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ABSTRACT 

This paper presents and explores a technique for visually integrating and exploring diverse information.  Researchers and 
analysts seeking knowledge and understanding of complex systems have increasing access to related, but diverse, data.  
These data provide an opportunity to consider entities of interest from multiple informational perspectives not available 
from any single, data or information type.  These multiple perspectives are derived from diverse, but related data and 
integrated for simultaneous analysis.  Our approach visualizes multiple entities across multiple perspectives where each 
perspective, or dimension, is an alternate partitioning of the entities.  The partitioning may be based on inherent or 
assigned attributes such as meta-data or prior knowledge captured in annotations.  The partitioning may also be directly 
derived from entity data; for example, clustering, or unsupervised classification, can be applied to multi-dimensional 
vector entity data to partition the entities into groups, or clusters.  The same entities may be clustered on data from 
different experiment types or processing approaches.  This reduction of diverse data/information on an entity to a series 
of partitions, or discrete (and unit-less) categories, allows the user to view the entities across diverse data without 
concern for data types and units.  Parallel coordinate plots typically visualize continuous data across multiple 
dimensions.  We adapt parallel coordinate plots for discrete values such as partition names to allow the comparison of 
entity patterns across multiple dimension for identifying trends and outlier entities.  We illustrate this approach through a 
prototype, Juxter (short for Juxtaposer). 
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1. INTRODUCTION

Many of the grand unsolved problems are very complex and multifaceted.  It’s hard to imagine that any single 
experiment, data set, or analysis tool could consistently ferret out a terrorist cell or tell us how to cure cancer.  For 
complex problems we need to leverage a variety of resources.  In systems biology, there are new, exciting high-
throughput technologies that measure various features of experimental samples.  The raw, numeric data produced are 
often analyzed by methods developed for a specific type of data.  While the opportunity exists to measure several 
different properties of the same sample, the challenge remains to integrate the diverse data results for analysis that spans 
the various properties simultaneously.  To further complicate matters, biologists want to analyze their experimental data 
in the context of curated information accumulated in public (and private) databases. 

Many fields are experiencing the same or similar challenges.  Our immediate research is focused on integrating diverse 
biological data though we believe our technique is broadly applicable.  We observe that much of the annotation data is 
categorical, for example, metabolic pathways, biological functions, or cellular location of proteins.  Numeric data is 
often categorized as well; for instance, a user might partition, or bin, genes into three gene expression groups, up, down, 
or no change based on a gene expression ratio.  Clustering, or unsupervised classification, is a more sophisticated 
approach to aggregation by similarity that utilizes the multi-dimensional numerical data of entities to partition them into 
clusters of similar entities.  Cluster membership is a derived categorical attribute of an entity.  The same entities may be 
clustered on data from different experiment types or processing approaches.  The ability to represent diverse data as 
categorical information allows the integration of a potentially very mixed bag of data.  The data integration is achieved 
by depicting the entities across all the categorical dimensions in the same graphic.  Users can look for patterns suggesting 
relationships across information derived from experimental results, meta-data, and annotations. 

Each partitioning of a data set defines a dimension with discrete values; the discrete values are text strings that may be 
meaningful names, imply an order, or simply distinguish partitions. For example, documents in a document collection 
might each be characterized by cluster membership, user-defined groupings (based on query results), date published, 
document source (e.g., news feed or email), and source location; the documents could be viewed across all five 
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dimensions. In systems biology, genes can be categorized with clustered gene expression data, associated protein 
quantities, metabolic pathways, and cellular locations.  Derived data may have associated metrics such as confidence 
scores that can also be binned and viewed as a separate dimension parallel to the derived data dimension.  Parallel 
coordinates plots can effectively visualize continuous data across multiple axes, or dimensions.  We prefer an approach 
that will allow viewing the data with respect to multiple dimensions rather than a series of pair-wise comparisons or a 
dimension-reduced view.  However, there are obstacles to visualizing categorical data effectively in a parallel 
coordinates plot. 

In this paper we present an approach for adapting parallel coordinate plots to explore data across multiple categorical 
dimensions.  We discuss related work including the static precursor of our approach, parallel coordinate plots, and 
visualizations designed specifically for categorical data.  We then describe the contribution of our work.  Our approach is 
illustrated through our prototype, Juxter, followed by a discussion of things we have learned about this approach while 
implementing and applying it to biological data. We conclude with a summary and intended future work. 

2. RELATED WORK 

Our work is related to a diverse collection of previous work including a static illustration of gene expression data, 
parallel coordinates, and the visualization of categorical data. 

2.1. Inspiration
Our work is based on an illustration that 
appeared in two papers by Carr et al. [1] 
and Michaels et al. [2].  The illustration 
shows the clustering of gene expression 
data based on two similarity measures: 
mutual information and Euclidean 
distance, described in the papers.  The 
data from the papers are depicted in a 
similar layout by Juxter in Figure 1.  The 
two clusterings (partitionings) are 
represented by horizontal axes labeled 
Euc_Distance and Mutual_Info to the left 
of the figure.  The clusters of each clus-
tering are positioned along their respective 
axis.  A poly-line representing each gene 
is drawn vertically through its assigned 
cluster along each axis.  The lines extend 
to include initial and final points along 
additional axes (top and bottom) 
indicating gene family and protein 
function, respectively.  A viewer can track 
correlated line patterns to discover trends 
and outliers.  
Observe the flow of yellow lines 
representing genes in the Neuro-
transmitter Signaling functional group (at 
the bottom).  These all map back to the 
group of gene families with yellow labels 
at the top.  By tracking the flow of yellow 
lines, it is clear that most of these genes 
belong to wave 2 and wave 3 on the 
Euc_Distance axis and clusters 2 and 4 on 
the Mutual_Info axis. The cyan genes in 

Figure 1:  Gene expression data clustered by two different similarity measures.  
Each vertical line shows the path of a gene across these clusterings.  The genes 
are grouped at the top and bottom by gene family and associated protein 
function, respectively. 
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the Diverse functional group belong mostly to the constant cluster on the Euc_Distance axis.  These genes are split 
between clusters 1 and 5 on the Mutual_Info axis.  

Clearly, the two clusterings are not identical, but the colored lines indicate some correlation between them.  Observe that 
there is also some correlation between the clusterings and the categorical groupings at the top and bottom.  These 
annotations, gene family and functional role at the top and bottom, respectively, provide valuable contextual information 
that helps characterize the clusters.  Carr et al [1] provide an interesting discussion on cluster comparison and some of 
the design decisions behind the illustration.  The generalization and extension of this work as a dynamic, interactive 
visualization was not pursued by Carr et al largely due to the complexity in calculating an optimal layout.  To our 
knowledge, layout details for the original illustration such as gene, cluster, and clustering order were determined 
specifically for the data set and external to the graphic software. 

2.2. Parallel Coordinates and Discrete Data 
The illustration in  [1, 2] is a variation on parallel coordinate plots first published by Inselberg [3, 4] and extended by 
Wegman [5] and others.  Parallel coordinate plots can depict large amounts of high-dimensional, continuous (numeric) 
data.  Each dimension is represented along an axis; all the axes are parallel to each other.  There is no orthogonal axis 
and so no inherent or implied ordering of the parallel axes.  The data along any parallel axis are typically continuous.  
For each element, a poly-line is drawn through the appropriate position on each parallel axis.  Parallel coordinate plots of 
continuous data scale well to handle large numbers of elements, or entities, up to the point where occlusion from 
overlapping lines, or overdrawing, becomes a problem.  The number of visible axes (dimensions) is limited by the 
display space.  

Parallel coordinate plots do not scale as well with 
categorical data.  Consider an axis line of 100 pixels.  
Theoretically, a continuous data point might fall on any one 
of the 100 pixels.  However, a categorical data point can 
only fall on the pixel chosen to represent the category.  If 
there are two categories, then only two axis pixels will be 
crossed.  We assume that the number of categories is much 
smaller than the number of available pixels; otherwise, our 
data are effectively continuous.  The reduction of points 
where lines may cross an axis reduces the available drawing 
space, and lines are much more likely to be overdrawn. 

A more difficult problem with parallel coordinate plots of 
categorical data is the increased likelihood of multiple lines 
passing successively through the same points. If multiple 
items have identical values along neighboring axes, their 
lines will overlap exactly. This means that only the last line 
segment drawn will be visible. When such overdrawing 
occurs, valuable information is lost about which path an 
individual element takes across the axes and which other 
(and how many) items take the same path. In Figure 2, 
Juxter is configured as a parallel coordinate plot of the data 
in Figure 1; the difference between the two figures is in the 
line drawing between axes. The overdrawing of lines is 
clearly a problem in Figure 2.  Individual genes are 
untraceable; for instance, none of the cyan genes can be 
traced from the Euc_Distance to the Mutual_Info clustering 
The makeup and relative size of the groups as well as the relationships among multiple genes are lost; for example, 
compare the information content in Figures 1 and 2 for genes that belong to both the constant cluster of Euc_Distance 
and the 1 cluster of Mutual_Info.  Figure 1 reveals that these genes are split about equally between the Diverse and 
Peptide Signaling function groups. This cannot be seen in Figure 2. 

Figure 2: Juxter configured as a standard parallel 
coordinates plot showing the same data as Figure 1. 

However, overdrawing is not the only problem for parallel coordinate plots of categorical data. The placement of the 
points for the categorical values is also an issue.  Because most of the categorical data points along each axis have no 
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inherent order, the placement of the points is necessarily arbitrary.  Options for ordering dimensions and categories 
include: consult domain experts who might recognize an inherent order; apply optimal layout rules to minimize line 
crossings; or follow the order of dimension and group occurrence in the input file. 

The work of Rosario et al. [6, 7] aims to resolve the problem of visualizing categorical data. They developed a technique, 
Distance-Quantification-Classing (DQC), for preprocessing nominal (categorical) data so that it can be viewed in a 
visualization designed for numeric data such as parallel coordinates. This preprocessing determines an order and relative 
spacing for the nominal values along parallel axes. 

Graham et al. [8] introduced the notion of replacing the poly-lines with continuous curves in parallel coordinate plots 
that nicely handle dimensions of both continuous and discrete data.  While the continuous curves follow the Gestalt 
principle of continuity much better than our jointed poly-lines, our approach better meets the proximity and similarity 
principles that assist the perception of trends. 

2.3. Visualization of Categorical Data 
Friendly [9-11] has a large body of work on the visualization of categorical data. “Mosaic displays” is perhaps the most 
well-known of Friendly’s visualizations; it is based on the graphical metaphor of nested regions built on the notion of a 
data hierarchy. Friendly’s data typically consist of counts of category populations rather than multi-faceted data about 
individuals (or entities) across multiple categorizations.   

CatTree [12] visualizes categorical data in an extension of Treemaps. Treemaps [13] is a space-filling technique for 
visualizing hierarchical data.  CatTree creates a hierarchy of the categorical data that can be visualized, queried, and re-
ordered dynamically. 

These and similar approaches assume a hierarchical ordering of data; the effectiveness of the visualization is heavily 
dependent on the ordering of the dimensions in the hierarchy.  We don’t want to be limited to hierarchical data or be 
required to force the data into hierarchies.  At least initially, our approach avoids any such assumptions about the 
dimensions or partitionings.  

3. CONTRIBUTION 

We recognized that the complex, diverse data reformulated as categorical information can be integrated for directly 
observing patterns across the multiple data types. Our aim is to integrate very diverse biological data from multiple 
experimental techniques along with prior knowledge.  Much of the state of the art high-throughput biological data 
requires preprocessing and analysis developed specifically for each experimental approach.  The derived result is often 
identification, classification, and/or quantification of entities measured under careful experimental conditions.  Most of 
this information, including the meta-data such as the experimental conditions, is naturally categorical; the rest can be 
binned or clustered to derive categorical information.  By depicting an entity as a poly-line connecting the categories of 
that entity, we create a visual trace that supports the comparison of multiple entities over potentially very diverse data. 

Further, we recognized that the line drawing technique in the illustration comparing two clusterings of gene expression 
data would generalize nicely to observing and comparing the patterns of entity traces.  Patterns of correlation or outliers 
may be associated with biological meaning. We extend parallel coordinate plots, which support viewing patterns across 
multiple continuous dimensions, to handle categorical dimensions through a line-drawing algorithm that minimizes 
overdrawing. The line-drawing method aligns, at least in part, with a number of Gestalt principles to facilitate pattern 
recognition[14]. 

We developed an interactive prototype, Juxter, which dynamically creates the visualization from tabular data. We found 
that flexible, dynamic interactions reduce the need for complex optimization algorithms for graph layout. Using Juxter, 
researchers have visualized metagenomic information derived from contaminated soil; the researchers found biological 
insights they believe might have been missed, or taken longer to find, without Juxter [15]. 

4. VISUALIZATION TECHNIQUE 

Although we developed our technique for integrating biological data, in this section we illustrate the visualization with a 
somewhat generic data set to avoid unnecessary domain-specific explanations. We selected the file BIOMED3.DAT 
from data sets offered online by the National Institute of Standards and Technology (NIST) at 
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http://www.itl.nist.gov/div898/software/dataplot/data
sets.htm.  This data set is a simple collection of 
categorical data.  Although undocumented, it is 
sufficiently self-explanatory for our purposes. There 
are 193 records (patients) with several dimensions 
including HOSPITAL, DATE, and AGE; each of these 
dimensions has four values labeled 1, 2, 3, and 4,
roughly four equal partitions. There are four 
unexplained dimensions named X1, X2, X3, and X4;
each has values 1-4; we ignore these dimensions in 
this paper.  A final dimension is labeled CARRIER 
(0=NO) where the group labels are 0 or 1. We 
replace the 0 label with NO and the 1 label with YES.
While all the category labels are integers from 1 – 4, 
these are likely ordered nominal rather than numeric 
values.  We assume that these data were collected to 
study the course of an outbreak and to characterize 
the carriers across hospitals, age groups, and dates as 
well as the mystery X1-4 dimensions. 

4.1. Visualization 
Figure 3 provides an overview of the data showing 
the patients as poly-lines across the Hospital (top), 
Date, Age, and Carrier axes.  The Hospital axis is 
repeated at the bottom.  The lines are colored to 
indicate the patient’s hospital.  One’s attention is 
drawn to the larger areas of near-solid color.  The 
cyan mass at the bottom left indicates that Hospital 1
patients are mostly non-carriers and make up about 
one half of the Age 1 group.  We base this on the 
observation that almost all of the lines spreading up 
from Hospital 1 link to the non-carrier group (see 
white arrow) and about half of the lines spreading 
down from the Age 1 group are cyan (Hospital 1, see 
orange arrow).  Also note that only one patient from 
Hospital 1 is a carrier.  This outlier can be seen as the 
single cyan line from the carrier group (YES) near the 
bottom right to Hospital 1 at the bottom left (see red 
arrow).
Figure 4 shows the patients in Hospital 1 selected.  
Selection of a line or groups of lines results in the 
non-selected lines being re-colored gray to 
effectively push them into the background.  A user 
selects Hospital 1 by clicking on the cyan label at the 
top or bottom, or rubber banding the cyan lines. The 
patients from Hospital 1 are spread somewhat evenly 
across the four date groups.  They clearly dominate in 
the first age group, but only a few of these patients 
belong in the Age 4 group.  Most notable, only one 
patient from Hospital 1 is a carrier. This was noted in 
the discussion on Figure 3; however, it is much more 
obvious in Figure 4 (see red arrow). 

In Figure 5, we select the Date 1 group. This view 
Figure 4: BIOMED3.DAT, same as Figure 3, but with the Hospital 1
group selected. 

Figure 3: BIOMED3.DAT patient data across the following 
dimensions: Hospital (top), Date, Age, Carrier, and Hospital 
(repeated at the bottom.) 
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clearly shows that none of the patients in the Date 1 group are in Hospital 4 (no dark blue lines or Hospital 4 label).  
None of the patients from Hospital 3 (green) in the Date 1 group belong to the Age 1 group.  Interestingly, the Date 1
group patients from Hospital 3 are all carriers, while the ones from Hospitals 1 and 2 are all non-carriers. 

Figure 5: BIOMED3.DAT, same as Figure 3, but with the Date
1 group selected. 

Figure 6: BIOMED3.DAT, same as Figure 3, but with the 
Carrier (yes) group selected.

Figure 6 highlights the patients that are carriers.  Again we see only one of these is in Hospital 1 (white arrow) and all 
the Date 1 carriers are in Hospital 3 (yellow arrow).  What we see clearly for the first time is that about half of the 
carriers are patients from the Age 4 group (compare red and orange braces).  Most of the Age 4 group are carriers (green 
braces).  The carriers are spread about equally across the four Date groups. 

The observation of such patterns suggest hypotheses that upon further investigation may provide insights about 
relationships, for example, between hospitals and patient age, between dates of infection and hospitals.  Possible 
hypotheses might be that (assuming that date and age groups are labeled to indicate increasing time and age) (1) Hospital 
1’s patients were overall younger, non-carriers who fell sick in approximately equal numbers across the outbreak, (2) 
Hospital 4’s patents fell ill only during the last three periods and made up more than 1/3 of carrier group, (3) the carrier 
group tended to be older patients and, with one exception, were treated at Hospitals 2, 3, and 4.

4.2. Line Spreading to Minimize Overdrawing 
We have already mentioned that overdrawing is a big problem for parallel coordinate plots of categorical data. Line plots 
of categorical data have less available drawing area because the lines are constrained to cross axes only at limited, 
discrete points. In addition, data items may have matching group-to-group transitions across neighboring axes leading to 
overdrawing of lines.  This reduced drawing area and increased risk of overdrawing lead to increased occlusion; the 
fewer categories per axis, the greater the occlusion problem. Occlusion means loss of information, thereby decreasing 
our ability to characterize individual items, categories, and the data as a whole. This is a lost opportunity to observe 
patterns, such as correlations or outliers in the collective paths across the categorizations. 
To counter this problem, we spread the element lines by providing intermediate lines between the parallel axes. The user 
may choose between none, one, or two intermediate lines between each pair of axes. The data shown in Figure 3 (with 
two intermediate lines) are shown in Figure 7 with no intermediate lines.  This view shows that at least one patient from 
each group on one axis transitioned to each of the possible groups in the next axis.  The no-intermediate line view of data 
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that are less symmetrical can reveal outlier patterns that might go unnoticed in the spread line view.  For example, by 
noting that all hospitals except Hospital 4 have four tracks leaving their node or, alternatively, all date groups except 1
have four incoming tracks.  This reveals an important irregularity – none of the Hospital 4 patients belong to the Date 1
group.

Figure 7: BIOMET3.DAT, same as Figure 3 but with no 
intermediate axes. 

Figure 8: BIOMET3.DAT, same as Figure 3 but with one 
intermediate axis. 

In the case of a single intermediate line, lines leaving every category point are spread on the intermediate line to form a 
cone as in Figure 8. The cone between a category point and its intermediate axis exposes the individual lines that can 
now be brushed or selected. The cone width at the intermediate axis indicates the cardinality of the category above. The 
lines within the cone are ordered according to the order of their categories on the next axis.  All the lines in a cone going 
to the leftmost group on the next axis are drawn to the left side of the cone.  This avoids occlusion and spatially 
consolidates similar lines, making the collective patterns easier to recognize. In Figure 8, the lines leading from the Date 
1 group to the intermediate axis show that the Date 1 group has patients from Hospitals 1-3 (no dark blue lines); almost 
half of the Hospital 4 patients fell sick in the Date 4 group. Lines between an intermediate axis and the next categorical 
axis are somewhat occluded and difficult to follow. 

Adding a second intermediate axis between categorical axes adds inverted cones defined by the lines between the second 
intermediate axes and the next axis as shown in Figure 3.  In the inverted cones, lines are ordered according to the order 
of their groups on the preceding axes. A symmetrical cone is created atop and at the bottom of each cluster point. All line 
crossing occurs in the area between the two intermediate axes.  The ordering of lines in the cones consolidates lines, 
making the common transitions more noticeable.  

4.3. Line Drawing Algorithm 
Juxter’s line drawing is accomplished by a simple variant of a sorting algorithm, where the sorting takes place at two 
levels. The algorithm is itself a two-phase algorithm. In the first phase, data structures (mainly Java HashMaps) are 
created to store references to each of the entities belonging to each category for each axis. These data structures also 
indirectly store the counts of the entities per category and categories per axis. 

The second phase of the algorithm sorts the entities per category and calculates each entity’s line coordinates for each 
axis. The lines coming into a particular category are sorted based on the entities’ previous category assignments.  The 
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lines going outward are sorted based on the entities’ subsequent category assignments. The main purpose of this two-
level sorting is to consolidate the lines of entities making the same transitions across axes.  A category’s incoming lines 
form an upside-down triangle of sorted lines. The outgoing lines form another triangle of sorted lines.  The length of 
each triangle’s base indicates the relative size of the group of lines; the line colors and order reflect the distribution of the 
lines across the color encoding dimension (the bottom axis by default) and the adjacent axis. A time complexity of 
O(m2nlogn) is associated with our algorithm, where m is the number of clustering axes and n is the total items.  

4.4. Interactions and Links in the Prototype 
The possible user interactions are a defining characteristic of any visualization.  Juxter supports both basic and complex 
interactions that allow the user to drive the visualization.  The interactions express dynamic operations for incremental, 
reversible, and quick responses from the visualization [16]. These operations support filtering unwanted items such as 
lines, groups, and axes; changes in the level of detail; or alternate linked views.  

Selection: Individual entities are selected by positioning the tip of the cursor over the entity’s line and clicking the 
mouse.  Selected lines are drawn normally (in color), while non-selected lines are drawn in gray.  Categories are selected 
by clicking over  the category icon; the result is the same as selecting all entities in the category.  Multiple selections can
also be defined by dragging the cursor to define an area in the graphic; all lines that pass through the area are selected.  
The selections can be toggled on and off by depressing the Ctrl key while clicking on a line or category icon.  Selected 
elements are de-selected; unselected items become selected.  Selection by toggle allows the accumulation of multiple 
selections. 

Hide/Unhide: Users can control the number of visible axes by hiding and un-hiding them through a menu or GUI. 

Reorder: Users can dynamically manipulate the order of individual categories along an axis by drag and drop.  The axes 
order can be specified in a dialog box; re-ordering is immediate. At this time, the top and bottom axes cannot be 
changed. 

Arrow Key Navigation:  The arrow keys allow a user to navigate quickly between categories along an axis or between 
axes.  Category selections update immediately, resulting in a scan capability.

Intermediate Axes: Juxter can be dynamically configured to display no (Figure 7), one (Figure 8) or two (Figures 3-6) 
intermediate axes. This will be discussed in more detail below.

Brushing: Brushing (moving the mouse) over lines or category icons dynamically triggers the display of information 
about the items in an area below the graphic. The information includes names and counts of items under the cursor. 

Linking: Juxter is loosely coupled with a spreadsheet view. The spreadsheet provides detailed tabular information.  It 
also manages the configuration of Juxter. Users can reorder axes by rearranging columns, inserting a column, and pasting 
categorical information. Juxter immediately updates accordingly. The spreadsheet provides a number of standard 
operations such as sorting. Juxter and the spreadsheet have a single, shared selection model.

5. DISCUSSION 

We summarize below the advantages and limitations of this technique.  We also discuss briefly the use of our prototype 
by a research group of biologists. 

5.1. Advantages of the Approach 
Categorical data. The most important advantages stem from the choice to visualize categorical data.  Categorical data 
are indifferent to 1) domain-specific details and 2) the diversity of numeric data.  The first allows the juxtaposition of 
categorical data from any number of sources that apply to the same data item set.  Many domains may benefit from the 
ability to integrate data in this way.  In systems biology, items such as genes and proteins may be measured and analyzed 
by a variety of techniques.  Comparing these diverse data in their raw state and even in higher-order, derived states is a 
huge problem, which is our second point.  The gene expression data in Figure 1 were derived from reverse-transcription 
polymerase chain reaction (RT-PCR).  Data from different platforms might not be directly comparable without 
transforming the data into categorical information, for instance by clustering or by binning numeric values.  We have had 
interesting results with our visualization just by categorizing numeric gene expression data over time as either up, down,
or other at the various time points.  
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Multiple dimensional view. The line-spreading technique allows us to visualize many categorical dimensions at once as 
parallel coordinates.  The ability to view many dimensions of data items simultaneously is an important alternative to 
viewing a series of two-dimensional plots or a single-dimension-reduced view.  Viewing the data across multiple 
dimensions at the same time can provide valuable information about: 

individual entities by the categories they belong to and other entities with similar category memberships 
categories by their number of entities and the numbers other categories on the same axis  
categorizations by the patterns through their categories and by their correlation to other categorizations. 

This information can be enlightening and may not be evident in other visualization approaches.  The visualization itself 
with the powerful query and link capability provides both summary and detail information about the data items and 
collection.

Visual impact. The visual impact of this technique is reminiscent of the ThemeRiver visualization [18], which embodied 
a number of Gestalt laws [14].  In Juxter, the similarity, continuity, and almost-symmetry of the correlated lines promote 
pattern recognition.  Juxter’s line sorting ensures spatial proximity and similarity.  The line spreading supports con-
tinuity.  Matching the top and bottom, either by using the same dimension twice or two dimensions where one is a 
further partitioning of the other, provides a degree of symmetry that aids in pattern recognition as well as stability to help 
the user maintain orientation while exploring and reordering the axes and categories. 

Simplicity. This visualization seems to be fairly intuitive to users.  Juxter accepts simple, tab-delimited text files, making 
it easy to load data sets.  The visualization is readily interpreted, explored, and adjusted on demand.  The line-spreading 
algorithm simplifies pattern identification as well as outlier identification. While Juxter supports confirmatory analysis, 
its strength is hypothesis generation and exploratory analysis. 

5.2. Limitations 
Scale. The primary limitation of our approach is the amount of data that can be handled.  The visualization works well 
for data sets of 100 – 400 data items with 5-6 axes and 4-5 categories per axis.  Too many categories along an axis make 
the labels hard to distinguish and, worse, increase the complexity and reduce the gestalt of the graphic.  Similarly, large 
differences in the cardinality of categories along an axis interfere with the gestalt.  Finally, a large number of data items 
stretch the graphic and again ruin the gestalt.  When a transition between axes forces lines to be more horizontal than 
vertical, the patterns in the graphic become very difficult to identify.  Allowing the user to hide axes ameliorates this 
slightly.  The excellent method presented in Fua [19] for handling large data sets does not extend to discrete multivariate 
data though this may be possible using methods in Rosario [7]. 

Partitioning. Our approach requires a hard partitioning of the data item set across each dimension.  That is, each data 
item must belong to one and only one category along any dimension.  Not all data sets are quite so clean.  For instance, 
the correct category for a data item along an axis may be unknown or missing.  Or, just as problematic, a data item may 
fit in more than one category.  As mentioned above, too many partitions as well as partitions that vary widely in 
cardinality also are problematic.  These later conditions not only interfere with the gestalt but also severely reduce the 
amount of information along the affected axis. 

The Juxter Prototype. As implemented, Juxter requires a degree of symmetry between the top and bottom dimensions.  Either the 
axes are duplicates or the top is a further partitioning of the bottom partition.  Although we have pointed out that this may in fact be 
fortuitous, we would like to remove this restriction.

Labeling. The labeling leaves much to be desired, especially for labels with complex and/or lengthy text.  Some of the interactions 
are less than optimally tuned.  We regret this of course, but our focus has been on exploring the efficacy of the technique.

5.3. Observations 
We chose initially to ignore concerns about “optimal” layout.  As we gained experience with the prototype and 
experimented with a variety of data, we began to appreciate the difficulty of even defining an optimal layout.  If we look 
at the parallel coordinates plot as simply a graph, minimizing the number of line crossings might make a cleaner, more 
interpretable figure [20].  We observe that an optimal layout would not ensure an ideal visualization. It is likely more 
important to lay out the dimensions and categories in a way that makes sense to users to reduce their cognitive load. 
However, the ideal order is extremely difficult to predict from the labels themselves. Some nominal labels are explicitly 
ordinal (first, second) while others might by ordinal based only on user preference (green on the left, red on the right, 
yellow in the middle).  In other cases, the nominal labels are integer numbers implying order where none exists, as with 
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index numbers for cluster labels.  We believe that the best solution is to allow users to easily re-arrange axes and 
categories on demand.  We also believe that the visual impact of the line drawing algorithm and the filtering capability 
overcome a degree of imperfection in the category layout. 

 We found that the vertical stacking of axes provided more space for the labels.  At the top and bottom, the labels can be 
set at an angle to increase the space for long labels, reducing occlusion.  This vertical stacking also provides an open 
space for the category labels where the points of the stacked cones meet.  

5.4. Adoption  
The prototype was developed to visualize biological data, which are often clustered and annotated.  The ability to view 
biological items such as genes across the derived and annotated information is important to biologists.  Recently, 
scientists at the Pacific Northwest National Laboratory (PNNL) evaluated an interesting metagenomics data set [21] 
using Juxter.  They clearly expressed that the visualization helped them in their analysis.  Screen captures of Juxter 
visualizations of their data were used in an invited presentation and poster at a Principal Investigator meeting for the 
Department of Energy Genomics: GTL Program [21].  Although the scientists had their data in a huge electronic 
spreadsheet and had access to powerful bioinformatics tools, this simple visualization quickly provided valuable insight 
that might have been missed without the ability to look directly at the derived categorical and binned qualitative data in 
the context of other categorical data. We collaborated to write about the analysis of the metagenomic data using the 
visualization [15]. 

5.5. Future Work 
Future research will include the development of methods to detect patterns automatically and bring them to the user’s 
attention.  We also want to provide additional cues to help the user understand the data and evaluate the patterns.  This 
includes access to mathematical or statistical cues ranging from simple percentages (we already provide counts) to more 
sophisticated cues to help assess the information content of individual axes and the correlation (or non-correlation) of 
axes.  Our research will extend to larger-scale, linked visualizations.  Alternatives include exploring approaches that map 
discrete to continuous values such as presented in Rosario [7] and Fua [19] or to develop complementary linked 
visualizations not based on parallel coordinate plots.  

Future work also includes enhancements to the prototype such as improving the performance of interactions and 
calculations, which bog down at the upper limits of our scale, and allowing users to control the color assignment and to 
dynamically adjust the resolution of hierarchical categorical data. 

6. CONCLUSION 

This paper presents a technique for visually integrating and exploring diverse information.  While the analysis of a single 
data type is enough to challenge both humans and computers, it is no longer sufficient to analyze one data type in 
isolation. Users want to explore and understand their data in the context of, or integrated into, related data seamlessly and 
with minimal constraints. 

Our technique visualizes categorical data associated with a data set.  This might be meta-data, curated annotations, and 
attributes as well as the results of other analytical techniques. Cluster membership and uncertainty bins are examples of 
analysis results turned categorical data. Similarly, any partitioning of the data defines a set of categories; each 
partitioning is considered a dimension.  Our technique allows users to track individual data items across the multiple 
dimensions and identify items with similar patterns. It allows users to observe the global patterns of items belonging to 
the same partition, for example a cluster, to characterize that cluster in light of the other dimensions. The visualization is 
an adaptation of parallel coordinates with a line-spreading algorithm that perceptually organizes the visual items by 
Gestalt laws to ease the cognitive load for users. We illustrate this technique through a prototype, Juxter, which allows 
users to dynamically explore a data set. 
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