 Boulder, CO 19,465 19 32. ORBITAL SCIENCES CORP (S) 34,848 .35 Boulder, CO 19,465 19 33. GENERAL DYNAMICS CORP 33,696 .33 48. LOCKHEED CORP 17,680 .18 34. S T SYSTEMS CORP (S) (D) 32,693 .32 49. HONEYWELL FEDERAL SYSTEMS INC 17,540 .17 Greenbeit, MD Strondown Allicton AlRCRAFT (S) 2,575 .32 S0. NALE CORP 17,437 .17 Attington, WA Strondown Allicton AlRCRAFT S2,160 .32 S1. DIGITAL EQUIPMENT CORP 17,044 .17 Moritet Field, CA S2,160 .32 .30 S2. JOHINSON ENGINEERING CORP	PLACE OF CONTRACT PERFORMANC	E		(THOUSANDS)	PERCENT		PLACE OF CONTRACT PERFORMANC	εa	HOUSANDS)	PERCENT
Greenbeil, MD Allentown, PA 31. BIONETICS CORP (S) 36,398 .36 32. ORBITAL SCIENCES CORP (S) 36,398 .36 33. BIONETICS CORP (S) 34,648 .35 Deriver, CO .30,696 .33 .48. BALL CORP 19,465 .19 33. GENEFAL DYNAMICS CORP .33,696 .33 .48. LOCKHEED CORP 17,880 .18 San Diop, CA .33,696 .33 .48. LOCKHEED CORP 17,880 .18 Burbank, CA .49. HONEYWELL FEDERAL SYSTEMS INC 17,540 .17 Greenbeit, MD .32,575 .32 .50 .0ANLEXCORP 17,437 .17 Atington, WA .35. STODDARD HAMILTON AIRCRAFT .50 .32,160 .32 .51 .0ANLEXCORP 17,044 .17 .36. STEPLING SOCTWARE INC .32,160 .32 .51 .0IGTAL EOUIPMENT CORP 17,044 .17 .37. PLANNING RESEARCH CORP .29,732 .30 .52. JOHNSON ENGINEERING CORP (S) .16,378 .16 .	30. UNISYS CORP			\$37.003	.37	45.	AIR PRODUCTS & CHEMICALS INC		\$19.558	.19
31. BIONETICS CORP (S) 36,398 .36 48. BALL CORP 19,465 .19 32. ORBITLA SCIENCES CORP (S) 34,646 .35 .47 .47 .33 .3696 .33 .36 48. BALL CORP 19,465 .19 33. GENERAL DYNAMICS CORP 33,696 .33 .48 LOCKHEED CORP .17,540 .18 34. S T SYSTEMS CORP (S) (D) 32,893 .32 .48 LOCKHEED CORP .17,540 .17 35. STODDARD HAMILTON AIRCRAFT (S) .32,575 .32 .50 .40NETWELL FEDERAL SYSTEMS INC 17,437 .17 Anington, WA .35 .32,755 .32 .30 .30 .32 .31 .30 .32 .31 .31 .33 .32 .32 .32 .30 .32 .31 .32 .32 .32 .32 .33 .32 .32 .33 .32 .32 .33 .32 .32 .33 .32 .32 .33 .33 .32	Graenbelt, MD			*			Allentown, PA		•	
Marshall Space Flight, AL Boulder, CO 32. ORBITAL SCIENCES CORP (S) 34, 646 .35 47. NORTHROP WORLDWIDE AIRCRAFT 19,235 .19 33. GENERAL DYNAMICS CORP 33,696 .33 48. LOCKHEED CORP 17,880 .18 San Diego, CA	31. BIONETICS CORP	(S)		36,398	.36	46.	BALL CORP		19,465	.19
32. ORBITAL SCIENCES CORP (S) 34,848 .35 47. NORTHROP WORLDWIDE AIRCRAFT 19,235 .19 33. GENERAL DYNAMICS CORP 33,696 .33 48. LOCKHEED CORP 17,880 .18 34. ST SYSTEMS CORP (S) (D) 32,693 .32 49. LOCKHEED CORP 17,880 .18 35. STODDARD HAMILTON AIRCRAFT (S) (D) 32,693 .32 49. HONEWELL FEDERAL SYSTEMS INC 17,437 .17 Arington, WA	Marshall Space Flight, AL						Boulder, CO			
Denver, CO Denver, CA Denver,	32. ORBITAL SCIENCES CORP	(S)		34,848	.35	47.	NORTHROP WORLDWIDE AIRCRAFT		19,235	.19
33. GENERAL DYNAMICS CORP 33,896 .33 48. LUCKHELD CORP 17,800 .18 San Diego, CA	Deriver, CO					1	Houston, 1X			
San Diego, CA Burbark, CA San Diego, CA Burbark, CA Greenbeit, MD St. ST SYSTEMS CORP (S) (D) 32,883 .32 HONEWVELL FEDERAL SYSTEMS INC 17,437 .17 St. STODDARD HAMILTON AIRCRAFT (S) 32,575 .32 50. ANALEX CORP 17,437 .17 Atington, WA 36. STERLING SOFTWARE INC 32,180 .32 50. ANALEX CORP 17,437 .17 38. STERLING SOFTWARE INC 32,180 .32 51. DIGITAL EQUIPMENT CORP 17,044 .17 38. STERLING SOFTWARE INC 32,180 .32 S1. DIGITAL EQUIPMENT CORP 17,044 .17 38. RAYTHEON SERVICE CO 29,732 .30 S2. JOHINSON ENGINEERING CORP (S) 16,378 .18 Washington, DC S3. BOEING AEROSPACE OPERATN INC 16,381 .16 .16 Greenbeit, MD S3. BOEING AEROSPACE OPERATN INC 16,381 .16 .16 Greenbeit, MD S3. BOEING AEROSPACE OPERATN INC 16,381 .16 .16 Greenbeit, MD S2. IDHINERTING & ECONMICE CORP 2	33. GENERAL DYNAMICS CORP			33,696	.33	48.	LOCKHEED CORP		17,680	.18
34. ST SYSTEMS CORP (S) (D) 32,693 .32 49. HONEYWELL FEDERAL SYSTEMS INC 17,540 .17 35. STODDARD HAMILTON AIRCRAFT (S) 32,575 .32 50. ANALEX CORP 17,437 .17 35. STODDARD HAMILTON AIRCRAFT (S) 32,180 .32 50. ANALEX CORP 17,437 .17 36. STEFLING SOFTWARE INC 32,180 .32 50. ANALEX CORP 17,044 .17 Monter Reid, CA	San Diego, CA						Burbank, CA			
adreended, MD Notified Space Center, PL St STODARD HAMILTON AIRCRAFT (S) 32,575 .32 So ANALEX CORP 17,437 .17 Adirgton, WA 36, STERLING SOFTWARE INC 32,180 .32 So ANALEX CORP 17,044 .17 Greenbel, MD 37, PLANNING RESEARCH CORP 29,732 .30 So Linux Equipment Corp 17,044 .17 Greenbel, MD 38, RAYTHEON SERVICE CO 29,701 .29 So BOEING AEROSPACE OPERATN INC 16,361 .16 Greenbel, MD 39, GRUMMAN DATA SYSTEMS CORP 27,976 .28 54, SOEINCE APPLICATION INTL CORP 15,728 .16 Marshall Space Flight, AL 40, CORTEZ III SERVICE CORP (S) (D) 27,977 .27 55, ENGINEERING & ECONOMICS RES (S) (D) 15,604 .15 41, AEROJET GENERAL CORP 24,968 .25 56, WYLE LABORATORIES 15,458 .15 Nimbus, CA 42,442 .24 57 S1,ILCON GRAPHICS INC (S) (D) 15,137 .15 Rockiedge, FL 43, KRUG INTERNATIONAL CORP 24,010 .24 58, SYSTEMS INC (S) (D) 15,137 .15 HOUSTON, TX	34. ST SYSTEMS COHP	(5)	(U)	32,693	.32	49.	HONEYWELL FEDERAL SYSTEMS INC		17,540	.17
35. STODDARD HAMILTON AIRCHAFT (S) 32,575 .32 S0. ANALEX CORP 17,437 .17 Adington, WA Allington, WA Trainington, WA Trainington, WA 17,437 .17 36. STERLING SOFTWARE INC 32,160 .32 S1. DIGITAL EQUIPMENT CORP 17,044 .17 37. PLANNING RESEARCH CORP 29,732 .30 S2. JOHNSON ENGINEERING CORP (S) 16,378 .18 Washington, DC	Greenber, MU	(0)				1	Kennedy Space Center, FL			
Anargon, WA Parrylew Park, CH 36. STERLING SOFTWARE INC 32,160 .32 36. STERLING SOFTWARE INC 12,160 .32 37. PLANING RESEARCH CORP 29,732 .30 37. PLANING RESEARCH CORP 29,732 .30 38. RAYTHEON SERVICE CO 29,701 .29 39. GRUIMMAN DATA SYSTEMS CORP 27,976 .28 40. CORTEZ III SERVICE COAPP (S) (D) 27,357 .27 55. ENGINEERING & CORP 15,728 .16 40. CORTEZ III SERVICE CORP 24,966 .25 56. WYLLE LABORATORIES 15,458 .15 Nimbus, CA	35. STODDARD HAMILTON AIRCHAFT	(5)		32,575	.32	50.	ANALEX CORP		17,437	.17
38. STERLING SOFTWARE INC 32,160 .32 51. Diciti AL EQUIPMENT CORP 17,044 .17 Montet Reid, CA	Arlington, WA						Fairview Park, OH			
Montent Hebs, CAGreentoset, MDGreentoset, MD37. PLANING RESEARCH CORP29,732.3052. JOHNSON ENGINEERING CORP(S)16,378.16Washington, DC29,701.2953. BOEING AEROSPACE OPERATN INC16,381.16Greentoset, MD39. GRUMMAN DATA SYSTEMS CORP27,976.2854. SCIENCE APPLICATION INTL CORP15,728.16Marshati Space Fight, AL40. CORTEZ III SERVICE CORP(S)(D)27,357.2755. ENGINEERING & ECONOMICS RES(S)(D)15,604.15Marshati, OH24,966.2556. WYLE LABORATORIES15,458.15.56.15.15.15.15Nimbus, CA42. HARRIS SPACE SYSTEMS CORP24,942.24.24.57. SLICON GRAPHICS INC(S)15,242.15Nimbus, CA43. KRUG INTERNATIONAL CORP24,010.24.24.57. SLICON GRAPHICS INC(S)(D)15,137.1544. HUGHES DANBURY OPTICAL SYS23,337.2359. CALSPAN CORP15,120.15Andre Corp24,337.2359. CALSPAN CORP15,120.15	38. STERLING SOFTWARE INC			32,160	.32	51.	DIGITAL EQUIPMENT CORP		17,044	.17
37. PLANNING RESEARCH COMP 29,732 .30 52. JOHNSON ENGINEERING CORP (S) 16,378 .18 Washington, DC .33 RAYTHEON SERVICE CO 29,701 .29 53. BOEING AEROSPACE OPERATN INC 16,381 .16 Greenbed, MD .33 GRUMMAN DATA SYSTEMS CORP 27,976 .28 54. SCIENCE APPLICATION INTL CORP 15,728 .16 Marshall Space Flight, AL	Montett Field, CA						Greenbelt, MD			
Weshington, DC Houston, TX SB, RAYTHEON SERVICE CO 29,701 .29 53. BOEING AEROSPACE OPERATN INC 16,361 .16 Greenbelt, MD 39. GRUMMAN DATA SYSTEMS CORP 27,976 .29 53. BOEING AEROSPACE OPERATN INC 16,361 .16 40. CORTEZ III SERVICE CORP (S) (D) 27,976 .29 54. SCIENCE APPLICATION INTL CORP 15,728 .16 41. AEROJET GENERAL CORP (S) (D) 27,976 .27 55. ENGINEERING & ECONOMICS RES (S) (D) 15,604 .15 41. AEROJET GENERAL CORP 24,966 .25 56. WYLE LABORATORIES 15,458 .15 Nimbus, CA	37. PLANNING RESEARCH CORP			29,732	.30	52.	JOHNSON ENGINEERING CORP	(S)	16,378	.16
38. RAYTHEON SERVICE CO 28.701 29 S3. BOEING AEROSPACE OPERATN INC 18,381 .16 Greenbet, MD 7 30. GRUMMAN DATA SYSTEMS CORP 27,976 .28 Houston, TX 16,381 .16 40. CORTEZ III SERVICE CORP 27,976 .28 54. SCIENCE APPLICATION INTL CORP 15,728 .16 40. CORTEZ III SERVICE CORP (S) (D) 27,357 .27 55. ENGINEERING & ECONOMICS RES (S) (D) 15,604 .15 Greenberg, ND Betsville, MD 8 .001/10 (S) (D) 15,458 .15 Nimbus, CA .42. HARRIS SPACE SYSTEMS CORP 24,642 .24 57. SLICON GRAPHICS INC (S) 15,242 .15 Nomitain View, CA	Washington, DC						Houston, TX			
Greenbed, MD Houston, TX 39. GRUMMAN DATA SYSTEMS CORP 27,976 .28 54. SCIENCE APPLICATION INTL CORP 15,728 .16 Marshall Space Flight, AL 27,357 .27 55. ENGINEERING & ECONOMICS RES (S) (D) 15,604 .15 40. CONTEZ III SERVICE CORP (S) (D) 27,357 .27 55. ENGINEERING & ECONOMICS RES (S) (D) 15,604 .15 41. AEROJET GENERAL CORP 24,968 .25 56. WYLE LABORATORIES 15,458 .15 Nimbus, CA Hampton, VA Hampton, VA 4 .15,458 .15 RCKidedge, FL 58. SYSTOLIC SYSTEMS CORP 24,010 .24 58. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX .15 .16 .16 .15 .16 .15 43. KRUG INTERNATIONAL CORP 24,010 .24 58. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX .15 .16 .16 .16 .16 41. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALS	38. RAYTHEON SERVICE CO			29,701	.29	53.	BOEING AEROSPACE OPERATN INC		16,361	.16
39. GRUMMAN DATA SYSTEMS CORP 27,976 28 54. SCIENCE APPLICATION INTL CORP 15,728 .16 Marahali Space Fight, AL	Greenbeit, MD						Houston, TX			
Marshall Space Fight, AL Washington, DC 40. CORTEZ III SERVICE CORP (S) (D) 27,357 .27 55 Englinition, DC 40. CORTEZ III SERVICE CORP (S) (D) 27,357 .27 55 Englinition, DC 41. AERCUET GENERAL CORP 24,968 .25 56 Minibus, CA 15,458 .15 42. HARRIS SPACE SYSTEMS CORP 24,842 .24 57. SILICON GRAPHICS INC (S) 15,242 .15 Rockiedge, R. 43. KRUG INTERNATIONAL CORP 24,010 .24 58. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX 44. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15 Deroking CT Deroking CT Miniter Fleid, CA 15,120 .15	39. GRUMMAN DATA SYSTEMS CORP			27,976	.28	54.	SCIENCE APPLICATION INTL CORP		15,728	.16
40. CONTEZ III SERVICE CORP (S) (D) 27,357 .27 55. ENGINEERING & ECONOMICS RES (S) (D) 15,604 .15 Ceiveland, OH 41. AEROJET GENERAL CORP 24,988 .25 56. WYLE LABORATORIES 15,458 .15 Nimbus, CA .24,988 .25 56. WYLE LABORATORIES 15,458 .15 42. HARRIS SPACE SYSTEMS CORP 24,942 .24 57. SULCON GRAPHICS INC (S) 15,242 .15 Rockledge, FL .43. KRUG INTERNATIONAL CORP 24,010 .24 58. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX .41. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15 Ventory, CT .24 .24,337 .23 59. CALSPAN CORP 15,120 .15	Marshall Space Flight, AL						Washington, DC			
Cieveland, OH Betsville, MD 41. AEROJET GENERAL CORP 24,968 AEROJET GENERAL CORP 24,968 A. AEROJET GENERAL CORP 24,968 A. MARRIS SPACE SYSTEMS CORP 24,842 A2. HARRIS SPACE SYSTEMS CORP 24,842 A3. KRUG INTERNANTONAL CORP 24,010 A3. KRUG INTERNANTONAL CORP 24,010 A3. KRUG INTERNANTONAL CORP 23,337 A4. HUGHES DANBURY OPTICAL SYS 23,337 A3. KRUG TERNANTONAL CORP 15,120 A4. HUGHES DANBURY OPTICAL SYS 23,337 A4. HUGHES DANBURY OPTICAL SYS 23,337 A5. KRUG Field CA Modifiet Field CA	40. CORTEZ III SERVICE CORP	(S)	(D)	27,357	.27	55.	ENGINEERING & ECONOMICS RES	(S) (D)	15,604	.15
41. AEROJET GENERAL CORP 24,988 .25 56. WYLE LABORATORIES 15,458 .15 Nimbus, CA Hampton, VA Hampton, VA 15,458 .15 42. HARRIS SPACE SYSTEMS CORP 24,842 .24 57. SILICON GRAPHICS INC (S) 15,242 .15 Rockiedge, FL Mountain View, CA 58. SYSTEMS INC (S) (D) 15,137 .15 Hougtson, TX Motifeit Field, CA Motifeit Field, CA 15,120 .15 44. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15	Cleveland, OH						Beltsville, MD			
Nimbus, CA Hampton, VA 42. HARTS SPACE SYSTEMS CORP 24,842 .24 Hampton, VA 42. HARTS SPACE SYSTEMS CORP 24,842 .24 ST. StillCON GRAPHICS INC (S) 15,242 .15 Mountain View, CA 43. KRUG INTERNATIONAL CORP 24,010 .24 S8. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX	41. AEROJET GENERAL CORP			24,966	.25	56.	WYLE LABORATORIES		15,458	.15
42. HARRIS SPACE SYSTEMS CORP 24,842 .24 57. SLICON GRAPHICS INC (S) 15,242 .15 Rockledge, FL Mountain View, CA Mountain View, CA No. .15 .15 43. KRUG INTERNATIONAL CORP 24,010 .24 58. SYSTEMS INC (S) (D) 15,137 .15 Houston, TX Montest Product CA S9. CALSPAN CORP 15,120 .15 Adv. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15 Denchury CT Modifiet Fleid CA Modifiet Fleid CA .15 Modifiet Fleid CA .15	Nimbus, CA					1	Hampton, VA			
Bockledge, FL Mountain View, CA 43. KRUG INTERNATIONAL CORP 24,010 .24 Houston, TX 58. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX Montet Flebt, CA 15,120 .15 Derektive, CT Base State Flebt, CA 15,120 .15	42. HARRIS SPACE SYSTEMS CORP			24,642	.24	57.	SILICON GRAPHICS INC	(S)	15,242	.15
43. KRUG INTERNATIONAL CORP 24,010 .24 58. SYSTOLIC SYSTEMS INC (S) (D) 15,137 .15 Houston, TX Motifeit Field, CA Motifeit Field, CA 15 15,120 .15 44. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15 Darbury, CT Motifeit Field, CA Motifeit Field, CA 15 15	Rockledge, FL						Mountain View, CA			
Houston, TX Motifett Field, CA 44. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15 Darbury CT Modifer Field CA	43. KRUG INTERNATIONAL CORP			24,010	.24	58.	SYSTOLIC SYSTEMS INC	(S) (D)	15,137	.15
44. HUGHES DANBURY OPTICAL SYS 23,337 .23 59. CALSPAN CORP 15,120 .15 Dorbinur, CT Medite Field CA	Houston, TX						Moffett Field, CA			
Danbury CT I Modilet Field, CA	44. HUGHES DANBURY OPTICAL SYS			23,337	.23	59.	CALSPAN CORP		15,120	.15
	Danbury, CT						Moffet Field, CA			_

Principal Contractors (Business Firms)

	According to Total Awards Received (Cont)											
	CONTRACTOR AND PRINCIPLE PLACE OF CONTRACT PERFORMANCE		ана	AWA DUSANDS)	RDS <u>PERCENT</u>	(FY 1990)	CONTRACTOR AND PRINCIPLE	4	THOUSAN	awaf 2 <u>S</u>)	DS PERCENT	
60.	QUAD S CO	(S)	\$	15,004	.15	75	ADVANCED TECHNOLOGY INC		\$1	0,607	.11	
61.	BATESON J W CO INC Houston, TX			14,883	.15	76	CLEVELAND ELECTRIC ILLUMINATG		1	0,421	.10	
62.	INDUSTRIAL AMELCO JV Marshall Space Flight, AL	(S)		14,724	.15	77	VITRO CORP Washington, DC		1	0,202	.10	
63.	OGDEN LOGISTICS SERVICES Greenbelt, MD			13,815	.14	78	B D M INTERNATIONAL INC Columbia, MD			9,455	.09	
64.	PIONEER CONTRACT SERVICES INC Houston, TX	(S)		13,731	.14	79	HERNANDEZ ENGINEERING INC (Houston, TX	(S)	(D)	9,982	.09	
65	BARRIOS TECHNOLOGY INC Houston, TX	(S)		13,404	.13	80	. C B I NA CON INC Hampton, VA			8,946	.09	
66.	. MICRO CRAFT INC Tullahoma, TN	(S)		12,801	.13	81	CATES CONSTRUCTION INC Edwards, CA			8,611	.09	
67.	FLUOR CONSTRUCTORS INTL INC Stennis Space Flight, AL			11,961	.12	82	DICKMAN NOURSE INC Mottett Field, CA			8,544	.08	
68.	VIRGINIA ELECTRIC & POWER CO Hampton, Va			11,680	.12	83.	. R M S ASSOCIATES INC JV Linthicum, MD		(D)	8,466	.08	
69. 	UNIVERSAL CONSTRUCTION CO INC Marshall Space Flight, AL	(0)	.	11,545	.11	84	GENERAL MOTORS CORP Indianapolis, IN			8,364	.08	
70.	Colejon Mechanical Corp Cieveland, OH	(5)	(0)	11,3/1	.11	85	Houston, TX	S)		8,260	.08	
71. 70	Clarksburg, MD	(6)		11,102	.11	00.	Hampton, VA			8,251	.08	
12. 73	Lorain, OH	(3)		10.901	.11	88	Sidell, LA			0,<14	.00	
73. 74	Bethesda, MD			10,001	.11	89	Houston, TX OSTERI AND G R CO	9		0,070	.vd `	
r4.	Datas, TX						Cleveland, OH	3)		5,000		

One Hundred Contractors (Business Firms) Listed

Principal Contractors (Business Firms)

One Hundred Contractors(Business Firms) Listed According to Total Awards Received (FY 1990)

_	CONTRACTOR AND PRINCIPLE	AWARDS						
_PL	ACE OF CONTRACT PERFORMANCE			(THOUSANDS)	PERCENT			
90.	DYNAMIC ENGINEERING INC	(S)		\$7,968	.08			
	Newport News, VA	• •						
91.	JACKSON & TULL INC	(S)	(D)	7,965	.08			
~	Greenbelt, MD							
92.	Greenheit MD			7,380	.07			
93.	HUGHES AIRCRAFT CO			7.362	.07			
	Torance, CA							
94.	SYREJV			7,279	.07			
	Moffett Field, Ca							
95.	SCIENCE SYSTEMS APLICATIONS	(S)	(D)	7,108	.07			
~	SEADTOOK, MU DEDKIN EI MED COOD			7 050	07			
50.	Pomona CA			7,059	.07			
97.	R M S TECHNOLOGIES INC	(S)	(D)	7.058	.07			
	Cleveland, OH	,	1-7	.,				
98.	W & J CONSTRUCTION CORP			6,964	.07			
	Kennedy Space Center, FL							
99 .	HERCULES INC			6,945	.07			
100	Magna, UI							
100.	Earlon Conr			6,830	.07			
	OTHER*			070 400	0 70			
	OTHER			970,432	9.70			
		_						
(S=Small Business/D=Disadvantaged Business)								
*Includes other awards over \$25,000 and smaller amouraments of \$25,000 or loss								

Educational and Nonprofit Institutions

One Hundred Educational and Nonprofit Institutions Listed According to Total Awards Received * (FY 1990)

INSTITUTION AND PRINCIPLE	AWARDS		
PLACE OF PERFORMANCE		(THOUSANDS)	PERCENT
TOTAL AWARDS TO EDUCATIONAL			
& NONPROFIT INSTITUTIONS		<u>\$714.166</u>	100.00
1. STANFORD UNIV		49,144	6.88
Stanford, CA			
2. ASSN UNIV RESEARCH & ASTRON	(N)	31,592	4.42
Battimore, MD			
3. SMITHSONIAN INSTITUTION	(N)	26,465	3.71
	(AD	24.000	2 27
4. UNIVERSITIES SPACE RESEARCH	(14)	24,099	3.37
5. MITRE CORP	(N)	22,805	3 19
Houston, TX	()		0.10
6. MASS INSTITUTE OF TECHNOLOGY		21,242	2.97
Cambridge, MA			
7. UNIV CALIFORNIA BERKELEY		19,403	2.72
Berkeley, CA			
8. UNIV ARIZONA		18,887	2.64
Tucson, AZ			
9. UNIV MARYLAND COLLEGE PARK		17,920	2.51
College Park, MD			
10. NEW MEXICO STATE UNIV LAS CRU		16,455	2.30
		15 919	2.04
Huntoville Al		15,618	2.21
12 CHARLES STARK DRAPER LAB INC	/Nî)	13 622	1 01
Cambridge, MA	(14)	10,022	
13. UNIV COLORADO BOULDER		12,717	1.78
Boulder, CO			
14. UNIV CALIF SAN DIEGO		12,688	1.78
La Jolla, CA			

Educational and Nonprofit Institutions

One Hundred Educational And Nonprofit Institutions Listed According to Total Awards Received (Cont)*

(FY 1990)

INSTITUTION AND PRINCIPLE			AWARDS		INSTITUTION AND PRINCIPLE	INSTITUTION AND PRINCIPLE		
	PLACE OF PERFORMANCE		(THOUSANDS)	PERCENT	PLACE OF PERFORMANCE		(THOUSANDS)	PERCENT
15.	UNIV WISCONSIN MADISON		12,458	1.74	30. CORNELL UNIV		5,968	.84
16.	SOUTHWEST RESEARCH INSTITUTE		11,775	1.65	31. BATELLE MEMORIAL INSTITUTE	(N)	5,566	.78
17.	NATIONAL ACADEMY SCIENCES	(N)	10,894	1.53	32. COLUMBIA UNIV		5,500	.77
18.	UNIV MICHIGAN ANN ARBOR	(N)	10,420	1.46	33. UNIV SOUTHERN CALIF		5,453	.76
19.	CALIF INSTITUTE TECHNOLOGY		9,632	1.35	34. SAN JOSE STATE UNIV		5,175	.72
20.	UNIV NEW HAMPSHIRE		8,384	1.17	35. UNIV VIRGINIA		5,054	.71
21.	PENNSYLVANIA STATE UNIV UP		7,872	1.10	36. UNIV HOUSTON		4,919	.69
22.	UNIV ALASKA FAIRBANKS		7,681	1.08	37. JOHNS HOPKINS UNIV		4,918	.69
23.	CASE WESTERN RESERVE UNIV		7,573	1.06	Battimore, MD 38. OHIO STATE UNIV		4,638	.65
24.	Cleveland, OH UNIV HOUSTON CLEAR LAKE		7,400	1.04	Columbus, OH 39. OLD DOMINION UNIV		4,279	.60
25.	Houston, TX UNIV CALIF LOS ANGELES		7,337	1.03	Nortolk, VA 40. UNIV IOWA		4,149	.58
26.	Los Angeles, CA UNIV WASHINGTON		7,151	1.00	lowa City, IA 41. PRINCETON UNIV		4,123	.58
27.	Seattle, WA UNIV HAWAII		6,880	.96	Princeton, NJ 42. VIRGINIA POLYTECHNIC INSTITU	TE	4,120	.58
28.	Honolulu, HI UNIV TEXAS AUSTIN		6,785	.95	Blacksburg, VA 43. UNIV ILLINOIS URBANA		3,974	.56
29.	Austin TX UNIV CHICAGO		6,244	.87	Urbana, IL 44. NORTH CAROLINA STATE UNIV		3,951	.55
	Chicago, IL				Raleigh, NC			
Educational and Nonprofit Institutions

	(FY 1990)													
	INSTITUTION AND PRINCIPLE		AW	ARDS		NSTITUTION AND PRINCIPLE		AW/	ARDS					
	PLACE OF PERFORMANCE	a	HOUSANDS)	PERCENT	-	PLACE OF PERFORMANCE	C	THOUSANDS)	PERCENT					
45.	GEORGIA INSTITUTE TECHNOLOGY Atlanta, GA	(N)	\$3,908	.55	60.	OKLAHOMA STATE UNIV Stillwater, OK		2,754	.39					
46.	HARVARD UNIV Cambridge, MA	(N)	3,884	.54	61.	WASHINGTON UNIV ST LOUIS St. Louis, MO		2,739	.38					
47.	AMERICAN INSTIT AERON & ASTRO	(N)	3,844	.54	62.	VANDERBILT UNIV Nashville, TN		2,702	.38					
48.	SET INSTITUTE	(N)	3,648	.51	63.	UNIV FLORIDA Gainesville, FL		2,698	.38					
49.	HAMPTON CITY Hampton, VA		3,491	.49	64.	GEORGE WASHINGTON UNIV Washington, DC		2,574	.36					
50.	S R I INTERNATIONAL CORP	(N)	3,477	.48	65.	UNIV CALIF SANTA BARBARA Senta Barbara, CA		2,444	.34					
51.	TEXAS A & M UNIV el Paso, TX	(N)	3,399	.48	66.	COLORADO STATE UNIV Fort Collins, CO		2,379	.33					
52.	RESEARCH TRIANGLE INSTITUTE Research Triangle, NC		3,255	.46	67.	PURDUE UNIV West Lafavette, IN		2,315	.32					
53.	ELORET INSTITUTE Montent Field, Ca		3,199	.45	68.	UNIV CINCINNATI Cincinnati, OH		2,248	.31					
54.	UNIV MINNESOTA MINNPL ST PAUL Minneapolia, MN		3,108	.44	69.	HAMPTON UNIV Hampton, VA		2,198	.31					
, 55 .	UNIV ALABAMA BIRMINGHAM Birmingham, AL		3,061	.43	70.	AEROSPACE CORP El Segundo, CA	(N)	2,172	.30					
56.	AUBURN UNIV AUBURN Auburn, AL		3,051	.43	71.	UNIV TEXAS DALLAS Dallas, TX		2,155	.30					
57.	CLEVELAND STATE UNIV Cleveland, OH		2,836	.40	72.	NORTH CAROLINA A & T STATE UNIV Greensboro, NC		2,130	.30					
58.	CARNEGIE MELLON UNIV Pittsburgh, PA		2,822	.40	73.	PUBLIC SERV SATELLITE CONSORT Washington, DC	(N)	2,106	.29					
5 9.	SAGINAW VALLEY STATE UNIV University Center, MI		2,800	.39	74.	OREGON STATE UNIV Corvalias, OR		2,057	.29					

One Hundred Educational And Nonprofit Institutions

ducational and Nonprofit Institutions

One Hundred	Educational and Nonprofit In	stitutions
Listed Accou	rding to Total Awards Receive	*(Cont)*

(FY 1990)

10	STITUTION AND DDINGIDLE			(AWARDS			
-	PLACE OF PERFORMANCE	AT	PERCENT	11 1	PLACE OF PERFORMANCE	(THOUSANDS)	PERCENT		
5.	ARIZONA STATE UNIV	1,964	.28	90.	UNIV TENNESSEE KNOXVILLE	1,449	.20		
'6 .	UNIV PITTSBURGH Pittsburgh PA	1,930	.27	91.	FOOTHILL COLLEGE Mottett field, CA	1,446	.20		
7.	CLARKSON UNIV Potsdam, NY	1,889	.26	92.	INSTITUTE TECHNOLOGY DEVELOP Jackson, MS	(N) 1,410	.20		
8.	RENSSELAER POLY INST NY Troy, NY	1,849	.26	. 93.	UNIV CENTRAL FLORIDA Orlando, FL	1,410	.20		
'9.	RICE UNIV Houston, TX	1,842	.26	94.	OHIO AEROSPACE INSTITUTE Brook Park, OH	(N) 1,354	.19		
10 .	UNIV MIAMI Miami, FL	1,836	.26	95	UTAH STATE UNIV Logan, UT	1,352	.19		
31.	UNIV MASS AMHERST Amherst, MA	1,830	.26	96.	BROWN UNIV Providence, RI	1,327	.19		
12.	UNIV IDAHO Moscow, ID	1,726	.24	97.	UNIV AKRON Akron, OH	1,320	.18		
J 3.	UNIV CORP ATMOSPHERIC RESRCH Bouider, CO	(N) 1,663	.23	98.	HOWARD UNIV Washington, DC	1,267	.18		
14 .	STATE UNIV NEW YORK STONY BROOK Story Brook, NY	1,654	.23	99.	UNIV DELAWARE Newark, DE	1,253	.18		
5 5.	MCAT INSTITUTE Motiett Field, CA	(N) 1,608	.23	100.	UNIV DENVER Denver, CO	1,233	.17		
36.	UNIV CALIF IRVINE	1,549	.22		Other**	84,967	11.90		
57.	UNIV NEW MEXICO Albuquerque, NM	1,546	.22						
38.	STATE UNIV NEW YORK ALBANY Albany, NY	1,476	.21		Excludes JPL				
19.	UNIV CALIF DAVIS Davis, CA	1,462	.20	•	Includes other awards over \$25,000 and a	smaller procurements o	\$25,000 or less		

NASA's Budget Authority in 1991 Dollars

C-14

Final	ncial	Sum	mary

(in Million	a of Dollars)				OUTLAYS			AS OF SEP	990
	TOTAL	TOTAL DIRECT		RESEARCH &	SFC & D	CONSTRUCTION	RESEARCH & PROGRAM	TRUST	OFFICE OF
FY	APPROPRIATIONS	OBLIGATIONS	TOTAL	DEVELOPMENT	COMMUNICATIONS	OF FACILITIES	MANAGEMENT	FUNDS	INS. GEN.
1959	330.90	298.70	145.50	34.00	-	24.80	86.70	-	-
1960	523.90	486.90	401.00	255.70	-	54.30	91.00	-	-
1961	966.70	908.30	744.30	487.70	-	98.20	159.10	-	-
1962	1,825.30	1,691.70	1,257.00	935.60	-	114.30	207.10	-	-
1963	3,674.10	3,448.80	2,552.40	2,308.40	-	225.30	18.70	-	-
1954	5,100.00	4,854.80	4,171.00	3,317.40	-	437.70	415.90	-	-
1965	5,250.00	5,500.70	5,092.90	3,984.50	-	530.90	577.50	-	-
1966	5,175.00	5,350.50	5,933.00	4,741.10	-	572.50	619.40	-	-
1967	4,968.00	5,011.70	5,425.70	4,487.20	-	288.60	649.90	- 、	-
1968	4,588.90	4,520.40	4,723.70	3,946.10	-	126.10	651.50	-	-
1959	3,895.30	4,045.20	4,251.70	3,530.20	-	65.30	656.20	-	-
1970	3,749.20	3,858.90	3,753.10	2,991.60	-	54.30	707.20	-	-
1971	3,312.60	3,324.00	3,381.90	2,630.40	-	43.70	707.80	-	-
1972	3,310.10	3,228.60	3,422.90	2,623.20	-	50.30	749.40	-	-
1973	3,407.60	3,154.00	3,315.20	2,541.40	-	44.70	729.10	-	-
1974	3,039.70	3,122.40	3,256.20	2,421.60	-	75.10	759.50	-	-
1975	3,231.20	3,265.90	3,268.50	2,420.40	-	85.30	760.80	-	-
1976	3,551.80	3,604.80	3,669.00	2,748.80	-	120.90	799.30	-	-
TQ	932.20	918.80	951.40	730.70	-	25.80	194.90	-	-
1977	3,819.10	3,658.10	3,945.30	2,980.70	-	105.00	859.60	-	-
1978	4,083.70	4,000.30	3,983.10	2,988.70	-	124.20	870.20	-	-
1979	4,561.20	4,557.50	4,196.50	3,138.80	-	132.70	925.00	-	-
1980	5,243.40	5,098.10	4,851.60	3,701.40	-	140.30	1,009.90	-	-
1981	5,522.70	5,606.20	5,421.20	4,223.00	-	145.80	1,051.40	-	-
1982	6,020.00	5,946.70	6,035.40	4,796.40	-	109.00	1,130.00	-	-
1983	6,837.70	6,723.90	6,663.90	5,316.20	-	108.10	1,239.60	-	-
1984	7,228.10	7,135.20	7,047.60	2,791.80	2,914.60	108.00	1,232.40	-	-
1985	7,546.70	7,638.40	7,317.70	2,118.20	3,707.00	170.00	1,322.50	-	-
1986	7,764.20	7,463.00	7,403.50	2,614.80	3,267.40	188.90	1,332.40	-	-
1987	10,796.00	8,603.70	7,591.40	2,435.20	3,597.30	149.00	1,408.90	-	-
1988	9,116.60	9,914.70	9,091.60	2,915.80	4,362.20	165.90	1,647.70	-	-
1989	11,008.90	11,315.80	11,051.50	3,822.40	5,030.20	190.10	1,908.30	0.50	-
1990	12,397.67	13,068.93	12,428.83	5,094.30	5,116.52	218.42	1,991.09	1.00	7.50

.

Research And Development Funding By Program

(In Millions of Dollars)	FY 1990	FY 1989	FY 1988	FY 1987	FY 1988	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	As Of Sept FY 1978	tember 1990 FY 1977 & Prior
SPACE STATION	1,723.70	884.60	387.40	414.50	197.80	153.60	-	-	-	-	-	-	-	-
SPACE FLIGHT Space Stuttle Space Stuttle Str3 Oper Capability Dev Spacetab Upper Stages Paytoad Oper & Support Eqt Eng & Tech Base (ETB)/0TMS Advanced Launch Systems Advanced Launch Systems Advanced Launch Systems Stylab Appolo Soyuz Test Project Expendable Launch Vehicles Completed Programs Apolo Gemint Others	- 546.10 (-) (93.70) (79.70) (58.40) (58.40) (58.40) (58.40) (58.40) (58.40) (58.40) (58.40) (-) (-) (-) (-) (-) (-) (-) (-	- 660.40 (-) (87.60) (131.60) (150.60) (160.60) (47.70) (26.40) (26.40) (-) (-) (-) (-) (-) (-) (-) (-		- 522.30 (-) (72.00) (32.00) (33.40) (33.40) (133			- 446,10 (111.00) (157.70) (59.80) (93.10) (21.40) () () () () () () () (-	1,696.20 1,771.50 (278.00) () () (70.20) (12.60) () () () () () () () (-	2,098.10 902.20 (201.20) (-) (-) (182.90) (9.70) (-) (182.90) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	1,994.70 676.20 (223.50) () () (183.50) (8.80) () () () () () () () (-	1,870.30 446.60 (112.90) () (172.60) (172.60) () (172.60) () () () () () () () (-	1,637,60 (89,970 (-) (-) (-) (177,20) (7,00) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	1,348,80 (65340) (-) (-) (171,90) (10,00) (-) (-) (16,50) (-) 136,50 - (-) (-) (-) (-) (-) (-) (-) (-) (-) (4,599.90 3,946.30 (65.43) (-) (-) (1,050.80) (188.80) (-) (-) (-) (214.20) (214.20) (214.20) (214.20) (20,444.00) (1,280.70) (205.80) (205.84)
TOTAL OSF	546.10	660.40	585.80	522.30	390.00	387.80	446.10	3,550.60	3,031.40	2,725.30	2,384.30	2,010.90	1,749.10	32,843.50
COMMERCIAL PROGRAMS Technology Utilization Commercial Use of Space	23.40 32.40	16.30 27.80	18.80 29.30	15.50 23.60	10.40 16.00	9.40	9.00	9.00	8.00	8.80	12.00	9.10	9.10	75.30
Total OCP	55.80	44.10	48.10	39.10	26.40	9.40	9.00	9.00	8.00	8.80 8	1812.0	9.10	9.10	75.30

.

(in Millions of Doltars)													As Of Septe	mber 1990
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1965	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FV 1977 & Prior
AERONAUTICS AND SPACE TECHNOLOGY Current Programs														
Space Research & Technology	273.80	273.70	217.10	164.50	148.10	141.00	130.30	121.20	106.90	107.80	111.80	98.30	68.70	431.60
Aeronautical Research & Tech	431.60	384.60	320.20	360.50	324.30	328.30	296.70	274.50	261.10	268.80	306.30	264.10	228.00	1,022.00
Transatmospheric Res & Tech	58.30	68.50	51.90	44.40	-	-	-	-	-	-	-	-	-	-
Energy Tech. Applications	-	-	-	-	-	-	-	-	-	1.90	3.00	5.00	7.50	20.80
Prior Programs	-	-		-	-	-	-	-	-	-	-	-	-	-
Apolio Applications Expr	-	-	-	-	-	-	-	-	-	-	-	-	-	1.00
Chemical & Solar Power	-	-		-	-	-	-	-	-	-	-	-	-	62.30
Basic Research		-	-	-	-			-	-	-	-	-	-	193.60
Space Vehicle Systems	-	-	-	-	-	-	-	-	-	-	-	-	-	332.30
Electronic Systems	-	-	-	-	-	-	-	-	-	-	-	-	-	272.00
Human Factor Systems	-	-	-	•	-	-	-	-	-	-	-	-	151.30	-
Space Power & Elec Prop Sys	-	•	•		-	-	-	-	-	-	-	-	-	385.40
Nuclear Rockets	-	-	•	-	-	-	-	-	-	-	-	-	-	512.90
Chemical Propulsion	-	-	-	-	-	-	-	-	-	-	-	-	-	365.40
Aeronautical Vehicles	-	-	-	-	-	-	-	-	-	-	-	-	-	451.20
Nuclear Power & Proputation	-	-	-	-	-	-	-	-	-	-	-	-		44.10
Mission Analysis	-	-	-	-	-	-	-	-	-	-	-	-	-	16.00
TOTAL OAST	763.70	726.80	589.20	569.40	472.40	469.30	427.00	395.70	368.00	378.50	423.10	367.40	324.20	4,261.90
SPACE TRACKING & DATA SYSTEMS Tracking and Data Acquisition	19.10	18.60	17.70	16.90	15.30	14.70	14.10	496.30	401.30	339.80	332.10	299.90	276.30	3,852.90
SAFETY, RELIABILITY, MAINTAINABILITY & QUALITY ASSURANCE Standards and Practices	22.30	22.10	13.90	11.90	7.50	4.80	4.60	3.00	3.00	2.10	3.80	9.00	9.00	24.20
UNIVERSITY SPACE SCIENCE & TECHNOLOGY ACADEMIC PROGRAM Academic Programs Minority University Res. Prog.	23.00 14.00	-		-		-	-	-	-	-	-			-
TOTAL U.S.S.&T.A.P.	37.00	-	-	-	-	-	-	-	-	-	-	-		

esearch And Development Funding By Program

Research And Development Funding By Program

(in Millions of Dollars)	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	As Of Sept FY 1978	ember 1990 FY 1977 & Prior
SPACE SCIENCE AND APPLICAT	TIONS													
Current Programs		740.40	5 00.00	500 C0	65 4 00	054 70	£70.00				005.00			
Physics a Astronomy Disastant Evolution	847.10	/12.10	596.20	528.50	554.60	000.50	226.60	480.80	318.20	320.00	335.60	281.80	223.10	2,191.20
Planetary Exploration	380.90	405.90	323.50	362.20	349.10	200.00	216.10	100.00	205.00	1/4.10	219.40	181.90	140.70	3,330.90
Line Sciences	104.70	78.10	72.10	70.20	65.00	61.90	57.60	00.00	39.00	42.20	43.80	40.10	33.30	145.80
Space Applications	632.00	578.30	557.40	550.60	4/8.40	367.60	309.50	311.40	325.00	325.70	328.50	2/1.90	232.10	2,093.20
Prior Programs														
Manned Space Science	-			-		-		-	-	~		-	-	46.40
Launch Vehicle Development	-	-	-		-	-		-		~	-	-	-	614.40
Bloscience	-	-			-	-	-			-	-	-	-	257.80
Space Flight Operations	-	-	-	-	-	-	-			-	-	-	4.00	58.30
Payload, Plan & Prog Integ	()	()	()	()	()	()	()	()	()	()	()	()	(4.00)	(58.30)
TOTAL OSSA	1,964.70	1,774.40	1,549.20	1,511.50	1,447.10	1,370.70	1,141.80	1,027.80	887.70	862.00	927.30	775.70	639.20	8,958.00
UNIVERSITY AFFAIRS	-	-	-	-	-	-	-	-	-	-	-	-	-	229.20
OPERATING ACCOUNT	95.20	103.50	63.60	68.10	59.60	55.00	23.60	33.10	23.60	17.80	5.50	5.20	4.70	229.20
TOTAL PROGRAM	5,227.60	4,234.50	3,254.80	3,153.70	2,616.10	2,465.30	2,066.20	5,515.50	4,723.00	4,334.30	4,088.10	3,477.20	3,011.60	50,474.20
Approp Trans & Adjustment	54.20	-45.90	19.30	-26.00	19.00	-2.70	-54.30	27.30	17.90	2.00	3.00	0.00	1.40	301.00
Appropriation	5,281.80	4,188.60	3,274.10	3,127.70	2,635.10	2,462.60	2,011.90	5,542.80	4,740.90	4,336.30	4,091.10	3,477.20	3,013.00	50,775.20
Laps Unoblig Bal Incl	-	(0.50)	(1.10)	(4.40)	(3.00)	(2.00)	(3.00)	(2.00)	(3.00)	(6.00)	(1.00)	(3.00)	(3.00)	
NOTE: Unobligated Balances La	psed at the en	d of the secor	nd year of acc	ountability										

1

search And Development Funding By Location

Millions of Dollars)													As of Septem	ber 1990
-	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 1977 & Prior
adquarters	465.60	403.50	332.80	258.20	175.80	150.30	141.80	218.40	152.60	136.00	132.50	115.30	95.00	2,254.50
nes Research Center	311.30	295.10	261.70	292.10	241.50	223.50	196.80	180.60	162.90	141.00	147.50	140.40	115.50	1,183.30
yden Flight Research Facility									11.90	18.40	16.60	13.10	18.60	242.00
ctronics Research Center										••		-		82.50
iddard Space Flight Center	915.30	743.70	510.90	488.80	522.60	447.10	361.60	816.30	744.00	567.60	552.00	516.80	492.90	6,400.30
Propulsion Laboratory	571.80	581.60	490.30	466.80	451.90	347.80	253.70	308.20	316.40	262.80	320.50	236.80	201.40	3,018.40
hnson Space Center	1,014.20	572.60	334.80	331.00	249.50	235.20	174.90	1,593.00	1,557.20	1,524.50	1,398.30	1,161.80	970.70	15,424.00
nnedy Space Center	149.90	116.20	90.50	57.30	71.10	49.00	55.70	529.30	420.50	365.40	300.60	234.90	170.00	2,503.50
ngley Research Center	258.60	245.90	199.00	221.10	175.20	177.70	140.40	131.90	130.50	143.30	168.20	138.20	157.10	2,323.50
wis Research Center	483.20	393.70	257.30	286.80	257.10	325.10	292.80	269.90	178.40	163.30	170.40	148.50	133.60	2,868.30
inshall Space Filght Center	945.10	870.00	760.90	730.10	465.30	503.20	443.50	1,702.10	1,238.50	1,005.90	888.20	785.20	630.90	13,292.20
SA Pasadena Office								-	-					4.40
Innis Space Center	15.10	17.30	16.70	22.50	10.20	11.10	9.70	8.60	10.10	8.90	9.30	9.20	10.00	21.50
cific Launch Operations														0.30
aca Nuclear Systems Office									••					436.50
ition 17		-5.10			-3.80	-4.70	-4.70	-242 80	-200.00	-14.00	-31.70	-38.80		
lloos Flight Facility									11.20	15.70	15.80	15.90	156.30	
stern Sunport Office														119.70
distributed _	97.50										_ <u> </u>			
TAL PROGRAM	5,277.60	4,234.50	3,254,90	3.153.70	3,616.40	2,465.30	2,066.20	5.515.50	4.723.00	4.334.30	4.088.10	3.477.20	3.011.60	50.331.20
prop Trans & Adjustment	54.20	-45.90	19.30	-26.00	19.00	-2.70	-54.30	27.30	17.90	2.00	3.00	0.00	1.40	301.00
propriation	5,281.80	4,188.60	3,274.20	3,127.70	2,635.40	2,462.60	2,011.90	5,542.80	4,740.90	4,336.30	4,091.10	3,477.20	3,013.00	50,632.20
rse Unoblig Bal Incl		(.50)	(1.10)	(4.40)	(.30)	(.20)	(.30)	(.20)	(.30)	(.60)	(.10)	(.30)	(.30)	

Space Flight, Control And Data Communications By Program

(In Millions of Dollars)						As Of Sep	tember 1990
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	EY 1984
SPACE FLIGHT							
Shuttle Prod & Oper Cap	1,189.80	1.123.00	1.092.40	3.501.40	1.354.70	1.478.10	1.637.20
Space Transportation Ops	2,628.40	2,377.30	1,825.50	1,636.90	1,633.20	1,308.60	1,431.70
TOTAL OSF	3,818.20	3,500.30	2,917.90	5,138.30	2,987.90	2,786.70	3,068.90
SPACE TRACKING & DATA SYSTEMS	898.00	1,040.50	969.30	764.70	658.20	792.20	673.90
OPERATING ACCOUNT	9.40	13.80	8.70	17.50	15.60	15.30	9.00
	4 725 60	4 554 60	3 895 90	5 920 50	3 661 70	3 504 20	3 751 80
Approp Trans & Adjustment	-182.50	-190.40	12.40	-180.50	19.10	7.60	39.80
Appropriation	4,543.10	4,364.20	3,908.30	5,740.00	3,680.80	3,601.80	3,791.60
Lapse Unobilg Bai Inci	-	(0.90)	(0.40)	(0.30)	(0.30)	(0.20)	(0.50)

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability

pace Flight, Control And Data Communications By Location

(In Millions of Dollars)						As Of Sep	tember 1990
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984
Headquarters	160.30	153.50	364.40	332.70	204.50	259.50	227.6
Ames Research Center	18.70	16.70	15.40	16.30	18.00	15.60	10.30
Goddard Space Flight Center	609.30	492.60	467.10	415.90	330.00	432.20	431.00
Jet Propulsion Laboratory	153.50	122.10	132.10	128.00	117.40	111.90	97.30
Johnson Space Center	1,101.80	1,013.90	909.70	1,960.40	1,083.70	1,308.00	1,360.50
Kennedy Space Center	850.50	803.40	720.20	656.00	511.50	493.40	490.5
Langley Research Center	6.20	14.30	0.10	0.30	0.40	0.60	0.20
Lewis Research Center	47.90	9.40	3.70	5.00	3.30	4.30	2.00
Marshall Space Flight Center	1,616.00	1.526.60	1.263.90	1.653.50	1.655.40	1.437.00	1.379.00
Stennis Space Flight Center	24.70	21.50	19.30	16.10	15.10	12.30	1.10
Station 17		-12.40			-277.60	-480.60	-247.70
Undistributed	136.70	393.00	-	736.30	-	-	-
TOTAL PROGRAM	4,725.60	4,554.60	3.895.90	5.920.50	3.661.70	3.594.20	3.751.80
Approp Trans & Adjustment	-182.50	-190.40	12.40	-180.00	19.10	7.60	39.80
Appropriation	4,543.10	4,364.20	3,908.30	5,740.00	3,680.80	3,601.80	3,791.60
Lapse Unoblig Bal Incl	-	(0.90)	(0.40)	(0.30)	(0.30)	(0.20)	(0.50)

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability

Construction of Facilities Funding

(in Millons of Dollars)	EV 60	EV 00	54.69	54.67	EV 04	EV OF	EV 94	57 M	EV 93	EV #1	EV 90	EV 10	EV 78		s of Septen	nber 1990
	PT 90	1109	FT 00	1101	PT 00	P7 60	1104	1100	FIGE	FIGI	7100	11/1	FT 10	<u>et 11</u>	1010	FT 10
Ames Research Center	13.00	-	16.00	18.60	7.80	14.20	14.70	-	-	13.60	2.90	9.10	-	4.40	2.60	3.70
Dryden Flight Research Fac.	-	-	12,70	-	-	-	-	3.50	-	-	-	-	0.40	0.80	-	-
Goddard Space Flight Center	18.40	6.20	8.60	8.00	3.60	2.10	-	2.60	-	-	-	5.60	4.50	-	-	1.90
Jet Propulsion Laboratory	5.30	-	-	11.70	9.20	13.70	5.50	-	1.80	2.80	-	4.60	3.10	-	-	9.20
Kennedy Space Center	10.30	-	-	0.80	-	-	-	-	1.10	0.60	4.80	-	1.70	2.60	-	-
Langley Research Center	6.80	7.40	-	11.30	4.70	13.80	10.50	13.50	2.90	22.00	7.10	5.30	1.60	6.10	1.60	3.20
Lewis Research Center	-	-	17.00	-	-	-	12.90	4.80	1.20	8.70	5.70	5.80	0.80	2.70	-	3.70
Johnson Space Center	2,60	7.80	-	7.80	-	-	-	-	3.00	-	-	-	2.00	2.20	-	0.70
Marshall Space Flight Ctr.	-	12.50	-	•	-	1.60	-	-	-	4.00	6.30	-	-	-	-	3.80
Stennia Space Center	-	-	-	-	-	-	-	-	-	-	-	-	0.60	-	-	-
Wallops Flight Facility	-	-	-	-	-	-	-	2.10	-	-	1.10	-	-	-	-	1.10
Various Locations	2,60	-	6.40	17.00	17.40	14.00	-	-	9.80	32.00	1.70	-	1.10	-	-	7.70
Facility Planning & Design	26.30	22.00	16.00	17.00	11.80	12.00	9.10	8.20	10.00	9.70	13.90	10.60	11.70	12.60	12.50	10.80
Large Aero Fac		-	-	-	-	-	-	-	-	-	45.70	56.10	37.00	31.00	-	-
Minor Construction	10,00	9.00	7.30	6.80	6.00	4.90	4.70	3.70	2.30	3.90	3.50	4.20	6.00	2.90	6.20	4.60
Repair	27,20	22.90	22.90	21.70	19.50	17.90	17.20	13.60	12.60	14.80	12.00	-	-	-	-	-
Envir Compl & Rest. Progran	30,00	26.00	23.90	-	-	-	-	-	-	-	-	-	-	-	-	-
Rehab & Mods *	35.00	30.90	31.60	30.20	24.30	21.50	21.40	18.90	17.60	17.30	19.70	14.10	18.90	17.80	23.00	14.80
Space Station Facilities	49,10	-	-	12.50	-	-	-	-	-	-	-	-	-	-	-	-
Shuttle Facilities	122,20	65.00	17.20	6.90	36.20	37.70	48.70	28.10	32.80	9.90	27.90	30,90	64.70	30.30	48.60	76.50
Shuttle Payload Facility	-	-	-	-	3.80	6.70	13.20	1.80	-	1.50	4.30	-	7.30	4.40	-	-
Unallocated Plans & Design	-	-	-	-	-	-	-	1.80	-	-	-	-	-	-	-	-
Aero. Facils Revitalization	54,40	46.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Advanced Launch System Fa	-	15.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trust Fund	-	15.00	-	•	-	-	-	-	-	-	-	-	-	-	-	-
Wake Shield Facility	2,20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL PROGRAM	413,60	285.70	179.60	170.50	144.30	160.10	157.90	102.80	95.30	140.80	156.60	146.30	161.40	117.80	92.50	141.70
Approp Trans & Adjust	178.40	4.40	-1.30	298.80	-11.00	-10.10	-2.40	-5.30	0.50	-25.80	-0.50	1.20	-0.50	0.30	0.40	-1.50
Approp & Availability	592.00	290.10	178.30	459.30	133.30	150.00	155.50	97.50	95.80	115.00	156.10	147.50	160.90	118.10	92.90	140.20

"Included in Various Locations Prior to FY 1972.

instruction of Facilities Funding

(In Millions of Dollars)				-							-					
-	FY 74	FY 73	FY 72	FYT	FY 70	FY 69	FY 68	FY 67	FY 66	FY 65	FY 64	FY 63	FY 62	FY 61	FY 60	FY 59
Ames Research Center	-	3.20	6.50	1.10	0.30	0.40	4.20	-	2.80	5.80	11.30	14.30	6.30	0.60	6.10	3.80
Dryden Flight Research Facility	-	-	-	-	0.90	-	-	-	-	-	2.50	1.80	-	-	1.80	-
Electronica Research Center	1.30	-		-	-	-	-	7.40	5.20	10.40	1.60	-	-		-	-
Goddard Space Flight Center	1,30	0.60	0.70	1.40	0.70	-	0.60	0.70	2.40	2.30	17.70	21.30	11.50	8.40	14.00	3.90
Jet Propulsion Laboratory	-	0.50	-	1.90	-	-	3.10	0.50	0.90	3.60	3.00	11.40	3.60	8.60	7.70	-
Johnson Space Center	4,00	0.60	-	1.10	-	0.90	0.60	11,60	4.00	17.30	33.90	24.50	-	-	-	-
Kennedy Space Center	-	9.70	15.60	0.30	10.50	7.40	20.40	34.60	7.20	67.80	273.40	332.80	115.60	27.80	4.00	-
Langiny Research Center	-	4.30	-	0.60	5.60	-	-	8.40	8.40	3.30	9.70	9.80	6.90	12.30	4.50	10.80
Lewis Research Center	-	10.00	0.80	0.70	0.30	-	2.10	16.20	0.90	0.80	20.40	45.50	1.10	9.60	6.60	8.00
Marshall Space Flight Center	•	-	-	1.30	-	-	0.90	-	1.80	12.00	28.20	40.50	30.70	26.10		-
Michoud Assembly Facility	0,90	-	-	-	-	0.40	0.50	0.50	0.30	6.20	7.30	28.50	-	-	-	-
Stennis Space Center	1,70	-	-	-	1.40	-	-	-	-	58.40	102.90	77.10	-	-	-	-
Nuclear Rocket Dev Station	13,50	-	-	-	-	-	-	-	-	-	4.10	11.50	-	-	-	-
Pacific Launch Operations	-	-	-	-	-	-	-	-	-	0.30	-	-	0.60	0.40	1.10	-
Wallops Flight Facility	4.60	0.60		-	0.50	0.50	0.70	0.20	1.00	1.70	0.50	4.10	11.30	2.00		16.10
Various Locations	-	-	0.70	22.50	26.40	20.80	3.50	6.50	15.10	28.30	211.50	129.90	159.00	28.00	52.40	5.10
Facility Planning & Design	-	7.90	3.40	5.40	3.50	1.00	5.40	5.40	5.00	8.80	10.40	12.90	9.80	· -		-
Rehab & Mods *	14.80	11.60	7.80	(17.50)	-	-	-		-	-	-	-	-	-	-	-
Shuttle Facilities	-	28.80	18.50	· •	-	-	-	-	-	-	-	-	-	-	-	-
Other	56.50	1.70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL PROGRAM	100.60	78.50	54.00	36.30	50.10	31.40	42.00	90.00	55.00	247.00	738.40	765.90	356.40	124.80	98.20	47.70
Approp Trans & Adjust	0.50	-1.20	-1.30	-11.30	3.10	-9.60	-6.10	-7.10	5.00	15.90	-58.40	10.30	-40.40	-2.00	-13.60	0.30
Appropr & Availability	101,10	77.30	52.70	25.00	53.20	21.80	35.90	82,90	60.00	262.90	680.00	776.20	316.00	122.80	84.60	48.00

"Included in Various Locations Prior to FY 1972

Research and Program Management Funding

(in Millions of Dollars)

	FY 90	FY 89	FY 88	FY 87	FY 86	FY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY 77	76/TQ	FY 75	Ð
v —																	
Headquarters	259.10	255.10	205.60	142.50	124.00	122.20	114.00	111.90	115.90	96.40	88.70	84.60	83.40	78.40	93.50	68.90	6
Ames Research Center	187.70	178.30	165.30	134.00	123.50	122.30	114.90	107.20	76.60	72.20	87.40	62.80	57.70	53.10	63.90	48.60	- 4
Dryden Flight Research Fec.	-	-	-	· -	-	-	-	-	24.40	22.60	20.20	18.90	18.20	17.20	19.70	13.20	1:
Goddard Space Flight Center	266.40	255.90	244.00	216.10	200.50	196.30	191.40	183.90	169.10	142.50	133.70	127.80	123.50	114.30	138.60	104.80	9
Kennedy Space Center	277.80	269.90	243.70	200.00	192.20	185.10	178.40	164.90	156.00	150.20	135.50	126.40	116.30	110.10	128.00	95.90	- 9
Langley Research Center	198.80	188.70	178.20	153.70	145.00	147.60	139.20	132.70	126.60	120.80	113.80	108.60	100.70	94.70	115,70	88.60	8
Lewis Research Center	206.30	196.30	182.00	151.70	143.10	137.40	128.50	118.80	106.40	99.90	94.80	87.50	84.70	83.30	102.40	80.30	7
Johnson Space Center	325.20	302.70	263.30	228.00	206.90	216.10	201.90	195.20	230.50	176.30	164.70	153.00	146.20	139.10	165.20	121,30	- 11
Marshall Space Flight Center	276.80	258.00	239.90	213.10	195.00	199.70	190.90	184.30	172.10	165.30	156.60	149.00	143.60	140.20	170.00	129.10	13
Stennis Space Center	25.10	23.50	20.60	12.40	11.20	10.70	6.30	6.60	5.50	4.90	2.80	1.30	0.10	0.70	0.50	1.60	
Station 17	-	-	-	-	-0.10	-7.60	-7.60	-8.10	-	-	-	-	-	-	-	-	
Space Nuclear Sys Office	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Wallops Flight Facility	-	-	-	-	-	-	-	-	-	. 20.00	17.80	15.90	15.10	13.30	17.00	12.40	1
TOTAL PROGRAM	2,023.20	1,926.40	1,762.60	1,451.50	1,341.30	1,331.80	1,255.90	1,197.40	1,183.10	1,071.10	996.00	933.80	889.50	844.40	1,012.50	764.70	74
Lapsed Unoblig Bal	0.20	-	-	1.00	0.20	0.50	0.20	-	0.20	0.30	0.20	0.30	0.30	0.20	0.60	0.20	
Approp I rains & Adjust	-71.90	-71.60	-266.90	-27.50	20.50	-	-	-	-	-	-	-	-	-	-	-4.90	
Appropriation	1,951.50	1,855.00	1,495.70	1,425.00	1,362.00	1, 332.3 0	1,256.10	1,197.40	1,183.30	1,071.40	996.20	934.10	889.80	844.60	1,013.10	760.00	74

1/ Includes NASA Pasadena Office

Research and Program Management Funding

In Willions of Dollars)								_						A	of September
	FY 73	FY 72	FY 71	FY 70	FY 69	FY 68	FY 67	FY 68	FY 65	FY 64	FY 63	FY 62	FY 61	FY 60	FY 59
v –	_														
Headquarters	61.20	61.60	64.90	63.20	60.80	57.10	57.40	54.40	69.30	56.10	51.30	26.00	13.90	8.50	5.70
Ames Research Center 2/	42.40	42.20	40.60	37.60	34.00	33.80	33.80	33.20	31.80	26.90	25.60	22.90	19.90	17.80	16.30
Electronics Research Center	-	-	-	19.10	17.20	15.40	12.20	6.40	3.20	0.50	-	-	-	-	-
Dryden Flight Research Center	11.70	11.70	11.10	10.30	9.70	9.50	9.50	9.40	10.50	9.40	7.50	7.20	5.10	4.30	3.30
Goddard Space Flight	95,70	96.50	93.10	86.40	73.20	68.30	71.10	64.40	93.30	61.90	52.80	39.10	20.40	15.50	1.80
Kennedy Space Center	92.40	92.60	98.30	97.60	95.80	93.10	92.70	82.00	40.80	26.80	18.80	6.40	-	-	-
Langley Research Center	78.60	80.20	75.30	69.80	63.00	62.20	64.30	63.50	59.00	52.10	51.80	46.60	39.10	33.00	31.40
Lewis Research Center	81.20	82.50	78.00	73.90	67.90	66.20	66.30	66.40	69.30	58.50	53.40	45.20	35.80	31.20	27.80
Johnson Space Center	110.60	113.00	111.10	106.60	98.90	95.70	95.70	86.50	88.70	64.70	51.00	24.10	9.20	-	-
Marshall Space Flight Center	137.20	138,90	145.10	125.70	116.30	126.20	128.70	128.40	138.70	124.30	112.60	89.20	68.60	5.10	-
Pacific Launch Operations	-	-	-		-	-	· -	0.60	0.90	0.90	0.60	0.10 .	-	-	-
Space Nuclear Systems Office	-	2.20	2.40	2.30	2.10	2.00	2.00	1.80	1.70	1.50	1.00	0.30	-	-	-
Western Support Office	-		-		-	1.00	3.20	4.90	5.00	4.40	3.40	1.40	5.70	0.50	-
Wallops Flight Facility	10.80	10.90	10.30	9.70	9.10	8.80	9.70	9.30	11.10	8.80	8.90	7.10	5.00	2.70	1.30
			3/							·					
TOTAL PROGRAM	721.80	732.30	730.20	702.20	648.00	639.30	646.60	611.20	623.30	496.80	438.70	315.60	222.70	118.60	87.60
	7.60	0.30	0.20	0.40	0.10	0.10	0.90	0.60	-	-	-	· •	-	-	-
Approp Trans & Adjust	-	2.10	-7.70	-12.60	-44.90	-11.40	-7.50	-27.80	0.20	-2.80	-	-	-	-	-
Appropriation	729.40	734.70	722.70	690.00	603.20	628.00	640.00	584.00	623.50	494.00	438.70	315.60	222.70	118.60	87.60

1/includes NASA Pasadena Office

2/ERC was closed on June 30, 1970

3/includes \$10 million for basic institutional and other requirements for agencies resident at MTF/Slidet

Pacific Launch Operations (PLO)

Space Nuclear Systems Office (SNSO) Western Support Office (WSO)

Personnel Summary

Onboard At End Of Fiscal Year*									As Of Septe	mber 1990
	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981
NASA HQ —	1,996	1,867	1,829	1,648	1,468	1,553	1,526	1,636	1,614	1,638
ARC 1/	2,205	2,217	2,169	2,161	2,153	2,159	2,145	2,138	2,164	1,652
DFRF							-		-	491
GSFC2/	3,873	3,860	3,727	3,746	3,785	3,738	3,647	3,794	3,746	3,431
KSC	2,466	2,504	2,330	2,278	2,120	2,165	2,131	2,180	2,199	2,224
LaRC	2,961	3,003	2,966	2,979	2,932	2,949	2,952	3,032	2,916	3,028
LeRC	2,728	2,832	2,716	2,716	2,642	2,782	2,702	2,751	2,667	2,782
JSC	3,615	3,704	3,498	3,463	3,362	3,449	3,352	3,411	3,445	3,496
MSFC	3,619	3,703	3,429	3,478	3,361	3,386	3,286	3,464	3,440	3,479
NASA Pasadena Office	·					· _	-	·	·	· -
JSSC	192	203	159	147	137	135	129	128	119	113
WFF										400
TOTAL	23,625	23,893	22,823	22,646	21,960	22,316	21,870	22,534	22,310	22,736
	FY1980	FY 1979	FY 1978	FY 1977	FY 1976	FY 1975	FY 1974	FY 1973		
NASA HQ	1,658	1,534	1,606	1,619	1,708	1,673	1,734	1,747		
ARC 1/	1,713	1,713	1,691	1,645	1,724	1,754	1,776	1,740		
DFRF	499	498	514	546	566	544	531	509		
BSFC2/	3,535	3,562	3,641	3,666	3,808	3,871	3,936	3,852		
KSC	2,291	2,264	2,234	2,270	2,404	2,377	2,408	2,516		
LaRC	3,094	3,125	3,167	3,207	3,407	3,472	3,504	3,389		
LeRC	2,901	2,907	2,964	3,061	3,168	3,181	3,172	3,368		
JSC	3,616	3,563	3,617	3,640	3,796	3,877	3,886	3,896		
MSFC	3.646	3,677	3,808	4,014	4,336	4,337	4.574	5,287		
NASA Pasadena Office				·	·	35	39	39		
JSSC	111	108	108	94	72	76				
NFF	406	409	429	426	437	441	447	434		
TOTAL	23,470	23,360	23,779	24,188	25.426	25 638	26.007	26,777		

Includes Temporary Personnel 1/Includes DFRF After FY 1981

Excludes Employees in the Youth Program 2/includes WFF After 1981

The Year In Review

Onboard At End Of Fiscal Year*

	FY 1972	FY 1971	FY 1970	FY 1969	FY 1968	FY 1967	FY 1966	FY 1965	FY 1964
NASA Headquarters	1,755	1,895	2,187	2.293	2,310	2.373	2.336	2,135	2.158
Ames Research Center	1,844	1,968	2,033	2,117	2,197	2,264	2,310	2,270	2.204
Dryden Flight Research Facility	539	579	583	601	622	642	662	669	619
Electronics Research Center			592	951	950	791	555	250	33a/
Goddard Space Flight Center	4,178	4,459	4,487	4.295	4.073	3.997	3.958	3.774	3.675
Kennedy Space Center	2,568	2,704	2,895	3,058	3,044	2,867	2,669	2,464	1,625
Langley Research Center	3,592	3,830	3,970	4.087	4,219	4,405	4.485	4.371	4,330
Lewis Research Center	3,866	4,083	4,240	4,399	4,583	4.956	5,047	4,897	4.859
Johnson Space Center	3,935	4,298	4,539	4,751	4,956	5,064	4,889	4,413	4,277
Marshall Space Flight Center	5,555	6,060	6,325	6,639	6,935	7,602	7,740	7,719	7,679
NASA Pasadena Office	40	44	72	80	79	91	85	19	b/
Pacific Launch Operations							c/	21	22
Space Nuclear Systems Office	45	89	103	104	108	113	115	116	112
Wallops Flight Facility	465	497	522	554	565	576	563	554	530
Western Support Office					d/	119	294	377	376
TOTAL	28,382	30,506	32,548	33,929	34,641	35,860	35,708	34,049	32,499
	EV 1089	EV 1083	EV 4084	EV 4080	EV 4050				
	FY 1963	FY 1962	FY 1961	FY 1960	FY 1959				
NASA Headquarters	FY 1963	FY 1962	FY 1961 735	FY 1960 587	FY 1959 429				
NASA Headquarters Ames Research Center	FY 1963 2,001 2,116	FY 1962 1,477 1,658	FY 1961 735 1,471	FY 1960 587 1,421	FY 1959 429 1,464		Includes Te	emporary Pe	ersonnel
NASA Headquarters Ames Research Center Dryden Fight Research Facility	FY 1963 2,001 2,116 616 250(FY 1962 1,477 1,658 538	<u>FY 1961</u> 735 1,471 447	FY 1960 587 1,421 408	FY 1959 429 1,464 340		*Includes Te	emporary Po	ersonnel
NASA Headquarters Ames Research Center Dryden Flight Research Facility Electronics Research Center Ordford Research Center	FY 1963 2,001 2,116 616 25a/	FY 1962 1,477 1,658 538	FY 1961 735 1,471 447	FY 1960 587 1,421 408	FY 1959 429 1,464 340		*Includes Te a/Figures Fo	emporary Pe or North Eas	ersonnel stern Office
NASA Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kanadt Space Filght Center	FY 1963 2,001 2,116 616 25a/ 3,487	FY 1962 1,477 1,658 538 2,755	FY 1961 735 1,471 447 1,599	FY 1960 587 1,421 408 1,255	FY 1959 429 1,464 340 398		*Includes Te a/Figures Fo	emporary Pe or North Eas	ersonnel stern Office
NASA Headquarters Ames Research Center Dryden Flight Research Facility Electronics Research Center Goddard Space Flight Center Kennedy Space Center	FY 1963 2,001 2,116 616 25a/ 3,487 1,181	FY 1962 1,477 1,658 538 2,755 339	FY 1961 735 1,471 447 1,599	FY 1960 587 1,421 408 1,255	FY 1959 429 1,464 340 398		*Includes Te a/Figures Fo b/Prior Years	emporary Pe or North Eas s Figures In	ersonnel stern Office cluded in WSO
NA3A Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kennedy Space Center Langley Research Center	FY 1963 2,001 2,116 616 25a/ 3,487 1,181 4,220	FY 1962 1,477 1,658 538 2,755 339 3,894	FY 1961 735 1,471 447 1,599 3,338	FY 1960 587 1,421 408 1,255 3,203	FY 1959 429 1,464 340 398 3,624		*Includes Te a/Figures Fo b/Prior Years	emporary Pe or North Ea: s Figures In	ersonnel stern Office cluded in WSO
NASA Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kennedy Space Center Langley Research Center Lewis Research Center Ishases Stees Center	FY 1963 2,001 2,116 616 25a/ 3,487 1,181 4,220 4,697 2,345	FY 1962 1,477 1,658 538 2,755 339 3,894 3,800	FY 1961 735 1,471 447 1,599 3,338 2,773	FY 1960 587 1,421 408 1,255 3,203 2,722	FY 1959 429 1,464 340 398 3,624 2,809		*Includes Te a/Figures Fo b/Prior Years c/Effective in	emporary Pr or North Ea: s Figures In 1966, PLC	ersonnel stern Office cluded in WSO DO Activity Was
NASA Headquarters Ames Research Center Dryden Flight Research Facility Electronics Research Center Goddard Space Flight Center Kennedy Space Center Langley Research Center Lewis Research Center Johnson Space Center Hensbell Space Flight Center	FY 1963 2,001 2,116 616 258/ 3,487 1,181 4,220 4,697 3,345 7,222	FY 1982 1,477 1,658 538 2,755 339 3,894 3,800 1,786	FY 1961 735 1,471 447 1,599 3,338 2,773 794	FY 1960 587 1,421 408 1,255 3,203 2,722 in GSFC	FY 1959 429 1,464 340 		*Includes Te a/Figures Fo b/Prior Years c/Effective ir Was Merge	emporary Pe or North Eas s Figures In n 1966, PLC ed Under KSC	ersonnel stern Office cluded in WSO DO Activity Was
NASA Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Langley Research Center Lewis Research Center Johnson Space Center Marshall Space Filght Center Mask Research Center	FY 1963 2,001 2,116 616 25a/ 3,487 1,181 4,220 4,697 3,345 7,332	FY 1982 1,477 1,658 538 2,755 339 3,894 3,800 1,786 6,843	FY 1961 735 1,471 447 1,599 3,338 2,773 794 5,948	FY 1960 587 1,421 408 1,255 3,203 2,722 in GSFC 370	FY 1959 429 1,464 340 398 3,624 2,809		*Includes Te a/Figures Fo b/Prior Years c/Effective in Was Merge	emporary Pro or North East s Figures Int 1966, PLC d Under KSC	ersonnel stern Office cluded in WSO DO Activity Was
NASA Headquarters Ames Research Center Dryden Flight Research Facility Electronics Research Center Goddard Space Flight Center Kennedy Space Center Langley Research Center Lewis Research Center Johnson Space Flight Center Marshall Space Flight Center NASA Pasadena Office Dublic Lewis Research	FY 1963 2,001 2,116 616 25a/ 3,487 1,181 4,220 4,697 3,345 7,332	FY 1962 1,477 1,658 538 2,755 339 3,894 3,804 3,800 1,786 6,843	FY 1961 735 1,471 447 1,599 	FY 1960 587 1,421 408 1,255 	FY 1959 429 1,464 340 398 3,624 2,809 -		*Includes Te a/Figures Fo b/Prior Years c/Effective ir Was Merge d/Effective i	emporary Pe or North Eau s Figures Inu n 1966, PLC d Under KSC n 1968, WS	ersonnel stern Office cluded in WSO DO Activity Was C Was Disestablished
NASA Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kennedy Space Center Langley Research Center Johnson Space Center Marshall Space Filght Center MASA Pasadena Office Pacific Laurch Operations Space Marter Office	FY 1983 2,001 2,116 616 258/ 3,487 1,181 4,220 4,697 3,345 7,332 7,332	FY 1962 1,477 1,658 538 2,755 339 3,894 3,800 1,786 6,843	FY 1961 735 1,471 447 1,599 3,338 2,773 794 5,948	FY 1960 587 1,421 408 1,255 3,203 2,722 in GSFC 370	FY 1959 429 1,464 340 398 3,624 2,809		*Includes Te a/Figures Fo b/Prior Years c/Effective ir Was Merge d/Effective ir And Elem	emporary Pe or North Ea: s Figures In: n 1966, PLC d Under KSC n 1968, WS ents Merged	ersonnel stern Office cluded in WSO DO Activity Was C O Was Disestablished With NaPO
NASA Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kennedy Space Center Lawis Research Center Johnson Space Center Marshall Space Filght Center NASA Pasadena Office Pacific Launch Operations Space Nuclear Systems Office	FY 1963 2,001 2,116 616 25a/ 3,487 1,181 4,220 4,697 7,332 7,332 17 96	FY 1962 1,477 1,658 538 - 2,755 339 3,894 3,800 1,786 6,843 	FY 1961 735 1,471 447 1,599 3,338 2,773 794 5,948	FY 1960 587 1,421 408 1,255 3,203 2,722 in GSFC 370	FY 1959 429 1,464 340 398 3,624 2,809 		*Includes Te a/Figures Fo b/Prior Years c/Effective in Was Merge d/Effective in And Elem	emporary Pr or North Ea: s Figures In h 1966, PLC hd Under KSC h 1968, WS ents Merged	ersonnel stern Office cluded in WSO DO Activity Was C O Was Disestablished With NaPO
NA3A Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kannedy Space Center Langley Research Center Lawis Research Center Johnson Space Center Marshall Space Filght Center MASA Pasadena Office Pecific Launch Operations Space Nuclear Systems Office Wallops Filght Facility Warders Office	FY 1963 2,001 2,116 616 25a/ 1,181 4,220 4,697 3,345 7,332 7,332 17 96 96 493	FY 1962 1,477 1,658 538 - 2,755 339 3,894 3,800 1,786 6,843 - - - - - - - - - - - - - - - - - - -	FY 1961 735 1,471 447 1,599 3,338 2,773 794 5,948 - - - 4 302	FY 1960 587 1,421 408 1,255 3,203 2,722 in GSFC 370 370 	FY 1959 429 1,464 340 398 3,624 2,809 		*Includes Te a/Figures Fo b/Prior Years c/Effective ir Was Merge d/Effective ir And Elem	emporary Pe or North Ea: s Figures In: h 1966, PLC hd Under KSC h 1968, WS ents Merged	ersonnel stern Office cluded in WSO DO Activity Was C Was Disestablished With NaPO
NASA Headquarters Ames Research Center Dryden Filght Research Facility Electronics Research Center Goddard Space Filght Center Kennedy Space Center Langley Research Center Johnson Space Center Marshall Space Filght Center NASA Pasadena Office Pacific Lanch Operations Space Nuclear Systems Office Walops Filght Facility Western Support Office	FY 1963 2,001 2,116 258/ 3,467 1,181 4,220 4,697 7,332 7,332 17 96 493 308	FY 1962 1,477 1,658 538 	FY 1961 735 1,471 447 1,599 3,338 2,773 794 5,948 4 4 302 60	FY 1960 587 1,421 408 1,255 3,203 2,722 in GSFC 370 	FY 1959 429 1,464 340 398 3,624 2,809 		*Includes Te a/Figures Fo b/Prior Years c/Effective ir Was Merge d/Effective ir And Elem	emporary Pe or North Ea: s Figures In n 1966, PLC nd Under KSC n 1968, WS ents Merged	ersonnel stern Office cluded in WSO DO Activity Was C O Was Disestablished With NaPO

Employment Summary

9/30/90

Full - Time Permanent and Other Employees*

	OAET			OSSA		os	F				
	ARC	LARC	LERC	GSFC	KSC	JSC	MSFC	SSC	HQ	Total NASA	JPL
Fuil - Time Permanent Employees	2,205	2,961	2,728	3,873	2,466	3,615	3,619	192	1,966	23,625	
Other than Permanent Employees	74	152	92	119	76	112	115	14	187	941	-
Total	2,279	3,113	2,820	3,992	2,542	3,727	3,734	206	2,153	24,566	5,920

Full - Time Permanent Employee Occupational Breakdown

	ARC	LARC	LERC	GSFC	KSC	JSC	MSFC	SSC	HQ	Total NASA	JPL*
S&E	1,183	1,434	1,500	2,136	1,468	2,360	2,376	103	571	13,131	3,664
Profi Admin.	345	304	284	786	406	611	605	55	970	4,366	878
Cierical	216	281	243	434	319	446	466	32	415	2,852	607
Tech. Support	139	930	297	442	268	189	172	2	7	2,446	385
Wage System	322	12	404	75	5	9	0	0	3	830	386
Total	2,205	2,961	2,728	3,873	2,466	3,615	3,619	192	1,966	23,625	

* Does Not Include Non-Ceiling Employees

otal NASA Civil Service Workforce

By Installation End FY 1981-1990

Minorities as Percent of Permanent Employees

C-30

Women as Percent of Permanent Employees

C-31

