
��				
				

				

				

				

				

				

				

				

				

				

				

�������	�������	
�����	

����
	�������������	

��� ���	�!�!"
				

				

				

				

				

				

#�$%		����	

 2

Contents

Foreword 3
 Homepage 3
 Thanks 3
Overview 4
 What is ArchiveViewer? 4
 Features 4
 Installation 5
User’s Guide 6
 The GUI mode 6

The command line mode 16
The JSP mode 16
Included Plot Plugins 16
 JFreeChart for Time Plots 16
 JFreeChart for Correlation Plots 17
 JFreeChart for Waveforms 18

Developer’s guide 20
 Concepts
 XML 20
 SwingWorker 20
 Double-Buffered Drawing 20
 Progress Indicators 20
 Data caching 21
 Query processing 21
 Formulas 21

The Model-View-Controller 21
 XAL 22
 Integrating JSP 24
 Plugin development 25
 Creating a client plugin 25

Creating an exporter 25
Creating a plot plugin 25

Appendix A

Directory structure 26
Appendix B
 ANT targets 27
Appendix C
 Plugin JavaDocs 28
 ClientPlugin 28
 Exporter 31
 PlotPlugin 33
Appendix D
 Example plot configuration 39
Appendix E
 Example form for JSP access 41
Appendix F
 Links 44

 3

Foreword

Disclaimer

Please note that I have made a considerable effort to ensure that the information
in this document is up-to-date and accurate, but I cannot guarantee that it does
not contain errors. You must use this document at your own risk or not use it
at all.

Homepage

The ArchiveViewer web site can be found at http://ics-web1.sns.ornl.gov/archive/viewer. It
has all the latest information about ArchiveViewer, incl. screen shots, download links,
JavaDocs, and parts of this document.

Thanks

I would like to thank the whole EPICs community for your support and the following
colleagues in particular:

Kay Kasemir, my mentor;
CraigMcChesney, who was part of the ArchiveViewer development team in LANL;
Ike Kritznar from CosyLab, who helped me to cut edges with Java;
Greg Lawson for administrative support;
Hamid Shoaee and Dave Gurd for being such nice managers;
Paul Wright, Herb Strong, Sheng Peng, Johnny Tang, Thomas Birke for testing the hell out of
this application;
Bob Dalesio for giving me guidance within and outside the community;
and, of course,
Ernest Williams for being the best colleague and friend one can imagine!

Copyright by Sergei Chevtsov (Oak Ridge National Laboratory), 04-07-2005

 4

Overview

What is ArchiveViewer?

ArchiveViewer is a free, extensible, multi-threaded client application for processing archived
EPICS data. It is written in pure Java and designed to support different servers as well as to
produce different kinds of visual output (time plots, correlation plots, oscilloscope simulators,
spreadsheets etc.). The user can control the application via command line, a Swing GUI (fully
integrated into the XAL framework), or Java Server Pages. ArchiveViewer is distributed with
complete source code subject to the terms of the EPICS license.

Features

ArchiveViewer can query supported archive servers for PV data, meta information on PVs,
archive settings etc. The retrieved data can take two paths: either be exported to text/binary
formats, or plotted by chart widgets. Data from non-waveform, numeric PVs can also be used
inside formulas, which the application eventually handles in the same way as genuine PVs.

We abstract the notion of PVs/formulas and use the term ArchiveViewer entry (short AVE).

ArchiveViewer also features:
- pluggable clients, plot widgets, and exporters
- different run modes (JSP, command line, XAL GUI)
- caching of retrieved data

 5

- three plot styles (scatter, steps, and lines)
- handler for invalid/non-plottable data
- absolute and relative time queries
- multiple time and range axes
- persistent configurations and preferences
- search for PVs using regular expressions
- progress indicators
- formula creation (basic arithmetical and boolean operations; standard Java as well as
min/max/avg functions)
- handlers for vertical and horizontal plot scroll, zoom in/out

Installation

ArchiveViewer was written entirely in Java and should run on JDK 1.4 or later.
Use ANT to build ArchiveViewer and create appropriate jar files (see Appendix B)

If you wish to use ArchiveViewer as Java Server pages, you need to install Apache’s Tomcat
on a web server (version 5.5 was used for development, but other versions should be
supported, too). Execute “ant configure_jsp” in the main directory and start your Tomcat
engine.

 6

User’s Guide

There are three basic ways to use the ArchiveViewer. One is to start an XAL GUI; another to
run it in the command line mode; and the third to go to a server where it is running as a Java
service. The actual invocation will differ from site to site. System administrators might want
to create an “archiveviewer” command or desktop button that selects the appropriate java
runtime environment and invokes the ArchiveViewer with certain default arguments. The
included README and build.xml files contain specifics of how to compile sources into a
JAR file and how to use it.

The GUI mode

This is the preferred running mode that offers all ArchiveViewer features to the user.
When you start the ArchiveViewer without ‘-nogui’ option (or without any options at all, for
that matter), it automatically creates an XAL GUI.

Note in general that there are features available behind every “…”-button.

1. Quick start

o Main Components

ArchiveViewer consists of 4 major components:

� The control panel contains the PV/formula configurator (on the left)
and the axes configurator (on the right)

� The tabbed pane at the bottom shows currently loaded plot plugins
� Between the control panel and the plot plugins panel is a (narrow)

status panel; it shows some important (dynamic) information. The
status panel also contains a progress bar (on the right).
Tip: Always take a look at the status panel, when you are not sure if a
task is still running, or the program unfortunately crashed.

o Main use case

� Go to FILE menu and select NEW CONNECTION (FILE => NEW
CONNECTION)

� Select (or enter) the connection parameter of an archive data server
(e.g. a URL) and press OK

� After server information was retrieved, you can select an archive
directory in the main panel (note: the selected archive directory will
automatically be assigned to formulas you create)

 7

� Enter a search string into the search text field on the main panel; press
the SEARCH button or hit ENTER.
A search dialog pops up and allows you to configure your search. Its
right half is a table that will eventually be filled with meta data from
matching PVs (if it doesn't happen too soon, please take a look at the
progress status => perhaps too many PVs match your search string)

� Select desired PVs and add them to the main panel by pressing the
ADD button or double-clicking the particular PV row). Observe how
the left side of the main panel now contains the selected PV names (in
default colors).

� Enter time range for the MAIN TIME AXIS (times can also be entered
through TIME SELECTORs that appear when you press a "..."- button
next to corresponding time entry field)

� Now press the PLOT button and observe the retrieval progress
� After data is retrieved, you can access meta-information about PVs as

tooltips on the main panel

2. Axes Configuration

You can configure time and range axes on the right side of the control panel

1. Time Axes

Enter either an absolute or a relative time string (see Time Queries below) into
the time fields. Alternatively, you can use time selectors that appear when you
press a "..."-button next to the corresponding text fields.
Tooltips are available on the time entry fields

The location box lets you select a location for your time axis (“bottom”, “top”,
or “not visible” are the options).

2. Range axes

Enter numeric values into min/max text fields under the range axes selection
box. ArchiveViewer understands a huge variety of number formats (e.g. 1e-1 is
allowed) and some currently unsupported formats can easily be added in the
future, if desired.
If you leave a range limit blank, the actual value is going to be "whatever it
actually is".
You can specify the axis scale type and the location of a range axis by
selecting the values in the correspondingly labeled combo boxes. Currently
supported range axes types are NORMAL and LOG(arithmic). Range axes can
be located on the “left”, “right” or be “not visible”.

3. Advanced axes features

 8

You can access advanced axes features by pressing the "..."- buttons in the
upper right corner of the axes widgets.
The features are:

� "add new axis" pops up a dialog and asks you to enter the unique label
of a new axis.

� "remove selected axis" (note: you can not remove last axis)
� "rename selected axis"
� "update selected axis from active chart" updates the range of the

corresponding axis to what is shown in the currently active plot plugin
� "update all axes from active chart" updates all axes ranges to what is

shown in the currently active plot plugin
� "reset selected axis" resets the range of the corresponding axis
� "reset all axes" resets all axes ranges

3. Time queries

Time ranges can be entered either manually or through time selectors, which appear
when you press one of the "..."- buttons to the right of the time text field. Even if you
decide to never enter times manually, you should at least know that there is this short
reference.

o Absolute Times

You can enter absolute times for start and end times of a query. Many of
absolute time components are optional. The minimal, mandatory, absolute time
string must follow the pattern 'MM/dd' (where MM is the month, dd- the day
of the month).
ArchiveViewer will insert following values for missing absolute time
components:

� year: current year (as shown by your system clock)
� hours: 00
� minutes: 00
� seconds: 00
� msecs: 000

o Keyword "now"

The application accepts the keyword "now" as end time. Milliseconds before
the server request is actually sent, "now" is replaced by current system time.
If you specified “now” as end time, and press the PLOT button without
checking "Keep Plot Ranges", new data request will be sent because "now" is
resolved to a later timestamp.

o Relative Times

 9

One of ArchiveViewer's most innovative features is its ability to parse relative
time strings. However, as with all innovations, correct usage requires some
learning time. Below, a short tutorial is presented.

1. Following tokens may be used for each of the relative time components
(please, note that they indeed are case sensitive):

� y - year
� M - month
� d - day
� H - hours
� m - minutes
� s - seconds

2. For numeric values, only integers are allowed. For positive integers,
you may also use the preceeding "+" sign, which would make sense
semantically.

3. You can also use absolute time strings at the end of each relative date
string.

Some examples of relative time strings:

� Legal

"+1d", "6m", "-1M 6d", "-8H", "-2d 08:00" (note: no spaces are
allowed between numbers and relative time tokens)

� Illegal

"-1D", "+2 y", "2.5H"

4. Semantics

� The sole notion of "relative" time strings requires a reference
point, and indeed there are so-called "base times". A base time
is a timestamp relatively to which relative times are resolved.
Although in very most cases, base times can be determined
intuitively, some examples are provided below for questionable
situations. We call a relative time string "positive", if it resolves
to a positive number of milliseconds; and we call such string
"negative", if the result is a negative number. Note that it makes
no sense to use positive, relative time strings for the start time
of a query. Thus, there are only 6 cases to consider:

1. Start time is absolute; end time is absolute
Example:
Start: 01/01/2003 8:00
End: 01/02/2003

2. Start time is negative, relative; end time is absolute =>
base time: end time
Example:
Start: -10d

 10

End: now
Means: retrieve data from last 10 days

3. Start time is absolute; end time is positive, relative =>
base time: start time
Example:
Start: 01/02/2004 10:00
End: +8H
Means: retrieve data from January 2nd 2004 between
10am and 6pm

4. Start time is negative, relative; end time is positive
relative =>
base time for start time: "now"
base time for end time: start time
Example:
Start: -7d 8:00
End: +8H
Means: retrieve data from the second daily shift of
exactly a week ago

5. Start time is absolute; end time is negative relative =>
base time: "now"
Example:
Start: 06/01/2004
End: -5d
Means: retrieve data from the 1st of June up to 5 days
ago from now

6. Start time is negative relative; end time is negative
relative => base time: "now" for both time strings
Example:
Start: -10d
End: -5d +8H
Means: retrieve data from 10 days ago upto 5 days ago,
plus 8 more hours of data

5. Conclusion

Relative time strings are an intuitive and very useful feature, since they
allow automatic processing of many practical configurations (just think
how easily you can retrieve "data from yesterday's shift" every morning).

4. Formulas

One of the most complex features of the ArchiveViewer is the ability to use PVs from
a common archive directory inside a formula. You start the creation of a new formula
by pressing the "New Formula"- button on the main controls panel.

Following steps are recommended for creating a formula:

 11

o Select argument AVEs from the supplied AVE list
o Assign a unique variable to each AVE (default variables will be x0, x1, etc.)
o Using these variables, type in your formula, possibly using the supplied

calculator buttons.

Variables have two major advantages: resulting formulas will be short and thus easier
to read; and complex formulas can be re-used for other AVEs without much hassle.

Supported mathematics

Besides basic arithmetics and boolean operations, all standard Java functions specified
by methods of the java.lang.Math class as well as own min, max, and arithmetic mean
functions (with indefinite number of arguments) are supported by the internal formula
parser.

An example configuration using formulas can be found in the Appendix D.

5. Configuration of ArchiveViewer Entries

Initially, the ArchiveViewer assigns a default color, draw type, time/range axis etc. to
each AVE. By pressing the "..."-button in the right column next to each AVE name,
you can change any of the following:

• Axes assignment

Labels in the axes selection boxes correspond to labels of the axes in the main
control panel. If you want to plot a graph normalized, select the empty entry in
the range axes box.

• Draw color

• Draw types

� scatter
� lines: connects plot item directly
� steps: draws a horizontal line from one plot item towards the vertical

line that crosses the next item, and then a vertical line to the next item.
This draw type is default.

• Draw width

You can adjust the width of graph lines with the slider

• Visibility

Uncheck the visibility box, if you don't want to display the AVE graph in the
plot. This might be useful if, for example, if plots overlap and you 'd like to see
the underlying graphs.

 12

6. Export

o The export dialog is located under FILE => Export...
o Basic configuration

� Generally speaking, you always have to select one archive directory
from which you want to export data. However, exporting data from
more than one archive at the same time might be supported by some
servers, too.

� You can enter a new time range for the export query. Alternatively, you
can load the time range from the selected time axis.

� ArchiveViewer contains an internal exporter that writes data in CSV
format (columns are actually separated by tabs).

� If you want to omit the export output viewer, you can type the path to a
desired file directly. Alternatively, you can display a file dialog by
pressing the "..."- button next to the file text field.

� As soon as you press OK, the export starts. Please take note of the
export progress on the status panel.

� You may interrupt export any time by pressing the red button next to
the progress bar. Data that was exported up to the interruption remains
available.

o Advanced options

� You can reach advanced settings by pressing the "…"- button in the
upper right corner of the export dialog and selecting “More options…”

� The methods box contains retrieval methods that are supported by
current archive server and are suitable for exporting data.

� You can enter a number of samples per AVE which serves as a limit.
For some export methods, it will make more sense to enter a period of
time for which you want a single sample (this field and the "max
number of values" field are symbiotic)

� You may enter your own timestamp format (useful, for instance, if you
are going to send the file to Europe). Please, take a look at the tooltip to
see the supported syntax.

� Finally, you can export status information in addition to pure data.

 13

7. Menubar items

• FILE menu

� New Connection

Pops up a dialog where you can enter/select a connection parameter for
the archive server

� Reconnect

Sometimes there are (network) errors that may corrupt the connection
to the data server. Simply press this menu button to re-establish the
connection

� Open, Open Recent..., Save, Save As

These menu buttons are used for loading and saving the plot
configuration

� Export

See above

� Print... and Page Setup...

Displays widgets for printing the application window

� Clear All

Clears the main panel

� Quit

Exits the application

• EDIT menu

� Copy, cut, paste

standard menu items, have the same effects as corresponding keyboard
short cuts (e.g. ctrl + x etc. on Windows)

� Preferences

Includes a plot title setter, a legend configurator, and a plot plugins
loader

• VIEW menu

 14

� Full Screen
� Search Dialog
� Show Console, Show Event Log, Show Memory Console

Some of standard XAL widgets

• TOOLS menu
� Align Range Axes

Aligns ranges of range axes in the selected plot plugin; may be useful
when plots overlap

� Assign Same Color…

Assigns same color to AV entries with same names (useful e.g. when
desired plot spans over several archive directories)

� Assign Selected Archive

Assigns the selected archive to selected graphs (useful for formulas, or
if archive names changed etc.)

� Sort By…

Sorts AV entries either by their names or by their archive directories

� Clear Cache

Clears cached data

• WINDOW menu

� Capture As PNG...

• HELP menu

� Contents

Opens the user’s guide

� Server Info

Shows information that current archive server provides about itself

� About

 15

Some basic information about your ArchiveViewer

8. General Plot Features

Some plot plugins may support only subsets of these features, others may have more
functions. Please, check the proper references.

• Plot legend

Consists at least of colorful shapes. Plot legend is configured through
preferences menu

• Zoom in

You can zoom into the plot by dragging your left mouse. There is a minimum
dragging distance to activate the zoom capability. This prevents accidental
mouse "hang ups".

• Plot scroll buttons

Located at the very bottom of the window; from left to right:

� goes back in time the time range(s) you currently see on screen
� goes forth in time the time range(s) you currently see on screen
� goes "up" the value range(s) you currently see on screen
� goes "down" the value range(s) you currently see on screen
� doubles the time range(s) you currently see on screen
� doubles the value range(s) you currently see on screen
� halves the time range(s) you currently see on screen
� halves the value range(s) you currently see on screen
� displays a menu for advanced features:

� uses anti-alias drawing method if checked
� leaves ignored items if checked (and no new data is retrieved)

• Some typical "right mouse click" menu - features

� Properties: some chart specific properties
� Save as... : save the plot as a PNG image
� Print... : prints the plot
� Show own axis: Shows a colorful range axis for a normalized graph (if

applicable)
� Ignore Item... : if active, ignores the current plot item
� Next/previous plot: navigates through plot history

• (Re-)Draw triggers

A new plot will be generated in following cases:

� After pressing the “PLOT”-button
� After zooming/scrolling

 16

� When navigating through plot history
� When a plot is resized

• To clear a plot, clear the main panel (FILE=>Clear All…) and press the PLOT
button

• Dock/undock

In the top right corner of the plot plugin panel, there is the dock/undock button.
Please, note that once a plot plugin is undocked, it can not be controlled from
the main controls panel. However, zoom-in and plot manipulation buttons
continue to function.

The command line mode

The command line mode is, compared to the recommended GUI mode, limited in
functionality and user-friendliness.
To start ArchiveViewer in command line mode, execute archiveviewer.jar with the ‘-nogui’
option. You will then enter a scripting mode where you can interactively execute the
ArchiveViewer commands. You can always type ‘-h’ to get help.

Following steps are recommended (some commands can be typed on one line):

1. Retrieve server information
2. Print available archive directories
3. Search for PVs inside archive directories
4. Print an example plot configuration and edit it as necessary
5. Load the new plot configuration file into ArchiveViewer
6. Generate a plot image
7. Quit ArchiveViewer (please, be especially aware that the command line mode won’t

quit automatically)

In practice, you eventually might want to skip some of the steps.
To export, follow a similar routine (consult help if needed).

The JSP mode

Point your browser to <tomcat_server_url>/archiveviewer/
(e.g. at SNS, http://ics-web1.sns.ornl.gov:1982/archiveviewer/).
Follow the instructions that appear on the web site.

Included Plot Plugins

JFreeChart for Time Plots

 17

General description
� Plots data of discrete and numeric non-waveform PVs and formulas against time axes
� Invalid data is plotted scattered underneath the actual (valid) plot area; tooltips display

the reason for the invalidity

Plot item tooltips
Each plot item is assigned a tooltip that contains the name and archive directory of the
corresponding AVE, the exact value and timestamp of the data sample (in case of discrete
values, the actual meaningful discrete value is shown, not the assigned numeric
representation).
In cases of lines/steps draw type, the tooltip of a plot item appears over the whole line up to
the next value.

Axes

� Multiple time/range axes and all locations for them are supported
� Range axes may be of logarithmic scale
� AVEs without assigned range axes are plotted normalized and their ‘own’ range axes

can be displayed using the right-mouse-click menu (they will appear in the same
colors as the corresponding graphs)

Zoom/Scroll

� Scrolling supported
� Both, vertical and horizontal zoom in supported

Special features

� The plugin is able to generate a file image directly, thus it can be used when
ArchiveViewer runs in the command line mode, or as Java server pages

� Uses double buffering when drawing
� When steps/lines draw type is selected, a horizontal line is plotted from the last data

point up to the right edge of the chart panel

Known issues
If at the end of drawing process, the plot appears lost/unfocused, try to resize the plugin
slightly and/or press the “PLOT” button again. If the issue is persistent, please contact the
developers.

JFreeChart for Correlation Plots

General description

� Plots numeric, non-waveform PVs against a selected domain PV (initially the first
valid in the AVEs table)

� Zooming/scrolling bypasses the retrieval of new data
� Discards invalid data

Plot item tooltips
Each data sample is assigned a tooltip that contains the name and archive directory of the
corresponding PV; the correlated timestamp, the domain PV, and the range PV values.
In cases of lines/steps draw type, the tooltip belongs to the whole line up to the next value.

 18

Axes
� Only one range axis (for the one domain PV) is supported; it is always located at the

bottom of the plot and is of the same color as specified for the domain PV
� Multiple range axes and all locations for them are supported
� Range axes may be of logarithmic scale
� AVEs without assigned range axes are plotted normalized and their ‘own’ range axes

can be displayed using the right-mouse-click menu (they will appear in the same
colors as the corresponding graphs).

Zoom/Scroll

� Both, vertical and horizontal zoom in is supported
� Scrolling is supported
� However no new data gets retrieved, and thus only limited navigation through plot

history is possible

Special features

• Features a combo box that contains all valid PVs; the selected PV is the
domain; the selection of a new domain PV triggers an immediate replot

• Allows data items to be ignored
• Displays the time range of actually displayed data

JFreeChart for Waveforms

General

� Plots waveform PVs
� Consists of two plot panels, one of which is exactly like the panel in the “JFreeChart

for Time Plots”- plugin; the other panel is an oscilloscope simulator
� Also features the oscilloscope control panel with a speed spinner; “PLAY” and

“STOP” buttons; and a “…”-button that displays a dialog where you can assign the
period and the delay (numeric values, or PVs for which data was also retrieved) of the
waveform

� The time plot panel acts as visual help only; use the slider underneath to navigate
through waveforms in time

� Skips invalid data

Plot item tooltips
The tooltip for data items in the time plot panel consists of the PV name and archive
directory, the keyword “waveform”, and the timestamp; the oscilloscope tooltip displays PV
name and archive directory, the index of the waveform element, and the actual value

Axes

� Accepts only one time axis (the one that is selected in the main ArchiveViewer panel),
but multiple range axes are supported

� Range axes can be logarithmic and positioned at any location
� PVs without assigned range axes are plotted normalized and their ‘own’ range axes

can be displayed using the right-mouse-click menu (they will appear in the same
colors as the corresponding graphs).

Zoom/Scroll

 19

� Zoom in is only possible in the oscilloscope; supports no zoom out (use the slider
under the time plot panel to restore the plot; tip: select the slider and use arrow keys to
navigate step-by-step)

� Scroll possible in time plot panel only

Special features
• Uses double-buffer to draw the images
• Allows you to ignore data items (right-click menu)

 20

Developer’s guide

The ArchiveViewer uses many cutting-edge concepts of modern Java programming. Below
follows an overview of the ideas, their theory, and a short description of the way they were
incorporated into the application.

XML

The ArchiveViewer can save plot configurations as XML files. The advantages are the ease of
extensibility (especially, regarding backwards compatibility), portability, and the fact that
these files can be edited quickly with any text editor. The application uses Apache’s Xerces
library for parsing and serializing the configurations.
The ChannelArchiver client uses Apache’s XML-RPC library to talk to the archive server
over the network.

SwingWorker

It often is the case that GUI events initiate very time-consuming algorithms (e.g. pressing
“PLOT”-button leads to data being retrieved from the server; transformed into
ArchiveViewer’s internal format, cached, and deligated to the plot plugins/exporters).
However, it is desired that the GUI always remains responsive (e.g. shows a progress; allows
the user to select widgets, press buttons etc.).
This is where SwingWorker comes in. It is an abstract class that has a handler for performing
time-consuming operations in a separate thread. Although an implementation is directly
available on the Java homepage (see Appendix F), the class is not integrated into any Swing
release.
SwingWorker.java was copied into the epics.archiveviewer.base.util package and is used
without any alterations.

Double-Buffered Drawing

When utilizing this algorithm, an actual image is drawn as bytes in memory (i.e. off screen)
and then made visible by being placed onto a Swing component. The required additional
RAM space is juxtaposed to the decrease in draw time.

All aforementioned JFreeChart plot plugins use the free JFreeChart plot library.
Unfortunately, the library doesn’t deliver the desired performance. Thus, the class
org.jfree.chart.ChartPanel was extended to create a java.awt.image.VolatileImage (instead of
a BufferedImage) of the plot. The space that is occupied by the VolatileImage object is drawn
onto in a separate thread.
When drawing finishes, the image is placed on screen.

Progress Indicators

Modern GUIs seem to rise and fall with the way the user feels they interact back with him.
With this in mind, ArchiveViewer features progress indicators.
Luckily, standard Java Swing library already contains a progress bar widget that needs to be
customized only.

 21

Progress support in ArchiveViewer comes in two areas.
First, the SwingWorkers leave GUI responsive when time-consuming tasks are run. Thus an
image indicating a progress can be made visible on screen in real-time.
Second, the API gives the developer the ability to pass an epics.archiveviewer.ProgressTask
object in which the client can then set a percentage progress value and a descriptive text
message.
Often, clients can’t provide any reliable progress information, or the actual progress occurs so
slowly that no visible feedback is possible. In such cases, ArchiveViewer will switch to
“indeterminate” progress bars as known from internet browsers et. al. (a dark rectangle will
bounce back and forth, until the task finishes). When actual progress value is updated, the
application will display the determinate progress bar with the new value again.

Data caching

PV data lies on the server; retrieving it is a time consuming operation.
Often, the user wants to go back to the previous plot. Thus, the ArchiveViewer caches PV
data for each ‘request’ (a unique combination of start time, end time, retrieval method, and
number of values). When cached data exceed a certain limit, cache is cleared automatically.
Note that data for PVs that appear in formulas is not cached.

Query processing

Current ArchiveViewer contains a handler for regular expressions and Unix-like glob
patterns. It also contains an implementation of the relative time parser (see User’s Guide for
specification)

Formulas

PVs (from a common archive directory) can be used as arguments in formulas whose result
will be processed by the ArchiveViewer as if it were a regular PV. You can also use formulas
inside other formulas.
The formula parser is an extended version of a “3plus4 software” formula library (see
Appendix F) that supports all basic arithmetics as well as boolean operations. The supported
mathematical functions are the ones in the standard java.lang.Math class, plus own
implementations of the max, min, and avg functions (that accept multiple arguments).
Note: The results of the formulas are not cached.

The Model-View-Controller

This is a very famous concept in software engineering. Basic idea is to separate the
application code in two: One part takes care of data processing(“the model”), the other is
responsible for presenting the data to the user (“the view”). That which binds the parts is
called “the controller”.

ArchiveViewer follows the MVC paradigm. As model, an ArchiveViewer API library exists
under epics.archiveviewer.base package. It provides routines for accessing the client, loading
plot configurations, processing plot as well as export requests etc.

 22

Three views are available.
The first view is the XAL GUI. Classes under epics.archiveviewer.xal.view are pure GUI
widgets. They only contain Swing components as attributes and get- methods for them.
The epics.archiveviewer.xal.controller classes connect GUI events with ArchiveViewer
library by creating customized calls and push results of these calls back into GUI.

The second view is the command line (standard in/output). Classes under
epics.archiveviewer.commandline are responsible for connecting command line options to the
right ArchiveViewer library methods and delivering results of these to standard output.
This happens in an infinite loop (until the user enters “-q”, see User’s Guide).

The third view is the Java Server pages. These are basically html files that contain special
tags that were defined in the ArchiveViewer tag library. The implementation of these tags can
be found in epics.archiveviewer.jsp package. This package also contains Servlets that process
html form data. Thus, the user basically interacts with the ArchiveViewer library via HTTP
methods (i.e. from a web browser).

XAL

The Swing components of the ArchiveViewer GUI are fully integrated into XAL framework
(the used version is the one available in CVS on 04/05/2005), developed at SNS.

 23

Integrating JSP

You can use ArchiveViewer JSP mode to plot and export PV data directly from your own
web sites.

To plot PVs from one data request against a single range axis, pass following case-sensitive
parameters (CGI variables) to

<tomcat_url>/archiveviewer/plotDirectly

Name Description Notes

connection_parameter The server connection parameter

PV configuration (these parameters can occur several times)

pv_name The name of a PV
pv_directory The name of an archive directory
color The color for corresponding plot HTML format (e.g. ‘#FF0000’)
draw_type The type of corresponding plot “scatter”, “lines”, or “steps”

Data request configuration

start_time The start time of the data request May be absolute or relative
end_time The end time of the data request May be absolute or relative

Plot image configuration

time_axis_location The location of the time axis “top”, “bottom”, or empty

string
min The lower bound of the range axis Supports several number

formats; may be an empty
string

max The upper bound of the range axis Supports several number
formats; may be an empty
string

axis_type The scale type of the range axis “normal” or “log”
range_axis_location The location of the range axis “left”, “right”, or an empty

string
plot_title The plot title May be an empty string
legend The legend parameters May be a combination of these:

“show_ave_name”,
“show_archive_name”,
“show_range”, and/or
“show_units”

height The height of the resulting image May be an empty string
width The width of the resulting image May be an empty string

An example HTML form that produces such request can be found in Appendix E

 24

To export PV data from a single archive directory, pass following case-sensitive parameters to
<tomcat_url>/archiveviewer/exportDirectly

Name Description Notes

connection_parameter The server connection

parameter

pv_names A list of PV names Names separated by standard
Java delimiters =>
“ \t\n\r\f”

pv_directory The archive directory to be
retrieve data from

start_time The start time of the request May be absolute or relative
end_time The end time of the request May be absolute or relative
retrieval_method Name of a supported

retrieval method

nr_values The requested number of
values

May be an empty string

ts_format Timestamp format May be empty; use Java
DateFormat tokens

export_status If present, exports status as
well as data

May be empty/missing

exporter_id The id of a supported
exporter

E.g. “spreadsheet”

 25

Plugin development

To develop with ArchiveViewer, the download of source code is absolutely necessary (at
least, for now). Also, Apache’s ant is highly recommended for any (re-)builds.

Creating a client plugin

To develop a client for your archive server, you must implement the
epics.archiveviewer.ClientPlugin interface. The JavaDocs for it can be found in the Appendix
C (or on the web site).
After you build your plugin, you have to register it with the ArchiveViewer base library.
Currently it works through source code only.
Please, open the file epics.archiveviewer.base.AVBaseConstants.java and change the value of
the constant AV_CLIENT_CLASS_NAME to the full classname (i.e. incl. package name) of
the new client. Currently, ArchiveViewer supports only one client at a time.
Don’t forget to rebuild ArchiveViewer.

Creating an exporter

To develop a new exporter, you must extend the abstract epics.archiveviewer.Exporter class
(please, note that your exporter must possess a constructor with no arguments).
Then register your implementation with the ArchiveViewer base library by adding the full
class name to the constant AVAILABLE_FOREIGN_EXPORTER_CLASS_NAMES in the
epics.archiveviewer.base.AVBaseConstants interface.

Creating a plot plugin

To develop a new plot plugin, you must extend the abstract epics.archiveviewer.PlotPlugin
class. Then register your implementation with the ArchiveViewer base library by adding the
full class name to the constant AVAILABLE_PLOT_PLUGIN_CLASS_NAMES in the
epics.archiveviewer.base.AVBaseConstants interface.

 26

Appendix A
Directory structure

When you download a tar/zip ball or check out from CVS, you will see following important
directories/files.

build.xml The ant build file; see features below
ext_jars/ This directory contains unmodified jar files the application relies on
README Contains important information for running current release of

ArchiveViewer
RELEASE Contains features of current release
src/ This directory contains all source files
web/ This directory contains jsp and other files that are needed to run

ArchiveViewer in Java Server Pages mode (take a special notice of the
tag library file web/WEB-INF/AVTag.tld)

 27

Appendix B
ANT targets

The default target is “create_big_jar”. The context is the directory where build.xml lies.

Target Description
build_all Compiles all source files and puts them (and other necessary

files) into build/ directory
clean_all Cleans the base directory (in particular, removed the build

directory, the archiveviewer.jar and archiviewer files)
configure_jsp Creates a big ArchiveViewer jar; places it and the actual web

files to appropriate Tomcat directories ($CATALINE_HOME
must be defined)

create_base_jar Builds all files and creates a jar of ArchiveViewer base
classes only

create_big_jar Builds all files and creates a jar with all of them
create_ca_client_jar Builds all files and creates a jar of ChannelArchiver client

classes only
create_jfree_plugins_jar Builds all files and creates a jar of the plot plugins only
create_tar_ball Cleans the base directory and creates a tar file of all necessary

files
create_zip_ball Cleans the base directory and creates a zip file of all necessary

files
install_sns Creates a big ArchiveViewer jar and installs it as EPICS

application according to rules at SNS
javadocs Creates JavaDocs of relevant classes

 28

Appendix C
Plugin JavaDocs

(for more JavaDocs, go to http://ics-web1.sns.ornl.gov/archive/viewer/javadocs/)

epics.archiveviewer.ClientPlugin

public interface ClientPlugin

Implement this interface to develop new ArchiveViewer client plugins

Method Summary

 void connect(java.lang.String param,
ProgressTask progressInfo)
 Tries to create a connection to the data server at the specified
connection parameter.

 AVEntryInfo getAVEInfo(AVEntry ave)
 Returns an AVEntryInfo object for the specified AV entry;
may return NULL

 ArchiveDirectory[] getAvailableArchiveDirectories()
 Returns an array of archive directories known by the server;
should not cache them as ArchiveViewer base does it already

 java.lang.String getConnectionParameter()
 Returns the current connection parameter

 int getMaxNrValuesPerPVPerRequest(int nrPVs)
 Returns the maximum number of values the server can retrieve
per PV per request; due to desired interactions with users,
ArchiveViewer base has an own limit of 1000

 java.lang.String getName()
 Returns the client name

 RetrievalMethod getRetrievalMethod(java.lang.String methodName)
 Returns the retrieval method with the specified name

 RetrievalMethod[] getRetrievalMethodsForCalculation()
 Returns an array of retrieval methods for data that is going to
be used to calculate a formula; the first element should be the default
method

 RetrievalMethod[] getRetrievalMethodsForExport()
 Returns an array of retrieval methods for data that is going to
be exported; the first element should be the default method

 RetrievalMethod[] getRetrievalMethodsForPlot()
 Returns an array of retrieval methods for data that is going to
be plotted the first element should be the default method

 java.lang.String getServerInfoText()
 Returns a formatted description of the server

 void reconnect(ProgressTask progressInfo)

 29

 Reestablishes current connection
 ValuesContainer[] retrieveData(AVEntry[] archiveEntries,

RequestObject requestObject, ProgressTask progressInfo)
 Retrieves archived data for specified AV entries and the
specified request parameters; returns an array of values containers
(elements can be NULL)

 AVEntry[] search(ArchiveDirectory ad, java.lang.String pattern,
ProgressTask progressInfo)
 Sends a server query for PV names in the specified archive
directory that match specified regular expression pattern; returns an
array of found AV entries

Method Detail

public java.lang.String getName()

Returns the client name
Returns:
the client name

public void connect(java.lang.String param,
 ProgressTask progressInfo)
 throws java.lang.Exception

Tries to create a connection to the data server at the specified connection parameter.
The internal state of the object should not change, if the connection could not be
established
Parameters:
param - a connection parameter
progressInfo - the progress interface (for GUI feedback)
Throws:
java.lang.Exception

public java.lang.String getConnectionParameter()

Returns the current connection parameter
Returns:
the current connection parameter

public void reconnect(ProgressTask progressInfo)
 throws java.lang.Exception

Reestablishes current connection
Parameters:
progressInfo - the progress interface for feedback
Throws:
java.lang.Exception

public ArchiveDirectory[] getAvailableArchiveDirectories()
 throws
java.lang.Exception

Returns an array of archive directories known by the server; should not cache them as
ArchiveViewer base does it already
Returns:
an array of archive directories known by the server
Throws:

 30

java.lang.Exception

public RetrievalMethod[] getRetrievalMethodsForExport()
Returns an array of retrieval methods for data that is going to be exported; the first
element should be the default method
Returns:
an array of retrieval methods for data that is going to be exported

public RetrievalMethod[] getRetrievalMethodsForPlot()

Returns an array of retrieval methods for data that is going to be plotted the first
element should be the default method
Returns:
an array of retrieval methods for data to be plotted

public RetrievalMethod[] getRetrievalMethodsForCalculation()

Returns an array of retrieval methods for data that is going to be used to calculate a
formula; the first element should be the default method
Returns:
an array of retrieval methods for data that is going to be used to calculate a formula

public RetrievalMethod getRetrievalMethod(java.lang.String methodName)

Returns the retrieval method with the specified name
Returns:
the retrieval method with the specified name

public java.lang.String getServerInfoText()
 throws java.lang.Exception

Returns a formatted description of the server
Returns:
a formatted description of the server
Throws:
java.lang.Exception

public ValuesContainer[] retrieveData(AVEntry[] archiveEntries,
 RequestObject requestObject,
 ProgressTask progressInfo)
 throws java.lang.Exception

Retrieves archived data for specified AV entries and the specified request parameters;
returns an array of values containers (elements can be NULL)
Parameters:
archiveEntries - the AV entries whose data is to be retrieved
requestObject - the request parameters
progressInfo - the progress interface for feedback
Returns:
an array of values containers (may contain NULL elements)
Throws:
java.lang.Exception

public int getMaxNrValuesPerPVPerRequest(int nrPVs)

Returns the maximum number of values the server can retrieve per PV per request;
due to desired interactions with users, ArchiveViewer base has an own limit of 1000
Parameters:
nrPVs - number of PVs whose request for data is going to be sent (may be
unnecessary)

 31

Returns:
the maximum number of values the server can retrieve per PV per request

public AVEntry[] search(ArchiveDirectory ad,
 java.lang.String pattern,
 ProgressTask progressInfo)
 throws java.lang.Exception

Sends a server query for PV names in the specified archive directory that match
specified regular expression pattern; returns an array of found AV entries
Parameters:
ad - the archive directory to search within
pattern - a regular expression for PV names to match
progressInfo - the progress interface for feedback
Returns:
an array of found AV entries
Throws:
java.lang.Exception

public AVEntryInfo getAVEInfo(AVEntry ave)

Returns an AVEntryInfo object for the specified AV entry; may return NULL
Parameters:
ave - the AV entry
Returns:
an AVEntryInfo object for the specified AV entry

epics.archiveviewer.Exporter

public abstract class Exporter
extends java.lang.Object

Extend this class to create an exporter plugin

Field Summary

static int EXPORT_DATA_AND_STATUS
 a constant for exporting data and status

static int EXPORT_DATA_ONLY
 a constant for exported data only

Constructor Summary

Exporter()
 The default constructor; must be present in all subclasses!!!

Method Summary

abstract void export(ValuesContainer[] vcs, int firstIndex,
int lastIndex, java.io.Writer writer, boolean append,
int detailsLevel, java.lang.String tsFormat)

 32

 Exports data from specified values containers between specified
indices to specified writer

abstract
 java.lang.String

getId()
 Returns a short string that identifies this Exporter and is
descriptive enough to let the user make the right selection (e.g.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detail

public static final int EXPORT_DATA_ONLY

a constant for exported data only
See Also:
Constant Field Values

public static final int EXPORT_DATA_AND_STATUS

a constant for exporting data and status
See Also:
Constant Field Values

Constructor Detail

public Exporter()

The default constructor; must be present in all subclasses!!!

Method Detail

public abstract java.lang.String getId()

Returns a short string that identifies this Exporter and is descriptive enough to let the
user make the right selection (e.g. "matlab")
Returns:
a short string that identifies this Exporter and is descriptive enough to let the user
make the right selection

public abstract void export(ValuesContainer[] vcs,
 int firstIndex,
 int lastIndex,
 java.io.Writer writer,
 boolean append,
 int detailsLevel,
 java.lang.String tsFormat)
 throws java.lang.Exception

Exports data from specified values containers between specified indices to specified
writer
Parameters:
vcs - the values containers to be exported
firstIndex - the first index of data to be exported
lastIndex - the last index of data to be exported
writer - the writer to which data is written

 33

append - a flag, indicating if data should be appended to the writer or not
detailsLevel - see fields of this class
tsFormat - a string containing the Java timestamp format (may be NULL)
Throws:
java.lang.Exception

epics.archiveviewer.PlotPlugin

public abstract class PlotPlugin
extends java.lang.Object

Extend this class to create new plot plugins

Field Summary

static java.lang.String DESCRIPTION
 This field is accessed when the user tries to load a new
plot plugin; please override it in the subclass

Constructor Summary

PlotPlugin(AVBaseFacade avbf, ImagePersistenceBean ngpip)
 constructor

Method Summary

abstract void clear()
 Clears the entire chart

abstract void displayGraphs(ValuesContainer[] nonNullVCs)
 Displays a plot image for the specified values
containers (main method)

 AVBaseFacade getAVBFacade()
 Returns the access object to AV base

abstract RetrievalMethod getChosenRetrievalMethod()
 Returns the suitable retrieval method for this
PlotPlugin

abstract
 java.awt.Component

getComponent()
 Returns the component of this PlotPlugin that should
be added to the ArchiveViewer Swing hierarchy (mouse
listeners will be registered to this component)

abstract double getCorrespondingDomainValue(java.lang.String xAx
isLabel, double xCoordinate)
 Returns the value of the specified x axis that
corresponds to the specified x coordinate in the space of the
component returned by getComponent()

abstract double getCorrespondingRangeValue(java.lang.String yAxi
sLabel, double yCoordinate)

 34

 Returns the value of the specified range axis that
corresponds to the specified y coordinate in the space of the
component returned by getComponent()

abstract
 java.lang.String[]

getDomainAxesLabels()
 Returns an array of domain axes labels (might be
different from the time axes specified by the user); needed
by AV base to get information on axes bounds

abstract double getLowerBoundOfDomainAxis(java.lang.String domai
nAxisLabel)
 Returns the lower bound of the specified domain axis

abstract double getLowerBoundOfRangeAxis(java.lang.String rangeA
xisLabel)
 Returns the lower bound of the specified range axis

abstract java.lang.String getName()
 Returns a display name of this PlotPlugin

 ImagePersistenceBean getPersistenceParameters()
 Returns the image persistence parameters object

abstract int getPlotPanelWidth()
 Returns the width of the plot panel

abstract
 javax.swing.JPopupMenu

getRightClickMenu()
 Returns the right-mouse-click menu

abstract double getUpperBoundOfDomainAxis(java.lang.String domai
nAxisLabel)
 Returns the upper bound of the specified domain axis

abstract double getUpperBoundOfRangeAxis(java.lang.String rangeA
xisLabel)
 Returns the upper bound of the specified range axis

abstract
 java.awt.geom.Rectangle2D

getZoomablePlotArea()
 Returns a Rectangle2D for the part of this PlotPlugin's
visual component which the user can zoom into

abstract boolean isDomainTime()
 Returns true if domain axes are time axes; false
otherwise (if true, plot zoom in/scrolling triggers new data
retrieval)

abstract void setAntiAlias(boolean flag)
 Depending on the flag, enables or disables anti alias
drawing mechanism

abstract void setAvailableRetrievalMethods(RetrievalMethod[] r
ms)
 Sets retrieval methods available from the current
server

abstract void setDomainAxisBounds(java.lang.String domainAxisL
abel, double min, double max)
 Sets new bounds for the specified domain axis (not
necessarily time axis)

abstract void setLeaveIgnoredItems(boolean flag)
 Depending on the flag, tells the PlotPlugin to leave (or
not) the ignored items

 35

abstract void setRangeAxisBounds(java.lang.String rangeAxisLab
el, double min, double max)
 Sets new bounds for the specified range axis

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detail

public static final java.lang.String DESCRIPTION

This field is accessed when the user tries to load a new plot plugin; please override it
in the subclass
See Also:
Constant Field Values

Constructor Detail

public PlotPlugin(AVBaseFacade avbf,
 ImagePersistenceBean ngpip)
 throws java.lang.Exception

constructor
Parameters:

avbf - the av base access object
ngpip - the image persistence parameters object; may be NULL => draws to screen

Throws:
Excpetion - if, among others, the plugin can not be used to create file images directly
java.lang.Exception

Method Detail

public AVBaseFacade getAVBFacade()

Returns the access object to AV base
Returns:
the access object to AV base

public ImagePersistenceBean getPersistenceParameters()

Returns the image persistence parameters object
Returns:
the image persistence parameters object

public abstract void displayGraphs(ValuesContainer[] nonNullVCs)
 throws java.lang.Exception

Displays a plot image for the specified values containers (main method)
Parameters:
nonNullVCs - an array of values containers to be plotted; elements must not be NULL
Throws:
java.lang.Exception

public abstract java.awt.geom.Rectangle2D getZoomablePlotArea()

Returns a Rectangle2D for the part of this PlotPlugin's visual component which the
user can zoom into

 36

Returns:
a Rectangle2D for the part of this PlotPlugin's visual component which the user can
zoom into

public abstract java.lang.String getName()

Returns a display name of this PlotPlugin
Returns:
a display name of this PlotPlugin

public abstract java.awt.Component getComponent()

Returns the component of this PlotPlugin that should be added to the ArchiveViewer
Swing hierarchy (mouse listeners will be registered to this component)
Returns:
the component of this PlotPlugin that should be added to the ArchiveViewer Swing
hierarchy

public abstract void setDomainAxisBounds(java.lang.String domainAxisLabel,
 double min,
 double max)

Sets new bounds for the specified domain axis (not necessarily time axis)
Parameters:
domainAxisLabel - the label of the domain axis; may be NULL if only one domain
axis present
min - the new lower bound
max - the new upper bound

public abstract void setRangeAxisBounds(java.lang.String rangeAxisLabel,
 double min,
 double max)

Sets new bounds for the specified range axis
Parameters:
rangeAxisLabel - the label of the range axis
min - the new lower bound
max - the new upper bound

public abstract boolean isDomainTime()

Returns true if domain axes are time axes; false otherwise (if true, plot zoom
in/scrolling triggers new data retrieval)
Returns:
true if domain axes are time axes; false otherwise

public abstract javax.swing.JPopupMenu getRightClickMenu()

Returns the right-mouse-click menu
Returns:
the right-mouse-click menu

public abstract double
getUpperBoundOfRangeAxis(java.lang.String rangeAxisLabel)
 throws java.lang.Exception

Returns the upper bound of the specified range axis
Parameters:
rangeAxisLabel - the range axis label
Returns:

 37

the upper bound of the specified range axis
Throws:
java.lang.Exception

public abstract double
getLowerBoundOfRangeAxis(java.lang.String rangeAxisLabel)
 throws java.lang.Exception

Returns the lower bound of the specified range axis
Parameters:
rangeAxisLabel - the range axis label
Returns:
the lower bound of the specified range axis
Throws:
java.lang.Exception

public abstract java.lang.String[] getDomainAxesLabels()

Returns an array of domain axes labels (might be different from the time axes
specified by the user); needed by AV base to get information on axes bounds
Returns:
an array of domain axes labels

public abstract double
getUpperBoundOfDomainAxis(java.lang.String domainAxisLabel)
 throws java.lang.Exception

Returns the upper bound of the specified domain axis
Parameters:
domainAxisLabel - the label of a domain axis
Returns:
the upper bound of the specified domain axis
Throws:
java.lang.Exception

public abstract double
getLowerBoundOfDomainAxis(java.lang.String domainAxisLabel)
 throws java.lang.Exception

Returns the lower bound of the specified domain axis
Parameters:
domainAxisLabel - the label of the domain axis
Returns:
the lower bound of the specified domain axis
Throws:
java.lang.Exception

public abstract double
getCorrespondingDomainValue(java.lang.String xAxisLabel,
 double xCoordinate)
 throws java.lang.Exception

Returns the value of the specified x axis that corresponds to the specified x coordinate
in the space of the component returned by getComponent()
Parameters:
xAxisLabel - the label of the domain axis
xCoordinate - the x coordinate in space of the component returned by
getComponent()
Returns:

 38

the value of the specified x axis that corresponds to the specified x coordinate
Throws:
java.lang.Exception

public abstract double
getCorrespondingRangeValue(java.lang.String yAxisLabel,
 double yCoordinate)
 throws java.lang.Exception

Returns the value of the specified range axis that corresponds to the specified y
coordinate in the space of the component returned by getComponent()
Parameters:
yAxisLabel - the label of the range axis
yCoordinate - the y coordinate in space of the component returned by
getComponent()
Returns:
the value of the specified range axis that corresponds to the specified y coordinate
Throws:
java.lang.Exception

public abstract void setAvailableRetrievalMethods(RetrievalMethod[] rms)

Sets retrieval methods available from the current server
Parameters:
rms - an array of available retrieval methods

public abstract RetrievalMethod getChosenRetrievalMethod()
 throws
java.lang.Exception

Returns the suitable retrieval method for this PlotPlugin
Returns:
the suitable retrieval method for this PlotPlugin
Throws:
java.lang.Exception

public abstract int getPlotPanelWidth()

Returns the width of the plot panel
Returns:
the width of the plot panel

public abstract void clear()

Clears the entire chart

public abstract void setAntiAlias(boolean flag)
Depending on the flag, enables or disables anti alias drawing mechanism
Parameters:
flag - a flag

public abstract void setLeaveIgnoredItems(boolean flag)

Depending on the flag, tells the PlotPlugin to leave (or not) the ignored items
Parameters:
flag - a flag

 39

Appendix D
Example plot configuration from Bessy
(nice formulas)

<?xml version="1.0" encoding="UTF-16"?>
<AVConfiguration>

<connection_parameter>http://www.bessy.de:8080/archive/cgi/ArchiveDataServer.cgi</connection_parameter>
 <time_axis name="Main Time Axis">
 <start>-1d</start>
 <end>now</end>
 <location>bottom</location>
 </time_axis>
 <range_axis name="Main Range Axis">
 <min/>
 <max/>
 <type>normal</type>
 <location>left</location>
 </range_axis>
 <legend_configuration show_ave_name="false"
show_directory_name="false" show_range="true" show_units="true"/>
 <plot_title/>
 <pv directory_name="ctl - machine controls - current week"
name="MDIZ3T5G:lt100">
 <time_axis_name>Main Time Axis</time_axis_name>
 <range_axis_name>Main Range Axis</range_axis_name>
 <color>-65536</color>
 <draw_type>steps</draw_type>
 <draw_width>1.0</draw_width>
 <visibility>false</visibility>
 </pv>
 <pv directory_name="ctl - machine controls - current week"
name="MDIZ3T5G:current">
 <time_axis_name>Main Time Axis</time_axis_name>
 <range_axis_name>Main Range Axis</range_axis_name>
 <color>-16776961</color>
 <draw_type>steps</draw_type>
 <draw_width>1.0</draw_width>
 <visibility>false</visibility>
 </pv>
 <pv directory_name="ctl - machine controls - current week"
name="PKEK1S11B:stat6">
 <time_axis_name>Main Time Axis</time_axis_name>
 <range_axis_name>Main Range Axis</range_axis_name>
 <color>-16711936</color>
 <draw_type>steps</draw_type>
 <draw_width>1.0</draw_width>
 <visibility>false</visibility>
 </pv>
 <formula directory_name="ctl - machine controls - current week"
name="ItauFilter">
 <term>((x0>100)&&(x0<2500))*x0</term>
 <argument_ave name="Itau" variable="x0"/>
 <method_name>linear</method_name>
 <nr_values>800</nr_values>
 <time_axis_name>Main Time Axis</time_axis_name>
 <range_axis_name>Main Range Axis</range_axis_name>
 <color>-16777216</color>

 40

 <draw_type>steps</draw_type>
 <draw_width>1.0</draw_width>
 <visibility>true</visibility>
 </formula>
 <formula directory_name="ctl - machine controls - current week"
name="Itau">
 <term>(x2<0.1)*x1*x0</term>
 <argument_ave name="MDIZ3T5G:lt100" variable="x0"/>
 <argument_ave name="MDIZ3T5G:current" variable="x1"/>
 <argument_ave name="PKEK1S11B:stat6" variable="x2"/>
 <method_name>linear</method_name>
 <nr_values>800</nr_values>
 <time_axis_name>Main Time Axis</time_axis_name>
 <range_axis_name>Main Range Axis</range_axis_name>
 <color>-65281</color>
 <draw_type>steps</draw_type>
 <draw_width>1.0</draw_width>
 <visibility>false</visibility>
 </formula>
</AVConfiguration>

 41

Appendix E
Example form for JSP access

<form method="GET" action="your_tomcat_url/archiveviewer/plotDirectly" >

<input
name="connection_parameter"
size="25"
type="text"
value="http://ics-srv-web2.sns.ornl.gov/archive/cgi/ArchiveDataServer.cgi"
/>

<input
name="pv_name"
size="25"
type="text"
value="CCL_Cool:FT101:Seg1_Rtn"
/>

<input
name="pv_directory"
size="25"
type="text"
value="RCCS/Vac (01/01/05 - present)"
/>

<input
name="color"
size="25"
type="text"
value="#ff0000"
/>

<input
name="draw_type"
size="25"
type="text"
value="steps"
/>

<input
name="start_time"
size="25"
type="text"
value="-1d"
/>

<input
name="end_time"
size="25"
type="text"
value="now"
/>

<input
name="time_axis_location"
size="25"
type="text"
value="bottom"
/>

 42

<input
name="min"
size="25"
type="text"
value=""
/>

<input
name="max"
size="25"
type="text"
value=""
/>

<input
name="axis_type"
size="25"
type="text"
value="normal"
/>

<input
name="range_axis_location"
size="25"
type="text"
value="left"
/>

<input
name="plot_title"
size="25"
type="text"
value=""
/>

<input
type="checkbox"
name="legend"
value="show_ave_name"
checked='checked'
/>

<input
type="checkbox"
name="legend"
value="show_archive_name"
checked='checked'
/>

<input
 type="checkbox"
 name="legend"
 value="show_range"
 checked='checked'
/>

<input
type="checkbox"
name="legend"
value="show_units"
checked='checked'

 43

/>

<input
name="width"
size="25"
type="text"
value="800"
/>

<input
name="height"
size="25"
type="text"
value="600"
/>

<input type="submit" value="Submit"/>

</form>

 44

Appendix F
Important links

http://ant.apache.org
ANT- the Java build tool

http://xml.apache.org/xerces2-j/
Xerces- the Java XML library

http://ws.apache.org/xmlrpc/
Apache’s XML-RPC Java library

http://www.jfree.org/jfreechart/
JFreeChart- an extraordinarily versatile Java plot library

http://java.sun.com
All resources on Java itslef

http://www.sns.gov/APGroup/appProg/xal/xal.htm
XAL framework – great for building reliable GUIs

http://jakarta.apache.org/tomcat/
Tomcat – the container for Java Server Pages

http://www.3plus4.de
Provided the initial formula parser (code was checked and modified)

http://java.sun.com/docs/books/tutorial/uiswing/misc/example-1dot4/SwingWorker.java
SwingWorker

