

Wave 4 Rebanding Detail

Canadian Regions 2 and 7

Presented at:

Wave 4 Rebanding Summit Cleveland OH June 7, 2007

Prepared by:

New York State Statewide Wireless Network, and Syracuse Research Corporation

Matthew Davis, Margaret Daly, and Sean O'Hara

UNCLASSIFIED

This Will Be Complex

- For Regions 2, 3, and 7, New York State Statewide Wireless Network (SWN) has offered to facilitate, and if necessary, execute the frequency reassignments in order to complete Wave 4 Rebanding
- NYS/SWN has the capabilities to handle this task
 - Has developed some very powerful spectrum engineering tools
 - Able to not only handle massive and complex frequency optimization problems, but able to auto-document all results in an easy to navigate fashion

 - \pm Self creation of fully formatted DOC, XLS and PPT files
 - \in Self creation of complex, fully linked active html/java web entities

First things first...

- What assignments would we be generating?
- Existing Licenses and "Freeze STAs" for:
 - 1. Region 2
 - NPSPAC Assignments
 - PS "Old Block" Assignments
 - 2. Region 7 below Region 2
 - NPSPAC Assignments
 - Some if not all PS "Old Block" Assignments
 - 3. Region 3
 - NPSPAC Assignments? possible if necessary
 - PS "Old Block" Assignments? possible if necessary
 - 4. Region 7 below Region 3
 - NPSPAC Assignments? possible if necessary
 - Some if not all PS "Old Block" Assignments? possible if necessary

Need to do all of the above in make this all work

First things first...

- Before generating assignments we need:
 - 1. Incumbents or Constraints
 - What needs to be "worked around"
 - Outside Assignments: sites > 140+ km from border
 - IMPLICATION: Wave 1 Needs to Be Wrapped Up (or assignments defined)
 - Possibly...Canadian Region 3 Assignments
 - 2. "Targets" for Reassignment (non-incumbents)
 - Licenses and "Freeze STAs"
 - All border area sites will retain same number of channels
 - 3. Co/Adjacent Channel Compatibilities
 - Contour intersections
 - Existing relationships
 - 4. Initial frequency availability for "Targets"
 - Based upon (3), as well as actual spectrum utilization of incumbents
- Then we can use optimization tools (genetic algorithm) to generate the rebanding channel assignments.

Overview

1. Details of the Wave 4 re-banding strategy for Regions 2, 3, and 7.

- £ Database download
- € Channel Definitions
- £ Co-channel / Adjacent channel allowances
- \in Initial channel availability
- 2. Define rules guiding the re-banding process.
 - £ Dual Allocation Channels
 - £ Area Licenses
 - $\pm~$ ITAC / Low Power

Step 1: Build a transmitter database

- 1. Transmitter information is downloaded from the FCC (and possibly other data sources).
 - LMR Commercial/Private Licenses (including area wide)
 - Old Block and NPSPAC
 - Only active licenses and STA's
 - Sprint / NEXTEL licenses are being excluded from re-assignment, and consideration as incumbents.
- 2. Some Additional Filtering
 - Limiting ourselves to bounding region (approx 1 million sq km):

```
Longitude: (84W, 71W) Latitude: (39N, 46N)
```

This includes: Border Regions 2, 3, and 7 (below 2 and 3)

VIRELESS WIRELESS

Step 2: Define Post Re-banding Channel Structure

- 1. New Channel Assignments are based on the post re-banding plan structure for Regions 2, 3, and 7.
 - "Outside Region" transmitters are treated as incumbents.
 - \pm NPSPAC will be shifted down 15 MHz.
 - E Exact re-banding move for old block incumbents still not completely defined
 - Mutual Aid and Low Power channels are treated as incumbents in all regions.
 - \pm These channels will also be shifted down 15 MHz.
 - All other channels will be assigned based on optimization algorithm (genetic algorithm).

Current Regional Alignment: Border Region 2, Border Buffer Region 7, and Non-Border Areas

UNCLASSIFIED

Proposed Regional Alignment: Border Region 2, Border Buffer Region 7, and Non-Border Areas

Existing Co-Channel Rules/Protections

Victim

	Channel Type	Old Block	NPSPAC		
Interferer	Old Block	DHAAT (§90.621)	None		
	NPSPAC	None	Contours (Regional Plans)		

Existing Adj-Channel Rules/Protections

Victim

	Channel Type	Old Block	NPSPAC		
ferer	Old Block	None Required	None		
Inter	NPSPAC	None	Contours (Regional Plans)		

Step 3: Determine Co / Adj Channel Allowances

- Contour Intersections are used to determine both cochannel and adjacent channel allowances.
 - Old Block contours calculated using FCC R6602 contours (can also use DHAAT tables for if desired)
 - \in F(50,50) at 40 dBu (service contour)
 - £ F(50,10) at 42 dBu (adjacent channel interference contour) *
 - £ F(50,10) at 22 dBu (co-channel interference contour)
 - NPSPAC contours are calculated using Okumura Suburban model
 £ 40 dBu, 25 dBu, 5 dBu contours
 - * An adjacent channel interference contour is being used for Old Block in order to compare the Old Block to NPSPAC adjacent channel interactions. An ACCPR of 20 dB is utilized)

Adjacent NPSPAC/Old Block

16K0F3 to NPSPAC 12.5 kHz Offset: ~21 dB ACCPR

Adjacent NPSPAC/Old Block

Analog 5 kHz to NPSPAC 12.5 kHz Offset: ~24 dB ACCPR

UNCLASSIFIED

Syracuse Research Corporation

Adjacent NPSPAC/Old Block

OpenSky to NPSPAC 12.5 kHz Offset: ~25 dB ACCPR

Adjacent NPSPAC/Old Block

EDACS Wideband to NPSPAC 12.5 kHz Offset: ~26 dB ACCPR

Adjacent NPSPAC/Old Block

EDACS NPSPAC to NPSPAC 12.5 kHz Offset: ~31 dB ACCPR

Frequency Offsets between NPSPAC and Old Block after Re-banding

Frequency Offsets between NPSPAC and Old Block after Re-banding

Syracuse Research Corporation

Frequency Offsets between NPSPAC and Old Block after Re-banding

NPSPAC in Region 7 will not be co-channel to OB in region 2 (or 3)

Other cases

- Antenna heights less than 10 m are given 20 km contours
 - TSB-88.3-C doesn't define contours for this case.
 - Sites must be protected
- Area wide licenses are given county/state wide contours with 5mi buffer

Build Co/Adj Channel Matrices

Determine Cochannel /Adj channel Allowances

Build Co/Adj Channel Matrices Using Contours:

No Interference

Build Co/Adj Channel Matrices Using Tile based methods

- Normally, we handle large scale problems using tile based propagation modeling and reliability degradation techniques
- A fuzzy logic variable (reliability degradation) corresponds to a channel sharing allowance between the two corresponding transmitters.
- Gives the best results, maximum capacity, and better interference prediction
- For this process, we are trying to go what with most folks are comfortable with Co-channel Allowances Adjacent-channel Allowances

Build Co/Adj Channel Matrices Using Contours

•In the non-fuzzy approach, a logical '1' corresponds to a co or adjacent channel sharing allowance between the two corresponding transmitters (corresponding to contour intersections)

Adjacent-channel Allowances

Build Co/Adj Channel Matrices Using Real Assignments

- Contours are deemed secondary in favor of what is actually assigned/deployed.
- Here both transmitters are co-channel in real life even if they have intersections

Determine Co / Adj Channel Allowances EXAMPLE

- Using a logical 'OR' operator to combine the two results:

Final Allowance Matrix

Co-channel: Field Assignments

Equivalent Logical Operation:

 $1 \lor 0 \equiv 1$

- $0 \lor 1 \equiv 1$
- $0 \lor 0 \equiv 0$

Note: There will be two final allowance matrices (one for co-channel and one for adjacent channel).

Step 4: Compatibility Determination

Syracuse Research Corporation

Step 4: Determine Initial Channel Availability for Non-incumbents

Incumbent

Co-channel Interference

Incumbent Tower

Incumbent = { f_1 }

Border Region Tower

Border _ Re gion = { f_1, f_2, f_3 }

Initial pool of available frequencies for the Canadian Border Region this tower is located in.

- An optimization algorithm (genetic) is used to find optimal channel assignments for the non-incumbent transmitters.
 - 1. Need to optimally assign remaining channels and meet site capacity requirements.
 - 2. Need to avoid co/adj channel interference with other border sites while doing so.
 - 3. Algorithm will run until objective function levels off (optimal solution has been reached).

Step 5: Genetic Algorithm

Start with a number of quasi-randomly generated assignment matrices

Syracuse Research Corporation

Step 5: Genetic Algorithm

Select two parent assignments (solution sets) at random

VIRTLESS WETWORK UNCLASSIFIED

Step 5: Genetic Algorithm

Syracuse Research Corporation

Step 5: Genetic Algorithm

Analyze the priority-weighted capacity achieved by each solution

Step 5: Genetic Algorithm

• The algorithm is run until the objective optimal assignments level off (no better assignments are possible).

Output: Optimized Channel Assignments

Final Channel Assignment Matrix

Output from genetic algorithm represents optimal channel assignments for Canadian Border Regions.

Process Summary

- Wave 4 Re-banding is being conducted in 5 steps:
 - 1. Build a Canadian Border Transmitter Database
 - 2. Define Post Re-banding Channel Structure
 - 3. Determine Co-channel / Adjacent channel allowances between transmitters.
 - 4. Determine initial channel availability for each transmitter
 - 5. Find optimized channel assignments using genetic algorithm.

These Assignments will now need to be reviewed by the licensees and RPCs

Post Rebanding: HTML Documentation Hierarchy

HTML: Example

Before and After Information will be available for each site.

Site: CSCQ-V60

Site Parameters

CSCQ-V60		
CSCQ-V60*		
<u>WQFG703 1</u>		
0.56961 m		
<u>NY</u>		
PRB		
Chautauqua		
SWN PRB Itr4 (Nov2006 sites)		
Notional		
-79.44227 (79-26-32.2 W)		
42.10422 (42-6-15.2 N)		
499.0 m		
48.2 m		
24.1 m		
85.1 W (49.3 dBm)		
<u>852.8375 (800-74)</u>		

TOWAIR Report

CO/ADJ Channel Report

Site Propagation

Site Reliability

Site Coverage (95% Reliability)

Site MLS Area

Scroll down for more

HTML: Example

Before and After Information will be available for each site.

CO/ADJ Channel Impacts: CSCQ-V60

View Site Channel Compatability

Co-Channel Assignments

Site ${ m I\!D}$ and Name	Location (NAD83)	Distance	Height	Freq (Chan)	ERP	Degradation to CSCQ-V60	Degradation to Co-Channel Site
2 <u>RB1013C</u> Silver Creek T2	42-33-15.2 N 79-6-49.8 W 42.55422 N -79.11383 W	56.9 km 35.3 miles	68.6 m 225.0 feet	851.6875 (800-28) 852.8375 (800-74)	125.9W 51.0dBm	0.00%	0.00%

Upper Adjacent Channel Assignments

None

Lower Adjacent Channel Assignments

None

Co- and Adjacent Channel Assignments

Some Outstanding Questions

- Area Licenses
 - How do we determine what border region area licenses belong to? This is necessary in order to determine what pool of post re-banding channels are available to an area license.
 - Public safety service code but with non-public safety frequencies in the mix.
 - £ Example: Callsign WNZB282
 - Service Code: YF (PS Ntl Plan, 821-824 / 866-869 MHz) Assigned freqs = {856.8875,857.8875,858.8875,859.8875,860.8875} Yet these freqs are not public safety in any border region...
- Simulcast Systems
 - What is the best way to capture when a simulcast system is being used.
 - Want to keep assignments co channel than need to be co-channel

