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Abstract. This paper presents a calculation of the magnetic small-angle neutron scattering cross-section
resulting from a dilute ensemble of superparamagnetic particles exhibiting uniaxial magnetic anisotropy.
We focus on the two experimentally relevant scattering geometries in which the incident neutron beam is
perpendicular or parallel to an applied magnetic field, and we discuss several orientations of the anisotropy
axes with respect to the field. Magnetic anisotropy has no influence on the magnetic small-angle neutron
scattering when the particles are mobile, as is the case e.g. in ferrofluids, but, when the particles are
embedded in a rigid non-magnetic matrix and the orientations of the anisotropy axes are fixed, significant
deviations compared to the case of negligible anisotropy are expected. For the particluar situation in
which the anisotropy axes are parallel to the applied field, closed-form expressions suggest that an effective
anisotropy energy or anisotropy-energy distribution can be determined from experimental scattering data.

PACS. 61.12.Ex Neutron scattering techniques (including small-angle scattering) – 75.30.Gw Magnetic
anisotropy – 75.50.Tt Fine-particle systems; nanocrystalline materials

1 Introduction

Isolated single-domain particles of a ferromagnetic mate-
rial become superparamagnetic when the temperature T
is increased until it reaches the blocking temperature TB,
where the thermal energy kBT is comparable in magnitude
to the energy barrier for magnetization reversal. Within
the timescale of experiment, the magnetization will then
adjust by thermal activation to the equilibrium value for
the respective applied magnetic field and temperature; su-
perparamagnetic systems are therefore non-hysteretic. A
central parameter for the magnetic properties of such sys-
tems is the total anisotropy energy EA, because it governs
the field and temperature dependence of the magnetiza-
tion isotherm. To a first approximation, the magnetization
isotherms in the superparamagnetic regime are described
by the Langevin function, which is independent of EA, but
the detailed field dependence of the magnetization does
depend measurably on the magnitude of the anisotropy
and on the orientation distribution of the easy axes. The
magnitude of EA can be estimated from the size and
shape of the particles and data for the magnetocrystalline
anisotropy of the coarse-grained material, but such esti-
mates are often inaccurate, since they neglect the effects of
lattice defects and the contribution of surface anisotropy,
for which there are few reliable data. When the particle-
size distribution in a sample is monodisperse, then EA can
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be determined by analysis of experimental magnetization
isotherms or by measurement of the blocking temperature,
which marks the transition between superparamagnetic
behaviour and stable ferromagnetism. There have been
many such studies, but important aspects of superparam-
agnetism remain the subject of active research, including
the role of interparticle interactions and the relationship
between the microstructure and the magnetic properties.
A challenge for comparing model and experiment arises
from the fact that in real materials the values of the rele-
vant parameters of the microstructure – the particle size
and the interparticle spacing – generally do not assume
unique values; instead, these values are characterized by
distributions of finite width that are not generally known
to the desired accuracy.

The technique of small-angle neutron scattering
(SANS) has contributed to the understanding of super-
paramagnetism, firstly because magnetic SANS provides
information regarding the interparticle interactions and,
secondly, because nuclear SANS allows the particle-size
distribution to be quantified, and it provides at least qual-
itative information on the interparticle spacing. Among
the topics investigated using SANS are e.g. the shape
anisotropy of precipitates [1–3], the intraparticle struc-
ture (specifically, the possible existence of a non-magnetic,
“dead” surface layer on the particles) [4–10], ferromag-
netic correlations between particles [6,8,11–16], and the
effect of a distribution of particle sizes on the magnetic
SANS [17]. Moreover, inelastic neutron scattering and
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neutron spin-echo spectroscopy have provided evidence for
the existence of a dual spin dynamics in superparamag-
netic systems [18–21], namely longitudinal fluctuations of
the magnetization vector among the easy axes of mag-
netization and collective magnetic oscillations of the spin
system about an easy axis.

In all of the above-mentioned SANS studies, the influ-
ence of a magnetic anisotropy on the direction of a par-
ticle’s magnetization vector M is either not relevant or
ignored, and the data analysis is based on the assumption
that the magnetic energy of a particle depends only on
the orientation of the magnetic moments relative to that
of an external magnetic field, resulting in Langevin statis-
tics. However, as is well known from magnetization stud-
ies (see, e.g., Refs. [22–30]), the presence of a direction of
easy magnetization, induced e.g. by the crystal structure,
mechanical stress, the surface or by the shape of the par-
ticles, causes deviations from Langevin behaviour. Since
magnetic neutron scattering depends on the orientation
of M through the Halpern-Johnson vector [31,32], it is
straightforward to show that anisotropy also has an effect
on the magnetic SANS cross-section of superparamagnetic
particles – an influence that is expected to become more
pronounced the smaller the particle size [33].

In this work, we explore the effect of magnetic
anisotropy on the magnetic SANS, and we suggest that the
analysis of magnetic-field dependent SANS data may pro-
vide an alternative method for measuring the anisotropy
energy EA such that EA may be determined for individual
size classes in a sample with a distribution of particle sizes.
SANS may thereby supplement other methods commonly
used to derive quantitative information on the anisotropy
in a given sample, such as DC and AC-magnetization mea-
surements, muon-spin relaxation, Mössbauer spectroscopy
and inelastic neutron scattering [21].

2 The small-angle neutron scattering
cross-section of a dilute assembly
of superparamagnetic particles
with anisotropy

In this section, we analyze the SANS of an array of super-
paramagnetic particles in a non-magnetic homogeneous
matrix, and we explicitly account for the existence of
a direction of easy magnetization within the particles.
For such a sample, the macroscopic differential scattering
cross-section dΣ/dΩ for elastic scattering at scattering
vector q, arising from an arrangement of N particles at
positions xj , can be written as [31,32,34–36]

dΣ
dΩ

(q) =
1
V

∣∣∣∣∣∣
N∑
j=1

Fj(q) exp (i q · xj)

∣∣∣∣∣∣
2

, (1)

where V is the scattering volume, and Fj(q) denotes the
form factor of the jth particle. We assume that the par-
ticles and the matrix have uniform atomic density and
composition, and that the particles have a magnetization

uniform in magnitude and direction; these assumptions ex-
clude a possible difference between nuclear and magnetic
particle form factors. If the scattering system is sufficiently
dilute, interparticle interference effects can be neglected,
and the SANS cross-sections of the individual particles are
additive, so that equation (1) simplifies to

dΣ
dΩ

(q) =
1
V

N∑
j=1

|Fj(q)|2

=
1
V

N∑
j=1

[
(∆δnuc)2 + δ2

mag sin2 αj
]
h2
j(q). (2)

Here, the quantity (∆δnuc)2 denotes the squared differ-
ence in the nuclear scattering-length densities between
particle j and the non-magnetic matrix, δ2

mag is the mag-
netic scattering-length density contrast of the particle,
αj denotes the angle between the scattering vector q
and the particle magnetization vector Mj [31,32], and

h2
j(q) =

∣∣∣∫Vp,j exp (i q · x) d3x
∣∣∣2. In equation (2), we have

neglected the interference between the nuclear and the
magnetic scattering amplitudes. If we further consider the
scattering from N particles with identical size or, alter-
natively, scattering only by the particles of one size class,
then equation (2) reduces to

dΣ
dΩ

(q) =
N

V

[
(∆δnuc)2 + δ2

mag 〈sin2 α〉
]
h2(q), (3)

where 〈sin2 α〉 is the average over all particles in that size
class.

The factor 〈sin2 α〉 in equation (3) may vary as a func-
tion of an applied magnetic field Ha. In an experiment in
which only Ha is changed, the variation of 〈sin2 α〉 can
be accurately measured. As we shall show below, 〈sin2 α〉
depends on the anisotropy energy EA, and it is therefore
possible to obtain information regarding EA from scatter-
ing data. The remainder of this article is mainly concerned
with the computation of ensemble averages of 〈sin2 α〉 for
experimentally accessible scattering geometries.

For a general orientation of the unit scattering vector
ε = q/q and of the unit magnetization vector m = M/Ms

of particle j, the function sin2 α can be expressed as [31,32]

sin2 α = 1− (ε ·m)2

= 1− (sinϑ sin γ cos(ξ − β) + cosϑ cos γ)2
, (4)

where ε = (sinϑ cos ξ, sinϑ sin ξ, cosϑ), m = (sin γ cosβ,
sinγ sinβ, cos γ) (compare Fig. 1), and Ms is the satura-
tion magnetization of a particle with volume Vp. For con-
ciseness, we have omitted the index j, and we will adhere
to this in the following.

For the most common scattering geometries used in
standard magnetic SANS experiments, equation (4) can
be simplified. For example, consider a magnetic field Ha

applied to the sample in direction ez = (0, 0, 1): (i) If
we take the incoming neutron beam, characterized by
its wavevector k0, along ex = (1, 0, 0), perpendicular
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Fig. 1. The angles (γ, β) and (ψ, ϕ) define the respective
orientations of the unit magnetization vector m and the unit
vector n along the anisotropy axis.

to Ha, then the scattering vector q lies in the plane
containing Ha and ey = (0, 1, 0); hence, ξ = π/2 and
q = q (0, sinϑ, cosϑ). (ii) If we take k0 along ez, parallel
to Ha, then q lies in the plane given by ex and ey; thus,
ϑ = π/2 and q = q (cos ξ, sin ξ, 0). In the following, we
refer to case (i) as the perpendicular scattering geometry
and to case (ii) as the parallel geometry.

For the scattering geometries described above, the an-
gles ϑ (case (i)) and ξ (case (ii)) specify the position
of the scattering vector on the 2-dimensional detector,
and radially averaging equation (4) leads to the follow-
ing expressions:

sin2 α =
1

2π

2π∫
0

sin2 αdϑ = 1− 1
2

sin2 γ sin2 β − 1
2

cos2 γ

(5a)
for the perpendicular scattering geometry and

sin2 α =
1

2π

2π∫
0

sin2 αdξ = 1− 1
2

sin2 γ (5b)

for the parallel setup. We use the overline, sin2 α, to de-
note the average of the function sin2 α over the orientation
of the scattering vector, and we use the bracket, 〈sin2 α〉,
to denote averaging over the orientation of the magnetiza-
tion. Since SANS data obtained from isotropic microstruc-
tures are usually presented as a function of the modulus
q of the scattering vetor q, we focus here on the com-
putation of the radially-averaged scattering cross-section,
which is independent of the orientation of q. However, use-
ful information can sometimes be obtained by analyzing
the scattering measured along certain orientations on the
2-dimensional detector, as will be seen in Section 3.3 for
the ratio of the SANS cross-sections with q parallel and
perpendicular to the applied magnetic field Ha.

In order to calculate the magnetic-field dependent part
of the SANS cross-section from a dilute dispersion of non-
interacting superparamagnetic single-domain particles, we
have to carry out averaging of equations (5a) and (5b). Of

interest here is the case when the particles are embedded
in a solid non-magnetic matrix, so that the orientation
n = (sinψ cosϕ, sinψ sinϕ, cosψ) of the anisotropy axis
in each individual particle is fixed. The angular distribu-
tion of the anisotropy axes can then be described by the
orientation distribution function g(ψ,ϕ) [37] which is de-
fined so that

∫ 4π

0 g(ψ,ϕ) dΩn yields the total number N of
particles within the scattering volume. For a fixed orien-
tation (ψ,ϕ) of the anisotropy axis, one first has to ther-
mally average the radially averaged expressions sin2 α(m),
equations (5a, 5b), with respect to all possible orientations
of the reduced magnetization vector m and then perform
a statistical average over the weighting function g(ψ,ϕ).
In analogy to the well-known formalism developed e.g.
in references [24–26] for the calculation of magnetization
isotherms, the resulting expectation value 〈sin2 α〉 for a
monodisperse particle-size distribution is given by

〈sin2 α〉(h, k) =

4π∫
0


4π∫
0

sin2 α exp(−E/(kBT )) dΩm

4π∫
0

exp(−E/(kBT )) dΩm

 g(ψ,ϕ) dΩn

4π∫
0

g(ψ,ϕ) dΩn

· (6)

The total magnetic energy of a single particle is denoted
by E, kB is the Boltzmann constant, T denotes the ab-
solute temperature, and dΩm = sin γ dγ dβ and dΩn =
sinψ dψ dϕ are the elements of solid angle in the direc-
tion of m and in the direction of the anisotropy axis n,
respectively. See Figure 1 for an explanation of the angles
involved in the calculations.

We write the total magnetic energy E of a sin-
gle particle as the sum of a magnetic field energy
EH = −µ0Vp (M ·Ha) and of a contribution EA =
−KuVp (m · n)2 due to a uniaxial magnetic anisotropy
(compare Fig. 1),

E = EH +EA = −µ0VpMsHa cos γ

−KuVp (sinγ sinψ cos(β − ϕ) + cos γ cosψ)2 , (7)

where µ0 is the permeability of free space, and Ku >
0 denotes a uniaxial anisotropy constant. Higher-order
contributions to EA are neglected, and we restrict our
considerations to the case of a uniaxial anisotropy. A
cubic anisotropy-energy symmetry can be treated analo-
geously by considering the corresponding expansion for
EA (see, e.g., Eq. (5.1.8) in Ref. [38]). The particular ex-
ample of particles showing uniaxial anisotropy was merely
chosen because of mathematical convenience and in or-
der to demonstrate the effect. In experimental investiga-
tions of small magnetic particles, the physical origin of
the anisotropy may have one or more sources, such as sur-
face, shape or exchange effects, each of which can lead to
a different anisotropy symmetry. Nevertheless, once that
symmetry is known, its implementation in an expression
for E is straightforward.
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Fig. 2. (a) Magnetic-field parameter h plotted as a function of
the applied magnetic field µ0Ha; assumed particle diameter is
D = 5 nm, T = 295 K and Ms = 1434 kA/m. (b) Anisotropy
parameter k plotted as a function of particle size D, assuming
Ku = (4.53 × 105) J/m3 and T = 295 K.

By insertion of equation (7) into equation (6), it is seen
that the SANS cross-section depends on the magnitude of
the applied magnetic field Ha through the magnetic-field
parameter h = µ0VpMsHa/(kBT ) and on the anisotropy
constant Ku through the anisotropy parameter k =
KuVp/(kBT ). The typical range of experimental values
of these parameters can be seen in Figure 2, where we
plot h versus Ha for a spherical particle with a diame-
ter D = 5 nm, assuming Ms = 1434 kA/m, as for bulk
hcp-Co [39], and T = 295 K. Figure 2b depicts k as a
function of D at T = 295 K using the single-crystal value
Ku = (4.53 × 105) J/m3 for hcp-Co at T = 288 K [40].
Note that the value of k at the blocking temperature (of
uniaxial particles) is about k ≈ 25 [41], so that superpara-
magnetic behaviour is restricted to k . 25.

3 Results for the expectation value 〈sin2α〉

We have solved equation (6) numerically using Gauss-
Legendre integration [42]. For some special orientations
of the anisotropy axes, equation (6) can be integrated an-
alytically (see Sect. 3.2.1). Likewise, in the case of zero
anisotropy (k = 0), one obtains the following formulas by

evaluating equation (6) with k = 0:

〈sin2 α〉(h, k = 0) =
1
2

+
L(h)
2h

(8a)

for the perpendicular geometry and

〈sin2 α〉(h, k = 0) = 1− L(h)
h

(8b)

for the parallel geometry. L(h) = (cothh− 1/h) denotes
the Langevin function. Since L(h) ≈ h/3 for h� 1, equa-
tions (8a, 8b) both approach 2/3 as h → 0. As h → ∞,
equations (8a, 8b) have the limiting values of 1/2 and 1, re-
spectively. Therefore, in the case of negligible anisotropy,
the magnetic SANS of a dilute assembly of non-interacting
superparamagnetic particles can change as a function of
an applied magnetic field by 25% in the perpendicular
scattering geometry and by 50% in the parallel geometry.
In the following, we will label all calculated expectation
values as 〈sin2 α〉, and we refer to the text and the figure
captions for the respective orientations of the incoming
neutron beam, applied field and anisotropy axes.

3.1 Isotropic orientation of the anisotropy axes
with respect to the applied magnetic field

The orientation distribution function for an isotropic dis-
tribution of the anisotropy axes is g(ψ,ϕ) = N/(4π). The
numerical solutions to equation (6) are plotted in Fig-
ures 3a and b as a function of the magnetic-field parame-
ter h for several values of the anisotropy parameter k. As
can be seen, the presence of a preferred direction within
the particles has a strong effect in both scattering ge-
ometries on the expected magnetic SANS signal as com-
pared to the case of zero anisotropy (dashed lines). To
further illustrate this, in Figures 4a and b we plot the dif-
ference ∆〈sin2 α〉 between the respective expectation val-
ues of Figures 3a and b with and without anisotropy, i.e.
∆〈sin2 α〉 = |〈sin2 α〉(h, k) − 〈sin2 α〉(h, 0)|. When the in-
coming neutron beam is perpendicular to the applied field
(k0 ⊥ Ha, Fig. 3a), the expectation value 〈sin2 α〉 de-
creases with increasing field h (for fixed k), approaching a
limiting value of 1/2. For a given value of h, the signal in-
creases with increasing value of k, since the component of
the magnetization M perpendicular to the scattering vec-
tor q becomes stronger, and by virtue of equation (4) the
magnetic SANS increases. On the contrary, when k0 ‖ Ha

(Fig. 3b), the magnetic scattering signal at a given k in-
creases when h is increased, and, for fixed h, 〈sin2 α〉 de-
creases when k is increased. In the parallel geometry, the
scattering vector q is always perpendicular to Ha, and
increasing the field leads to an increase of the component
of M that is perpendicular to q. At a given h, an increased
k corresponds to a stronger component of M in the plane
of q; hence, 〈sin2 α〉 decreases in this situation. The k = 0
limiting values of 2/3 as h → 0 and 1/2 or 1 as h → ∞
are preserved in both geometries.
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Fig. 3. Numerical solution to equation (6) for the general case
of an isotropic distribution of uniaxial anisotropy axes. (a) In-
coming neutron beam perpendicular to the applied magnetic
field Ha (k0 ⊥ Ha). (b) k0 ‖ Ha. Plotted is the respective
expectation value as a function of the parameter h for k-values
of 3, 10 and 25 (from bottom to top in (a) and from top to
bottom in (b)). The dashed line in (a) and (b) refers, respec-
tively, to the analytical solution for the case of zero anisotropy
(k = 0), equations (8a, 8b).

In experimental studies, where anisotropy effects on
the magnetic SANS are generally ignored, an applied mag-
netic field of the order of µ0Ha

∼= 1 T is often assumed to
be sufficient to perfectly align the magnetic moments of
all particles along Ha. It is of interest to estimate the error
involved in this assumption. For a fully saturated sample,
〈sin2 α〉 ≡ 1/2 in the perpendicular scattering geometry
(compare Fig. 3a as h→∞). For spherical hcp-Co parti-
cles with a diameter D = 6 nm, Ku = (4.53× 105) J/m3

and Ms = 1434 kA/m, a field µ0Ha = 1 T corresponds
to h ≈ 40 at room temperature, and k ≈ 13. The relative
error in the magnetic SANS cross-section in the case of
zero anisotropy, [1−0.5/〈sin2 α〉(h = 40, k = 0)], amounts
to about 2%. The presence of a non-negligible effective
anisotropy (k = 13) increases the relative error to about
5%. However, in view of the (5 − 10)% error that is in-
evitably introduced by the SANS-data reduction proce-
dure [43], this might be acceptable, at least for an isotropic
distribution of anisotropy axes.

Fig. 4. Plot of the difference ∆〈sin2 α〉 = |〈sin2 α〉(h, k) −
〈sin2 α〉(h, 0)| as a function of h for different values of k (see
inset) for the case of an isotropic distribution of anisotropy
axes considered in Figure 3. (a) k0 ⊥ Ha. (b) k0 ‖Ha.

If the magnetization vectors and the anisotropy axes
of the individual particles are statistically distributed in
thermal equilibrium, as is the case e.g. in a ferrofluid
(fluid matrix), then the following equation has to be
solved [24,25]

〈sin2 α〉(h, k) =

4π∫
0

4π∫
0

sin2 α exp(−E/(kBT )) dΩm dΩn

4π∫
0

4π∫
0

exp(−E/(kBT )) dΩm dΩn

·

(9)

As can be shown analytically using e.g. the procedure
outlined in the Appendix of reference [24], the solutions
to equation (9) for the two scattering geometries dis-
cussed above equal equations (8a, 8b), respectively, i.e. the
presence of uniaxial anisotropy does not affect the mag-
netic SANS of particles that are allowed to move freely
within the matrix. We have evaluated equation (9) nu-
merically and confirmed that the results agree with equa-
tions (8a, 8b); this provides a check of our numerical
procedure.
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3.2 Special orientations of the anisotropy axes

The influence of uniaxial anisotropy becomes more signif-
icant when one considers fixed orientations (ψ∗, ϕ∗) of the
anisotropy axes with respect to the direction of the exter-
nal magnetic field. Then, g(ψ,ϕ) dΩn = N δ(ψ−ψ∗) δ(ϕ−
ϕ∗) dψ dϕ, with δ(x) denoting the delta function, and the
total magnetic energy E of a single particle in equation (6)
is evaluated at the particular values of ψ∗ and ϕ∗. Such a
preferred orientation (texture) of the anisotropy axes with
respect to Ha might be realized experimentally by freez-
ing a ferrofluid in an applied magnetic field, by magnetic-
field annealing of an amorphous precursor material during
crystallization of the superparamagnetic particles, or by a
mechanical treatment such as cold rolling. We will now
discuss the solutions of equation (6) for the particular sit-
uations in which the anisotropy axes are oriented parallel
or perpendicular to the applied field.

3.2.1 Anisotropy axes parallel to the applied magnetic field

For the case in which all anisotropy axes lie parallel to
each other and parallel to the applied magnetic field Ha,
i.e. for ψ∗ = 0, we can evaluate equation (6) analytically
to obtain the following closed-form expressions:

〈sin2 α〉(h, k)=
a exp(b2)−b exp(a2)√
16πk [erfi(b)−erfi(a)]

−h
2−12k2−2k

16k2

(10a)

for the perpendicular scattering geometry and

〈sin2 α〉(h, k) =
b exp(a2)−a exp(b2)√
4πk [erfi(b)−erfi(a)]

+
h2+4k2−2k

8k2

(10b)

for the parallel scattering geometry, where a = (h −
2k)/(2

√
k), b = (h + 2k)/(2

√
k) and erfi(z) =

2/
√
π
∫ z

0
exp(t2) dt = −i erf(iz) denotes the error function

with complex argument. Equations (10a) and (10b) are
plotted in Figures 5a and b, respectively.

3.2.2 Anisotropy axes perpendicular to the applied magnetic
field

Figures 6a–d show the situation in which all anisotropy
axes are parallel to each other and perpendicular to Ha

(ψ∗ = π/2). In the perpendicular scattering geometry,
the magnetic scattering depends on the orientation ϕ of
the anisotropy axis n in the plane perpendicular to Ha.
When the anisotropy axis is not contained in the plane
formed by the scattering vector q and Ha then there is
always a component of the magnetization perpendicular
to q. Hence, for a given value of h, this component (and
hence the magnetic SANS) increases when the anisotropy
parameter k is increased. In this geometry, we therefore
expect the field dependence of the magnetic SANS to be

Fig. 5. The expectation value 〈sin2 α〉 plotted as a function of
h for several values of k for the case that all anisotropy axes
are parallel to each other and parallel to the applied magnetic
field Ha (ψ∗ = 0). (a) k0 ⊥ Ha. (b) k0 ‖ Ha. Solid curves:
equations (10a, 10b), respectively, with k = 1, 3, 5, 10, 25 (from
top to bottom in (a) and from bottom to top in (b)). Dashed
lines: equations (8a, 8b), respectively.

largest when ϕ∗ = 0 (or ϕ∗ = π) and to be smallest when
ϕ∗ = π/2 (or ϕ∗ = 3π/2). The solutions for the two ex-
treme situations ϕ∗ = 0 and ϕ∗ = π/2 are shown in Fig-
ures 6a and b, respectively. In Figure 6c, we have plotted
〈sin2 α〉 for the perpendicular geometry as a function of h
for fixed k = 3 and for different values of the angle ϕ∗,
illustrating the dependency of the magnetic SANS in this
geometry on the orientation of the anisotropy axis in the
plane perpendicular to Ha. On the contrary, for k0 ‖ Ha,
all orientations ϕ∗ are equivalent, and therefore all val-
ues of ϕ∗ lead to the same 〈sin2 α〉. Here, the presence of
an anisotropy perpendicular to Ha induces a component
of M parallel to q; hence, for a given h, 〈sin2 α〉 decreases
when k is increased.

In contrast to the general case of an isotropic distri-
bution of the anisotropy axes (Fig. 3), the limiting values
of 〈sin2 α〉 for the special orientations ψ∗ = 0 (Fig. 5)
and ψ∗ = π/2 (Fig. 6) take on different values from the
anisotropy-free case (k = 0) as h → 0. The magnetic
SANS signal is now expected to change by about 50 %
(see, e.g., Fig. 6a) as a function of the magnetic field h
as compared to a change by 25 % for the isotropic case in
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Fig. 6. The expectation value 〈sin2 α〉 plotted as a function of h for several values of k for the case that all anisotropy axes are
parallel to each other and perpendicular to the applied magnetic field Ha (ψ∗ = π/2). (a) k0 ⊥ Ha and ϕ∗ = 0. (b) k0 ⊥ Ha

and ϕ∗ = π/2. (c) k0 ⊥ Ha, k = 3 und ϕ∗ = 0, π/6, π/4, π/3, π/2 (from top to bottom). (d) k0 ‖ Ha and ϕ∗ arbitrary. Solid
curves: k = 1, 3, 5, 10, 25 (from bottom to top in (a) and from top to bottom in (b) and (d)). Dashed line in (a), (b) and (d):
equations (8a, 8b), respectively.

W (h, k) =

(∆δnuc)
2 + δ2

mag

�
a exp(b2)− b exp(a2)√
π k [erfi(b)− erfi(a)]

− h2 − 4k2 − 2k
4k2

�

(∆δnuc)2 + δ2
mag

�
b exp(a2)− a exp(b2)√
4π k [erfi(b)− erfi(a)]

+ h2 + 4k2 − 2k
8k2

� · (12)

the same scattering geometry (Fig. 3a). Therefore, large
errors in the magnetic SANS may result when an asymp-
totical value of 2/3 is assumed for 〈sin2 α〉 at zero field for
a textured sample.

3.3 Anisotropy of the scattering pattern

In addition to analyzing the total SANS cross-section
dΣ/dΩ using the radially-averaged expectation value
〈sin2 α〉, which is independent of the orientation of the
scattering vector q, one can also analyze the variation of
dΣ/dΩ as a function of the angle between q and the ap-
plied field Ha. In some instances this might be more con-
venient or more accurate than the analysis of the field de-
pendence of dΣ/dΩ. In the following, we consider the ratio
W of the total SANS cross-section [dΣ/dΩ]q‖Ha

with q
parallel to Ha (ϑ = 0 in Eq. (4)) to [dΣ/dΩ]q⊥Ha

with q

perpendicular to Ha (ϑ = π/2 in Eq. (4)). For a monodis-
perse system of isotropic particles, W can be written as
(compare Eq. (3))

W (h, k)=
[dΣ/dΩ]q‖Ha

[dΣ/dΩ]q⊥Ha

=
(∆δnuc)2+δ2

mag 〈sin2 α〉q‖Ha

(∆δnuc)2+δ2
mag 〈sin2 α〉q⊥Ha

·

(11)

Note that W is independent of q. In principle, all of
the calculations for the perpendicular scattering geome-
try (k0 ⊥Ha) discussed in the previous sections can now
be repeated in order to demonstrate the influence of a
preferred direction within the particles on W . However,
we focus here on the particular case of all anisotropy axes
aligned parallel to Ha (ψ∗ = 0), for which the following
closed-form solution exists:

(see equation (12) above.)



64 The European Physical Journal B

Fig. 7. Ratio W of the scattering cross-sections [dΣ/dΩ]q‖Ha
(ϑ = 0) and [dΣ/dΩ]q⊥Ha

(ϑ = π/2) (Eq. (12)) as a function
of h in the perpendicular scattering geometry (k0 ⊥ Ha). All
anisotropy axes are assumed to be parallel to Ha (ψ∗ = 0),
(∆δnuc)

2 = 0 and k = 0, 1, 3, 5, 10, 25 (from top to bottom).

Here, the parameters a and b and the function erfi(z) have
the same meaning as in equations (10). In Figure 7, we plot
W from equation (12) as a function of the magnetic-field
parameter h for several values of k, setting (∆δnuc)2 = 0,
i.e. we are considering purely magnetic scattering. A sep-
aration of nuclear and magnetic scattering contributions
can be achieved in experiment through the application of
a saturating magnetic field to the sample [44].

At zero field and for vanishing anisotropy, the magnetic
scattering pattern on the detector is isotropic (W = 1),
since the magnetization vectors of the individual particles
take on all orientations with equal probability. For an in-
creasing value of k and at a given h, the component mz of
the reduced magnetization m (parallel to Ha) increases,
and, correspondingly, the components of m which are per-
pendicular to Ha decrease, so that [dΣ/dΩ]q‖Ha

→ 0 and
[dΣ/dΩ]q⊥Ha

→ 1, leading to a decrease in W . For a sam-
ple with the corresponding texture (ψ∗ = 0), a measure-
ment of W at several applied fields may therefore yield
information regarding the parameter k and, hence, the
anisotropy energy EA of the particles.

4 Influence of a distribution of particle sizes

All of the results presented in the previous sections have
been obtained under the assumption that the sample con-
sists of particles with a uniform size (and shape). How-
ever, as a consequence of the technique by which the
sample is prepared, a certain degree of polydispersity is
present in most cases, and, in general, the resulting dis-
tribution of anisotropy energies EA will have an effect on
the measured SANS signal. The total SANS cross-section
at each discrete scattering vector q and applied magnetic
field Ha is then given by the convolution of dΣ/dΩ for
the monodisperse case with the particle-size distribution
function f(D), which is defined so that f(D) dD equals
the number of particles within the scattering volume with

diameters in the interval [D,D+dD]. The scattering cross-
section is then (compare Eq. (3))

dΣ
dΩ

(q,Ha) =

1
V

∞∫
0

[
(∆δnuc)2 + δ2

mag 〈sin2 α〉
]
h2(q,D) f(D) dD, (13)

where 〈sin2 α〉 is a function of Ha and through the
anisotropy energy EA of the particle size D. Equation (13)
can in principle be used in order to gain information about
the size distribution of the anisotropy energies EA(D) in
a given sample. For instance, by expanding EA(D) in a
power series, EA = a1D

3 +a2D
2, and assuming a particle

shape and a lognormal particle-size distribution with 2 ad-
justable parameters, one can determine the parameter val-
ues a1 and a2, which describe how EA is distributed over
the different size classes. Moreover, since the coefficients
a1 and a2 reflect the contributions of volume and surface
anisotropy, respectively, one may identify and quantify the
dominating type of anisotropy in small magnetic particles.
The fitting of experimental magnetic SANS data to equa-
tion (13) can be facilitated by the independent determina-
tion of the particle-size distribution f(D) – for instance by
nuclear SANS, small-angle X-ray scattering or transmis-
sion electron microscopy – with the result that the number
of fit parameters in equation (13) is reduced.

5 Summary and conclusions

We have investigated the influence of uniaxial magnetic
anisotropy on the magnetic SANS cross-section of a dilute
array of superparamagnetic particles in a non-magnetic
matrix. For the two most common SANS scattering ge-
ometries, in which the incident neutron beam is perpendic-
ular or parallel to an applied magnetic field, and for several
different orientations of the anisotropy axes with respect
to the applied field, the field-dependent magnetic SANS
was obtained by numerical integration of equation (6). If
the particles are allowed to move freely within the matrix,
then the presence of anisotropy does not influence the ex-
pectation value for 〈sin2 α〉. However, when the particles
are embedded in a solid non-magnetic environment, we
find that a non-negligible anisotropy leads to significant
deviations from the case of zero anisotropy. Therefore,
special care should be taken in experiment to correct for
anisotropy effects, in particular when assigning asymptot-
ical values to 〈sin2 α〉 in the cases of zero and large applied
fields. For the particular situation of a texture parallel to
the applied field, closed-form expressions could be derived
for the radially-averaged SANS cross-section as well as for
the ratio of cross-sections measured with the scattering
vector along and perpendicular to the field. A comparison
with experimental SANS data may in this case enable the
magnitude and size distribution of the effective magnetic
anisotropy energy EA to be determined.
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