DISTRIBUTED ENERGY PROGRAM REPORT

GTI Integrated Energy System for Buildings

Modular System Prototype

This document, which includes a "Laboratory Testing of Alpha Prototype" section, focuses on the market acceptability of integrated energy systems in commercial buildings.

Introduction

Design of Alpha Prototype of Integrated Energy System **Laboratory Testing of Alpha Prototype** Assessment of Potential IES Markets Economic Assessment of Selected Applications of IES Summary of Results Conclusions and Lessons Learned Recommendations Appendix A – Cogeneration System Testing Description Appendix B – Market Analysis Appendix C – Economic Analysis of Alpha Design

Ø

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy

is clean, abundant, reliable, and affordable

DISTRIBUTED ENERGY PROGRAM REPORT

GTI Integrated Energy System for Buildings

Modular System Prototype

Gas Technology Institute

January 2006

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy

is clean, abundant, reliable, and affordable

gti

GTI Integrated Energy System for Buildings

Modular System Prototype

Prepared by:

Greg Rouse Marek Czachorski Patrick Bishop Jignesh Patel

Reviewed by: William R. Staats Approved by: John F. Kelly

Gas Technology Institute 1700 S. Mount Prospect Rd. Des Plaines Illinois 60018-1804 GTI Project 15357/65118

January 2006

Acknowledgement

The authors wish to thank Ron Fiskum of the U.S. Department of Energy and Tim Theiss, Bob DeVault, Patti Garland, and Steve Fischer of the Oak Ridge National Laboratory for their support and helpful comments in the development of this report. We also thank Bill Ryan of the University of Illinois, Joe Sinclair of Ballard Engineering, Bill Plzak and Vikas Patnaik of Trane, Monte McCormick and John Peffer of Waukesaha, and Tom Smith of Equity Office Partners for their significant contributions to this research.

Notice

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report was prepared by Gas Technology Institute (GTI) as an account of its R&D. Neither GTI, members of GTI, or any person acting on their behalf:

- a. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- b. Assumes any liability with respect to the use of, or for any and all damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Reference to trade names or specific commercial products, commodities, or services in this report does not represent or constitute an endorsement, recommendation, or favoring by GTI of the specific commercial product, commodity, or service.

Executive Summary

DOE and GTI agree that the market acceptability of integrated energy systems (IES) in commercial buildings would improve if these systems were available to consumers as factory-assembled modules rather than being purchased as components, site engineered, and site assembled. This manufactured packaged system approach will accelerate distributed energy system sales by:

- Lowering engineering and installation costs through standardization and minimizing site work.
- Improving the likelihood that the components would optimally match one another and, therefore, the IES would perform more efficiently and reliably.
- Improving in-service reliability, by establishing a manufacturer with responsibility for design, quality construction, warranty, and maintaining the entire system.

The premise of the project was that an entire IES could be manufactured, using quality standards, as a single module or set of modules, so it could be transported to the customer's premises and connected to the customer's electrical and thermal systems with very little advance engineering and custom installation.

The purpose of Phase 1 of this project was to:

- Develop an advanced, highly efficient, and reliable modular IES package that has an overall efficiency of at least 70% and an installed cost 20% lower than currently available systems.
- Build, test, and evaluate the performance of an alpha prototype.
- Using the test results, identify design improvements for Phase 2.
- Identify a commercialization path.

The team developed, built and tested an advanced 600-kW IES package that has an efficiency of over 70%. The twomodule system requires only seven connections in the field, lowering installation costs and reducing total installed cost (including the absorption chiller) from nearly \$2,500 to less than 2,000 per kW - a 25% reduction. The system included a Waukesha 615 kW engine-generator, GE switchgear, a Trane absorption chiller, and Cain heat equipment. recovery Ballard Engineering developed the control system.

The IES design provides controls to vary engine jacket water outlet temperature. This feature provides for a 40% increase in the production of chilled water when called for.

Trane built a new 90-125 RT (refrigeration ton) single-stage absorption chiller, based on its Horizon[™] series for this project. Trane designed the prototype chiller specifically for the low activation temperatures available from IC engine recoverable heat.

Trane targeted the chiller design for operation over the wide range of 207 to 237°F thermal energy available from a gas engine, rather than the 270°F source temperature usually used for hot-water-fired absorption chillers. Performance testing verified the design output of 90 RT at a coefficient of performance (COP) of 0.7 when operated with 207°F hot water supply and produced slightly more than 130 RT at 0.7 COP with 237°F water supply.

Performance tests of the alpha prototype demonstrated that it exceeded the goal of 70% overall efficiency. The electric power output and efficiency were flat over a range of intake air temperatures up to 104° F, and NO_x emissions were well below the manufacturer's specification of 2 g/bhp. The measured engine-generator power output of 612 kW met expectations. The total estimated parasitic power consumption of the cogeneration module was 22 kW and the parasitic consumption of the chiller module was 47 kW.

Evaluation and testing of the alpha prototype identified a number of design improvements that will be addressed in Phase 2. They include:

- Develop and integrate an intelligent operator to improve system reliability.
- Increase modularization to facilitate transportation of the equipment to installation sites and enable greater flexibility in configuring installations.
- Base the beta prototype on a smaller engine to increase the range of applicable buildings.

GTI expanded and updated the initial design economic analysis and IES optimization in early 2005 to account for changing market conditions. The updated optimization revealed that an IES capacity in the range of 350 kW, with a 96-RT hot-water-fired single-effect absorption chiller would provide optimal performance – highest applied energy efficiencies and lowest simple paybacks – for the most significant commercial markets. Multiples of the IES (700 kW and 1,050 kW) could serve some of the larger commercial buildings. In Phase 2, GTI intends to design, optimize, and demonstrate a nominal 350-kW system and a 1,100-kW system based on a new ARES engines.

Effective commercialization requires a packaging partner that can fabricate, market, warrant, and service a suite of high-quality IES systems. GTI' initially pursued Waukesha as the manufacturer for the packaged system. However, competing priorities and markets made it difficult for Waukesha to divert resources from its core business – reciprocating engines. As a result, GTI shifted its commercialization strategy, seeking an experienced engine-generator set packager that is willing to expand its scope of supply to include heat recovery and chilled water. GTI identified Enercon Engineering, Inc. as such a commercialization partner and created a partnership with Enercon Engineering to design, manufacture, warrant, and sell a line of IES packages with nominal capacities of 300 to 1,100 kW. Enercon Engineering will leverage the existing manufacturer distributor sales and maintenance networks.

Contents

Acknowledgement	i
Noticei	i
Executive Summaryii	i
Contents	V
List of Figuresvii	i
List of Tablesx	i
Introduction1	1
Background	1
Project Objectives and Goals	1
Goal 1 – Overall Efficiency	2
Goal 2 – Installed Cost	2
Goal 3 – Applicability	2
Goal 4 – Reliability	3
Goal 5 – Market Identification and Characterization	3
Work Scope	3
Design of Alpha Prototype of Integrated Energy System	4
Engine Selection Decision Factors	4
Market Applicability	4
Infrastructure	4
Manufacturer Commitment	4
Initial Cost	4
Maintenance Cost	5
Permit Requirements in Midwest	5
Chiller Selection Decision Factors	5
Market Applicability	5
Infrastructure	5
Manufacturer Commitment	5
Initial Cost	6
Maintenance Cost	6
The Modular Integrated Energy System	5

The Cogeneration Module	7
Engine	
Generator	
Engine Cooling and Heat Recovery System	
Interconnection Switchgear and Controls	
The Absorption Chiller Module	
Prototype Chiller Design and Development	
Condenser Cooling Water System	
Laboratory Testing of Alpha Prototype	
Cogeneration Module Testing	
Test Purpose	
Test Setup Overview	
Performance Test Results from Cogeneration Module	
Prototype Absorption Chiller Testing	
Test Purpose	
Test Results	
Modeled Overall Performance of Combined System	
Assessment of Potential IES Markets	
Best Locations	
Best Market Segments	
Recommended Marketing Strategies	
Summary	
Lodging	
Medium-Size Medical and Healthcare Facilities	
Office	
Retail	
Schools	
Economic Assessment of Selected Applications of IES	
Nomenclature and Abbreviations	
Characteristics of the Typical Buildings	
Hotel	
Nursing Home	
Office	

Retail	
School	
The Conceptual Beta IES System	
Costs	
Modeling	
Electric Rates	
San Diego, California	
New York, New York	
Results of the Analysis	
The Value of Using Absorption Chillers	
Value of Heat Recovery	
Source Energy Savings	
Summary of Results	
Goal 1 – Overall Efficiency Greater Than 70%	
Goal 2 – 50% Reduction in Installation Cost	
Goal 3 – Adaptability to a Variety of Building Types and Thermal Deman	nd Requirements. 104
Goal 4 – Reliability	
Goal 5 – Market Identification and Characterization	
Conclusions and Lessons Learned	
Performance and Testing	
Reliability	
Modularity	
Market Applicability	
Commercialization Strategy	
Recommendations	
Appendix A – Cogeneration System Testing Description	
Appendix B – Market Analysis	
Appendix C – Economic Analysis of Alpha Design	

List of Figures

Figure 1: Integrated Energy System	6
Figure 2: Waukesha VGF Series Enginator® Engine-Generator Set	7
Figure 3: Heat Recovery Circuits	9
Figure 4: User Interface Screen for Jacket Coolant Circuit Master Control	11
Figure 5: User Interface Screen for Heat Recovery System Master Control	11
Figure 6: User Interface Screen for Auxiliary Coolant Circuit Master Control	12
Figure 7: System One Line/Mimic Diagram	15
Figure 8: Generator Summary Screen	16
Figure 9: Offloading of Cogeneration Module	16
Figure 10: Comparison of the Cost of the New Chiller Design to that of a Conventional Absorption Chiller	19
Figure 11: Rear Isometric View of Prototype Chiller	19
Figure 12: Photograph of Prototype Chiller (Front View)	20
Figure 13: Photograph of Prototype Chiller (Side View)	20
Figure 14: User Interface Screen for Chiller	21
Figure 15: Mechanical Module Boundary Diagram	24
Figure 16: One-Line Schematic of Electrical Subsystem and Electrical Boundary Diagram	25
Figure 17: Gross Electric Efficiencies as Functions of Output	29
Figure 18: Net Electric Efficiencies as Functions of Output	29
Figure 19: Exhaust Gas Emissions as Functions of Output	30
Figure 20: Voltage-Time Plots for Transient Load Testing – Phase A	32
Figure 21: Voltage-Time Plot for Transient Load Testing – Phase B	33
Figure 22: Voltage-Time Plot for Transient Load Testing – Phase C	33
Figure 23: Number of Voltage Sags during Transient Load Testing	34
Figure 24: Sensitivity of Thermal Output to Engine Intake Air Temperature	41
Figure 25: Chiller Performance as a Function of Hot Water Supply Temperature	48
Figure 26: Effect of Chilled Water Delivery Temperature on Chiller Capacity	49
Figure 27: Effect of Chilled Water Delivery Temperature on Chiller COP	49
Figure 28: Effect of Tower Water Temperature on Chiller Capacity	50
Figure 29: Effect of Tower Water Temperature on Chiller COP	50

Figure 30:	Part-Load Chiller Performance at Design Temperatures	51
Figure 31:	Sensitivity of Chiller Performance to Hot Water Temperature – 125-RT Mode	52
Figure 32:	Sensitivity of Chiller Performance to Chilled Water Temperature – 125-RT Mode	53
Figure 33:	Sensitivity of Chiller Performance to Tower Water Temperature – 125-RT Mode	53
Figure 34:	Sensitivity of Chiller Output to Engine Jacket Coolant Temperature	58
Figure 35:	States with High Electric Power Rates and High Commercial Building Energy Needs	59
Figure 36:	Layout of Typical Large Hotel	71
Figure 37:	Layout of Typical Nursing Home	72
Figure 38:	Layout of Typical Large Office Building	73
Figure 39:	Layout of Typical Large Retail Store	74
Figure 40:	Layout of Typical School	75
Figure 41:	IES Concept Diagram	76
Figure 42:	Typical Capacity De-Rating Factor for Single and Multi-Pass Single-Effect Absorption Chillers	77
Figure 43:	Specific Cost of a Single-Stage Absorption Chiller, Including Costs of Piping and Cooling Tower	79
Figure 44:	Part-Load Performance Characteristics of Modeled Absorption Chiller	81
Figure 45:	Total Present Worth – Large Hotel in San Diego	92
Figure 46:	Annual Heat Recovery Effectiveness – Large Hotel in San Diego	92
Figure 47:	Simple Payback – Large Hotel in San Diego	92
Figure 48:	Gas Price Sensitivity – Large Hotel in San Diego	92
Figure 49:	Total Present Worth- Nursing Home in San Diego	93
Figure 50:	Annual Heat Recovery Effectiveness – Nursing Home in San Diego	93
Figure 51:	Simple Payback – Nursing Home in San Diego	93
Figure 52:	Gas Price Sensitivity – Nursing Home in San Diego	93
Figure 53:	Total Present Worth – Large Office Building in San Diego	94
Figure 54:	Annual Heat Recovery Effectiveness – Large Office Building in San Diego	94
Figure 55:	Simple Payback – Large Office Building in San Diego	94
Figure 56:	Gas Price Sensitivity – Large Office Building in San Diego	94
Figure 57:	Total Present Worth – Large Retail Store in San Diego	95
Figure 58:	Annual Heat Recovery Effectiveness – Large Retail Store in San Diego	95

Figure 59:	Simple Payback – Large Retail Store in San Diego	95
Figure 60:	Gas Price Sensitivity – Large Retail Store in San Diego	95
Figure 61:	Total Present Worth – Large School in San Diego	96
Figure 62:	Annual Heat Recovery Effectiveness – Large School in San Diego	96
Figure 63:	Simple Payback – Large School in San Diego	96
Figure 64:	Gas Price Sensitivity – Large School in San Diego	96
Figure 65:	Total Present Worth – Large Hotel in New York	97
Figure 66:	Annual Heat Recovery Effectiveness – Large Hotel in New York	97
Figure 67:	Simple Payback – Large Hotel in New York	97
Figure 68:	Gas Price Sensitivity – Large Hotel in New York	97
Figure 69:	Total Present Worth – Nursing Home in New York	98
Figure 70:	Annual Heat Recovery Effectiveness - Nursing Home in New York	98
Figure 71:	Simple Payback – Nursing Home in New York	98
Figure 72:	Gas Price Sensitivity – Nursing Home in New York	98
Figure 73:	Total Present Worth - Large Office Building in New York	99
Figure 74:	Annual Heat Recovery Effectiveness - Large Office Building in New York	99
Figure 75:	Simple Payback – Large Office Building in New York	99
Figure 76:	Gas Price Sensitivity – Large Office Building in New York	99
Figure 77:	Total Present Worth – Large Retail Store in New York	100
Figure 78:	Annual Heat Recovery Effectiveness – Large Retail Store in New York	100
Figure 79:	Simple Payback – Large Retail Store in New York	100
Figure 80:	Gas Price Sensitivity – Large Retail Store in New York	100
Figure 81:	Total Present Worth – Large School in New York	101
Figure 82:	Annual Heat Recovery Effectiveness – Large School in New York	101
Figure 83:	Simple Payback – Large School in New York	101
Figure 84:	Gas Price Sensitivity – Large School in New York	101
Figure 85:	Remaining Commercial Sector CHP Technical Potential in New York	110

List of Tables

Table 1: Design Conditions for Heat Recovery Modules (200°F Jacket Coolant)	13
Table 2: Heat Exchanger Design Parameters (200°F Jacket Coolant)	14
Table 3: Customer Connections	17
Table 4: Comparison of Component Area Requirements of Conventional and Low- Source-Temperature Absorption Chillers	18
Table 5: Parasitic Power – Electric-Only Tests	27
Table 6: Potential Parasitic Loads Not Included in Test Results	27
Table 7: Electrical Efficiency as a Function of Engine Intake Air Temperature and Power Output	28
Table 8: Emissions Levels as Functions of Power Output	31
Table 9: Worst-Case Transient Load Summary	34
Table 10: Cogeneration Module Performance for Hot Water Heat Recovery (59°F Intake Air Temperature Setpoint)	36
Table 11: Cogeneration Module Performance at 95°F Intake Air Temperature	37
Table 12: Electric Power Balance Summary for Heat Recovery Tests at 100% Rated Power	39
Table 13: Thermal Energy Balance Summary for Heat Recovery Tests at Full Rated Power	40
Table 14: Estimated Performance of HX1	43
Table 15: Estimated Performance of Exhaust Heat Exchanger	44
Table 16: Analysis of Thermal Output	45
Table 17: Prototype Chiller Performance Summary (90-RT Mode)	47
Table 18: Prototype Chiller Performance Summary (125-RT Mode)	52
Table 19: Calculated Chiller Output, 95°F Engine Intake Air Temperature	55
Table 20: Additional Parasitic Loads Associated with Chiller Module	56
Table 21: Combined System Net Energy Output and Efficiency at 95°F Air Intake	57
Table 22: Sub-Segments of the IES Market Consistent with Engine-Driven IES	61
Table 23: Sub-Segment Advantages and Disadvantages for IES Marketability	62
Table 24: Electric Load Size of the Selected Market Sub-Segments	63
Table 25: Basic Parameters of Analyzed Buildings	69
Table 26: Basic HVAC Parameters of Analyzed Buildings	70

Table 27:	Engine-Generator Electrical Efficiency	78
Table 28:	Installed Cost of IES Components	79
Table 29:	EIA Projection of Gas Costs to Industrial Gas Consumers (2002\$)	82
Table 30:	Electric Rate for San Diego	83
Table 31:	Electric Rate for New York Baseline Runs	84
Table 32:	Electric Rate for New York DG Alternative Runs	84
Table 33:	Financial Value of Adding an Absorption Chiller to an IES in San Diego	87
Table 34:	Financial Value of Adding an Absorption Chiller to an IES in New York	87
Table 35:	Financial Value of Heat Recovery to DG Systems in San Diego	88
Table 36:	Financial Value of Heat Recovery to DG Systems in New York	88
Table 37:	Performance of Optimally Sized IES in San Diego	90
Table 38:	Performance of Optimally Sized IES in New York	91
Table 39:	Estimated Cost Savings from Modularizing IES	103

Introduction

Background

The Department of Energy embarked on an innovative program to develop and deploy integrated energy systems (IES) for providing electricity and thermal energy for space conditioning to commercial buildings. Integrated energy systems can help meet growing demand for electric power and reduce summer peak loads while improving energy efficiency and avoiding energy losses inherent in the current electric power supply system. This GTI project, under the DOE program, is developing modularized integrated energy systems that will cost less to install because they will not need custom system design and installation for each building. These factory-integrated systems would have higher overall energy efficiencies, significantly improved reliability, and lower life-cycle costs.

Furthermore, if a modular system were supplied and warranted by a manufacturer that also provides maintenance services, users could be more confident that the system would perform as intended and not require user oversight. Building as much of the system as possible at the factory, rather than in the field, would improve quality control and ensure that the components of the system are properly matched. Modular systems would also avoid the problem of users not knowing which vendor to contact when operating problems occur.

The IES program supports a potentially significant consumer need – lower cost electricity – and a significant public need – higher energy use efficiency. These needs and the market forces that prevent their fulfillment have been identified in a number of thorough analyses, including a study for Oak Ridge National Laboratory by Resources Dynamics Corporation¹ and a GTI study for the gas industry of barriers to distributed generation.²

Project Objectives and Goals

The overall project objective was to develop IES package system technology that would improve the market penetration of combined heat and power systems. The approach is to reduce the installed costs and improve the reliability of integrated energy systems by modularizing them to reduce the expenses currently incurred in one-of-a kind engineering and installation projects. Although the higher efficiency of IES offers lower energy costs to many consumers, the high first cost of installed IES systems and lack of diversified product lines and system experience is limiting the widespread adoption of IES.

¹ LeMar, Paul, Resource Dynamics Corporation, "Integrated Energy Systems (IES) for Buildings: A Market Assessment," Report Prepared for Oak Ridge National Laboratory, ORNL/SUB/409200, September 2002.

² Berry, C. and Wrobel, J. "Strategy for Breaking Down DG Barriers in New England – A Look at the Future of Distributed Energy in New England," Gas Research Institute Report GRI-03/0173, November 2003.

The modular IES would be a platform for near-term engine improvements, such as those being developed under the DOE Advanced Reciprocating Engine System (ARES) Program. An ARES engine, with 50% efficiency rather than the 35-40% (LHV) efficiency of current engines³ would broaden the applicability of IES systems to include applications that do not have enough thermal requirements to use all of the byproduct heat of a conventional engine. A more efficient engine would produce a higher ratio of electric power to byproduct heat.

The ARES engine would also cost less to operate and have very low NO_x emissions, further broadening IES markets to include locations where current engines cannot meet air emissions requirements without expensive add-on emissions control equipment.

Goal 1 – Overall Efficiency

Central electric power plants generate electric power at approximately 35% efficiency, and the remaining 65% of the input energy is wasted in the form of heat rejected to the environment. Local IES offers customers the opportunity to use the byproduct heat from power generation to offset their thermal needs for space and process heating, hot water supply, and space cooling with absorption chillers. A goal of this project was to develop a system that can use current engine-generator technology to provide an overall efficiency of more than 70%. One aspect of achieving this goal is to develop an absorption chiller that can efficiently use the relatively low-temperature waste heat available from an engine. Another goal was to improve the summer performance of the IES by raising the temperature of the available heat from the engine to improve the chiller output.

Goal 2 – Installed Cost

Installed first cost of IES systems is the greatest obstacle to their widespread adoption, and the cost of engineering and installing the systems is a major contributor to the installed cost. For systems in the 300- to 1,000-kW range, installation costs are more than 50% of the total installed cost of IES.⁴ A goal of this project was to reduce engineering and installation costs by 50%, thereby decreasing IES total installed costs by 20%. This goal was to be achieved by developing a complete modular power plant with on-board cooling and heating, capable of automatic operation and grid paralleling.

Goal 3 – Applicability

In order to be widely applicable, the modular IES would have to be highly flexible and adaptable to a variety of building types and thermal demand requirements without significant custom site-specific engineering.

³ National Renewable Energy Laboratory, "Gas-Fired Distributed Energy Resource Technology Characterizations," NREL/TP-620-34783, Chapter 2, Table 2, November 2003.

⁴ National Renewable Energy Laboratory, "Gas-Fired Distributed Energy Resource Technology Characterizations," NREL/TP-620-34783, Chapter 2, Table 4, November 2003.

Goal 4 – Reliability

When an IES installation does not work, users often have to deal with several equipment vendors because no single vendor has responsibility for the system's performance. A goal of this project was to establish a reputable manufacturer to package the IES and take responsibility for specifying all components and selling and servicing the entire system. Because the IES would be factory-assembled rather than site-assembled, and the choice of system components centralized, the quality control would be better, resulting in fewer installation delays and out-of-service incidents.

Goal 5 – Market Identification and Characterization

For an IES to provide energy cost savings that justify its purchase, the system should be sized to maximize the recovery of the available thermal energy, while at the same time, appealing to a significant market. This project identified significant commercial building markets that can effectively on an annual basis, make use of the thermal energy and quantified the market potential of the most promising applications.

Work Scope

This project was to design, develop, and demonstrate, through laboratory testing and eventual field demonstration, an integrated modular system for supplying electricity, hot water for building and domestic water heating, and chilled water for air conditioning. A necessary part of this work included the design, development, and demonstration of an absorption chiller that could effectively use the relatively low-temperature heat available from reciprocating engines.

A future phase of the project would be a field demonstration of the technology to characterize its costs and performance in an actual application at a customer's site.

Design of Alpha Prototype of Integrated Energy System

Engine Selection Decision Factors

A Waukesha engine was selected for the alpha prototype early in the project to expedite the design and analysis activities. The selection decision was based on the following factors:

Market Applicability

Based on the initial 2001 IES system analysis for the selected markets, the 300 to 1,000 kW range would provide the highest heat recovery factors and greatest economic returns. In this size range, Waukesha is a leader and the only manufacturer of rich burn engines and they are developing an advanced lean burn engine to improve efficiency and emissions. The project team selected the nominal 870-bhp Waukesha model VGF 36GLD engine (615 kW), as representing this size range.

Infrastructure

Waukesha Engine is an established international reciprocating engine manufacturer, headquartered in Waukesha, Wisconsin. At the outset of this project, Waukesha Engine was the only U.S. manufacturer with system packaging capability co-located with its engine manufacturing capability. Waukesha subsequently closed the packaging facility to focus on its core engine business. Waukesha has an expansive and effective sales and service network of regional and national distributors who interface with the end users for sales, projects, and service. Waukesha is the only U.S. manufacture that focuses solely on the design and manufacture of gas-fueled (natural gas, digester gas, landfill gas, and propane) industrial-type reciprocating engines for stationary use in the power generation and oil and gas markets.

The major members of the project team (GTI, Trane, Waukesha, and Ballard) were most experienced with Waukesha engines and had existing business relationships with the factory.

Manufacturer Commitment

Waukesha agreed to develop fabrication drawings and manufacture the alpha unit at its nowclosed manufacturing facility. Due to a workers' strike and several competing projects, Waukesha outsourced fabrication to Professional Power Products, Inc. In late 2004, Waukesha declined to move forward with IES design and fabrication responsibilities in the near term. Waukesha cited the ARES engine development and the acquisition of a Wartsilla engine line as competing business priorities that limited its near-term resources. As a result, GTI identified and secured Enercon Engineering, a leading U.S. packager of engine-generator sets and switchgear, as the manufacturer and commercialization partner.

Initial Cost

The VGF 36GLD model engine is a lean-burn engine and produces 615 kW gross electrical output. The rich-burn version of the VGF 36 engine-generator set has a rated output of 570 kW

with a nearly identical cost. Therefore, the initial cost of the lean-burn version per unit of output power is lower than the rich-burn version.

Maintenance Cost

The maintenance cost of the VGF 36GLD per kWh is lower than that of the comparable richburn VGF 36GSID, partly because of its higher power output.

Permit Requirements in Midwest

GTI expected that the eventual field demonstration would be in the Midwest. The lean-burn VGF 36GLD has an emissions profile that is acceptable for permiting in the Midwestern states without exhaust gas after-treatment. The specified NO_x emission level for this engine is 2.0 g/bhp/hr. Waukesha is developing an ARES engine for locations that require lower emissions.

Chiller Selection Decision Factors

Market Applicability

Trane developed and built a new 90- to 125-RT chiller for this project, based on its advanced HorizonTM line development experience. Prior to this program Trane's smallest Horizon unit was 500 RT. GTI and DOE were seeking to expand the absorption chiller suppliers for IES systems. Thermally activated space cooling is critical to maximizing IES system efficiency because of the large space-cooling needs of many commercial buildings. Trane optimized the chiller design for operation on the 200 to 230°F thermal energy available from a gas engine rather than the 270°F source temperature usually used for hot-water-fired single-effect absorption chillers. Performance testing verified the chiller design output of 90 refrigeration tons (RT) at a coefficient of performance (COP) of 0.7 when operated on a 207°F hot water supply and slightly more than 130 RT at COP 0.7 on a 237°F water supply.

Infrastructure

Trane is a leading global provider of indoor comfort systems with current annual sales approaching \$5 billion. Among other HVAC products, its offerings include thermally activated absorption cooling systems. Trane has been manufacturing absorption chillers for over 50 years. Trane's present HorizonTM line of single-stage absorption chillers is designed for operation on 12-psig steam or 270°F hot water, with capacities from 500 to 1350 RT. The Horizon design was amenable to modification to accommodate the lower capacities and supply temperatures needed for this project.

The newest line, the Trane Horizon® two-stage steam-fired absorption water chiller is the only line of two-stage absorption chillers designed, built, and supported in the U.S.A. Trane provides complete absorption chiller development, manufacturing and test capability. Its absorption chillers are built in an ISO-9001-certified facility.

Manufacturer Commitment

Trane committed to developing and supplying an advanced line of smaller, nominally 150-RT, single-effect absorption chillers for IES applications, contingent upon the IES market developing to a reasonable size.

Initial Cost

Trane is competitive in the single-effect absorption chiller market, with mass-produced product lines.

Maintenance Cost

Maintenance costs in the 150-RT size range for single-effect units can be as low as \$15/RT/yr, which is close to the costs for an electric unit.

The Modular Integrated Energy System

Figure 1 shows the concept of a modular system in which all components would be skidmounted to facilitate transporting them to the installation sites and to simplify connection to the site's utilities. The initial concept was to have the entire IES mounted on one skid, however, a single skid design is too large to ship and maneuver. Therefore, the following two-skid design was developed:

Figure 1: Integrated Energy System

The two-module configuration provides flexibility in the design of the building or enclosure to meet customer and city zoning requirements.

It was originally intended to design the modules to be shipped in standard ISO railroad ("piggyback") containers, but the size of the engine and the desire to allow enough room in the module for convenient maintenance of the equipment would not accommodate a ISO container. The team designed a structure to house the two modules that meets maximum size requirements for over-the-road shipping. The cogeneration module is 51 feet long, 8-1/2 feet wide, and 10 feet high; and it weighs 58,000 lbs (29 tons). The absorption chiller module is 50 feet long, 8-1/2 feet wide, and 10 feet high. The chiller itself weighs 14,280 lbs (7.1 tons). The complete chiller module was not weighed.

The IES consists of two factory-fabricated modules that can be shipped to a site, installed on a flat concrete slab, and interconnected to the owner's facility. A free-standing, pre-engineered, insulated panel enclosure/building, selected to the customer's color and texture specifications, with access doors, lighting, and fixed and motorized dampers would be erected on-site around the modules.

Design of the control system was based on the sequence of operations developed for both interconnection to the grid and various electrical and thermal modes of operation to meet the requirements of the commercial building market. Because IES installations can have broader market applicability where electric power demand charges are high, the system can be operated in parallel with the electric utility grid in peak-shaving mode. However, it is also designed for and capable of continuous operation. Without modification to the system components, the system can also be programmed to operate in automatic black-start mode for standby power applications. For standby applications, additional equipment and engineering would be required to ensure isolation from the grid and management of generator loading.

The Cogeneration Module

Figure 2: Waukesha VGF Series Enginator® Engine-Generator Set

Engine

The Waukesha VGF 36GLD is a high-speed industrial spark-ignited lean-burn engine that can operate on a variety of gaseous fuels. The specifications for the engine are as follows:

•	Output:	867 bhp continuous duty
•	Speed:	1800 rpm
•	Compression ratio:	11:1
•	BMEP:	176 psi
•	Jacket coolant temperature:	230°F
•	Intercooler coolant temperature:	130°F
•	Allowable overload:	5% for 2 hours every 24 hours

The engine is provided with a 24-Vdc starting motor, powered from the battery-operated engine starting system, which also powers the switchgear and master control system. Figure 2 is a picture of the engine/generator set.

Generator

The generator is a single-bearing 3-phase synchronous machine rated at 615 kW continuous duty at 480 Volts, 1800 rpm, and a 0.8 power factor.

Engine Cooling and Heat Recovery System

The cogeneration module is designed for commercial building applications, where hot water is typically used for space heating and hot water. Reasons for using a hot water system, rather than a steam system, are:

- The cogeneration module is intended for commercial building applications, not for industrial applications, where steam use is more prevalent.
- The engine selection is based on recommendations from Waukesha and Ballard Engineering. The engine chosen did not lend it self to ebullient cooling or to a high-temperature forced circulation system, although GTI did get permission from Waukesha to allow coolant temperatures above the VGF 36GLD's normal coolant temperature limit of 190°F.
- The team members' experience suggested that steam systems are more costly to design, build, and operate.
- The team members were also concerned that steam systems have more code and insurance issues than hot water systems.
- Hot-water systems are adaptable to both retrofit and new heating systems.
- The hot-water system chosen offers a greater range of output temperatures than steam would, increasing the number of potential applications of a single design.

The prototype heat recovery system is designed to deliver hot water whose temperature can be varied from approximately 120 to 240°F. The heat recovery system uses engine exhaust heat to boost the temperature of the coolant leaving the engine jacket by 11°F, of which 4°F is lost in the heat exchanger that separates the engine coolant from the hot water supplied to the building. Typically, the hot water supply for commercial buildings would be for heating during winter months and for space cooling by an absorption chiller during the summer.

Temperatures of 240°F are not always needed or optimal for building thermal requirements, and temperatures near the higher end of the range increase engine wear and maintenance costs. Therefore, the absorption chiller prototype was developed to operate on 207°F hot water to be compatible with the 200°F jacket coolant commonly provided by engines. With engines, such as the Waukesha VGF 36GLD, that can, if desired deliver 230°F jacket coolant, the chiller can provide 40% more cooling during times of peak building cooling loads. When cooling loads are lower, the jacket coolant temperature can be reduced to 200°F to prolong engine life and improve engine efficiency.

Figure 3 shows the three heat-recovery circuits (engine jacket, high-temperature heat recovery, and auxiliary coolant).

Figure 3: Heat Recovery Circuits

The hot engine coolant in the engine jacket circuit supplies heat to the high-temperature heat recovery circuit through a heat exchanger (HX1). The hot water in the high-temperature heat recovery circuit, after leaving HX1, passes through the exhaust heat exchanger, where it is heated further by the engine exhaust. Then the hot water is routed to the absorption chiller module. The heat from the water returning from the chiller is used to meet any hot water needs (HX2). If the water is still too hot to cool the engine jacket adequately, the excess heat is dissipated to the atmosphere through the jacket-water radiators.

The auxiliary coolant circuit is used to cool the engine turbocharger and lube oil circuit. The hot coolant is used to heat hot water for building services, or its heat is dissipated through radiators when there is not enough demand for hot water.

Engine Jacket Circuit Control

Engine-jacket coolant (50% ethylene glycol in water) flows from the engine outlet to a three-way temperature control valve (Valve 1) that has an adjustable setpoint on the master control computer touch-screen. This valve serves to maintain the desired engine outlet temperature (TB0) by modulating flow either to the plate heat exchanger (HX1) for fluid cooling or to the off-engine motor-driven jacket coolant pump (Pump 1) suction for return to the engine. This valve and all other three-way valves in the system were modified after initial testing to include PID controllers in order to gain superior temperature control. The jacket coolant circuit has a bladder-type pressurized expansion tank and a low-pressure alarm to detect fluid leaks. Figure 4 shows the user interface screen of the master controller for the jacket coolant circuit.

High-Temperature Heat Recovery Circuit Control

This fluid circuit provides hot water to drive the absorption chiller module, and it provides other heating services to the building through a plate heat exchanger (HX2). The circuit rejects heat that is not required by the building through the radiator to the atmosphere to maintain the required engine temperature. A constant-speed centrifugal electric-motor-driven pump (Pump 2) circulates the fluid through the heat recovery system.

Valve 3, in conjunction with temperature sensor TB6, the exhaust heat recovery unit, and the exhaust modulating diverter valve control the customer-side fluid temperature. If the customer thermal demand at HX2 is not sufficient to decrease the temperature of the coolant exiting HX2, and, subsequently, the jacket coolant engine inlet temperature at TB12, valve 4 diverts flow through the jacket coolant radiators to reject the unused heat and allow the engine-generator to operate independently of thermal demand. The jacket coolant radiator core is served by four fans, each programmable to start and stop to maintain an appropriate engine jacket coolant temperature at TB12.

When the building thermal demand exceeds the heat available solely from the engine jacket coolant circuit (indicated by an inability to maintain the setpoint temperature at TB6 with radiators fully bypassed), the modulating exhaust diverter valve actuates to pass engine exhaust through the air-to-coolant heat exchanger and increase the temperature of the fluid supplied to the absorption chiller.

Figure 5 is the user interface screen of the master controller for the heat recovery system.

Figure 4: User Interface Screen for Jacket Coolant Circuit Master Control

Figure 5: User Interface Screen for Heat Recovery System Master Control

Auxiliary Coolant Circuit Control

The auxiliary coolant leaves the engine at approximately 150°F and 62 gpm. The circuit is driven by the engine-mounted circulating pump and is designed to maintain a constant inlet temperature to the turbocharger intercooler. The coolant's heat is made available to the customer's facility through plate heat exchanger HX3 and controlled by valve 5, based on the temperatures at TB10 and TB11. When the thermal demand for domestic hot water at HX3 is insufficient to reduce the return coolant temperature to the engine, valve 6 modulates flow through the auxiliary radiator to maintain the temperature setpoint at TB11. Just as with the jacket coolant radiator, the auxiliary coolant radiator is served by four fans, each programmable to start and stop to maintain the appropriate turbocharger intercooler temperature.

The auxiliary coolant circuit has an expansion tank and low-pressure alarm to detect leaks. Figure 6 is the user interface screen of the master controller for the auxiliary coolant system.

Figure 6: User Interface Screen for Auxiliary Coolant Circuit Master Control

Summary of Design Heat Flows

Table 1 describes the design conditions for the three heat recovery circuits, and Table 2 shows individual design parameters for each heat exchanger. These design parameters were given to various heat exchanger manufacturers to quote applicable heat exchangers for the system. Their performance is expected to be compatible with the expected performance shown in Table 1.

Table 1 and Table 2 show design conditions for 200°F jacket coolant. The engine performance data are based on 77°F ambient temperature.

	Jacket Coolant Circuit (Customer Side of HX1)	High-Temperature Coolant Circuit	Auxiliary Coolant Circuit
Fluid	50% ethylene glycol in water	50% ethylene glycol in water	50% ethylene glycol in water
Flow rate, gpm	218	218	62
Temperature at circuit inlet, °F	181	196	130
Temperature at circuit outlet, °F	196	207	150
Heat delivery capacity, Btu/hr	1,509,000	1,106,000	609,000

Table 1: Design Conditions for Heat Recovery Modules (200°F Jacket Coolan

Package Temperature Control

The air temperatures in the engine compartment and the controls area of the cogeneration module are managed with a heat pump/air conditioner unit and ventilation fans. Their operation is programmable on the master control touch-screen, based on local temperature sensors.

	HX1	HX2 (If all heat is diverted to HX2)	HX3	Exhaust Heat Recovery
Hot side inlet temperature, °F	200	207	157	849
Hot side outlet temperature, °F	184	180	130	348
Cool side inlet temperature, °F	181	168	124	196
Cool side outlet temperature, °F	196	195	151	207
Туре	Brazed plate	Brazed plate	Brazed plate	Shell & tube
Heat transfer area, ft ²	281.65	250	250	460
Heat duty, Btu/hr	1,540,000	2,564,000	722,000	1,084,000

 Table 2: Heat Exchanger Design Parameters (200°F Jacket Coolant)

Interconnection Switchgear and Controls

The paralleling and synchronizing switchgear (PSG) is designed to provide the control and monitoring necessary to parallel the generator to the local utility source automatically, in accordance with UL891. The switchgear line-up contains the generator circuit breaker, system tie breaker, engine speed and load controls, engine protection, grid protective relaying, utility metering provisions, and customer system interconnection for powering of auxiliaries. The PSG provides for automatic and manual operation of the generator system, according to defined sequences of operation. The controller programming can be changed to modify the sequence of operations to meet specific site requirements.

Primary control of the Waukesha VGF 36GLD engine-generator is via a Woodward digital synchronizer and load controller (DSLC) with interface to a Woodward 2301A load-sharing and speed controller (LSSC). The DSLC and LSSC work in conjunction with a generator programmable logic controller (PLC) to provide automatic control of the generator. The generator protective relay provides primary AC protection of the alternator. Modbus and SNP networks are used to consolidate generator status information into the generator PLC.

A 12-inch color master interface panel serves as both system operator interface (for systemrelated settings and adjustments) and an operator interface for the generator control. Figure 7 and Figure 8 show examples of the operator interface. A main interface panel (MIP) with a touch-screen interface was designed into the switchgear lineup to provide the following information and functionality:

- Breaker status (Figure 7)
- Generator summary (Figure 8)
- Metering screens for generator and bus
- System control
- Load shed/add control
- System alarm indication
- Real-time trending of system parameters

Figure 7: System One Line/Mimic Diagram

Figure 8: Generator Summary Screen

Figure 9 is a photograph of the cogeneration unit as it is being offloaded for testing at GTI, and Table 3 specifies the connection characteristics needed for installing the unit at a customer's site.

Figure 9: Offloading of Cogeneration Module

System	Nominal Size	Quantity	Comments
Natural gas	2-inch pipe	1	8 in. w.c. minimum gas pressure at cogeneration module inlet
High-temperature heat recovery	4-inch pipe	2	240°F maximum, site specific circulating pump required
Low-temperature heat recovery	2-inch pipe	2	160°F maximum, site specific circulating pump required
Electrical	4-inch conduit	1	480V, 3φ, 600 amp nominal
Sewer/sanitary	4-inch pipe	1	110°F, cooling tower blow-down
Makeup-water (cooling tower)	1-inch pipe	1	Soft water
Chilled water	5-inch pipe	2	40°F minimum, site-specific circulating pump required

 Table 3: Customer Connections

The Absorption Chiller Module

The cooling module is an experimental prototype absorption chiller designed and fabricated by Trane Company. Hot water from the high-temperature heat recovery circuit is delivered to the absorption chiller through field-installed piping.

Prototype Chiller Design and Development

The hot water temperature needed to drive a conventional indirect-fired single-effect absorption chiller is about 270°F (leaving the chiller's generator at about 230°F). Entering temperatures below 270°F (for a given water flow rate) would reduce the cooling capacity. If a certain cooling capacity were required with a hot water entering temperature of 200°F, a significantly oversized conventional chiller would have to be employed. The prototype single-effect water-lithium bromide absorption chiller developed under this project is designed for the lower-temperature heat (205°F to 240°F) available from reciprocating engines. The lower mean temperature difference available in the generator required larger heat-transfer surface areas.

The chiller was initially sized for a nominal 90-RT (refrigeration ton) output, given the temperatures and flow rates available from the cogeneration module. The initial design hot water supply temperature for the chiller was 207°F, based on an engine jacket coolant temperature of 200°F. Later in the project, Waukesha raised the allowable jacket-water temperature to 230°F, enabling a 237°F hot water supply temperature.

The chiller was tested in two modes: 90- and 125-RT modes. The differences between the modes were the hot water, chilled water, and cooling flow rates that were scaled according to the operating mode. Trane designed the 90-RT mode to operate with 175 gpm of 207°F hot water supply. The 125-RT mode did not require any physical modifications to the chiller. In this mode, to accommodate the greater heat input from a 600-kW engine providing 237°F hot water, the hot water supply was scaled up to 231 gpm, and the chilled water and cooling tower flow rates were also scaled up to maintain 2.4 & 3.6 gpm/ton, respectively, per ARI Standard 560-

2000. Because the higher supply temperature will increase engine maintenance requirements and decrease engine life, the higher temperature should be only used at times of peak demand for space cooling such as during the summer months.

An optimized chiller design would be one that yields the lowest first cost within certain operating constraints. Variable elements such as the cost of tubes (which depends on number, length, etc.) and shell material cost (which depends on the girth of the bundle, steel plate thickness, etc.) comprise the first cost, i.e. chiller cost, which varies with bundle size and aspect ratio. Minimizing this cost via bundle manipulation, while recognizing the interdependence (non-linearity) of heat/mass exchanger performance, was the objective of the optimization. The operating constraints consisted of equality constraints, such as capacity and crystallization margin, and inequality constraints, such as pressure losses. A comprehensive optimization algorithm, based on a modified dynamic programming technique previously developed by Trane, was used to optimize tube surface area distribution for the lower heat-source temperature. A different tube surface area distribution among the component tube bundles was indicated. The generator bundle would have to be much larger than that of conventional single-effect chillers for a given tube diameter. Commensurate with the greater tube count is a greater number of passes, to keep the inside water velocities (and hence, heat transfer coefficients) at the desired level. In addition to the augmented generator, the chiller would employ a highly effective solution heat exchanger and novel solution flow-handling and plumbing.

The major reallocations of tube surface area among the four major components are shown in Table 4. The generator would have to be 115% larger for a given tube design and flow rate per tube. The absorber and condenser would also have to be significantly larger. As the chiller testing progressed, Trane modified the chiller to help hold certain internal design parameters to their targets. Key modifications are described in the results section for the chiller.

Component	% Size Increase
Absorber	36%
Evaporator	8%
Condenser	31%
Generator	115%

 Table 4: Comparison of Component Area Requirements of Conventional and Low-Source-Temperature Absorption Chillers

Even though its components would have to be much larger, the new chiller would still be a better solution than merely derating a conventional Trane absorption chiller. Figure 10 shows Trane's comparison of the estimated cost of the new design to the cost of a down-rated conventional chiller. A conventional chiller sized to deliver the same cooling capacity with a 207°F hot water supply would cost one-third more than the new chiller design.

Figure 10: Comparison of the Cost of the New Chiller Design to that of a Conventional Absorption Chiller

Trane built a full-scale prototype chiller for testing. Figure 11 is an isometric drawing. Figure 12 and Figure 13 are photographs. The unit is 140 inches long, 54 inches wide, and 65 inches high. Its dry weight is 9,500 pounds, and it weighs 14,280 pounds when fully loaded with fluids.

Figure 11: Rear Isometric View of Prototype Chiller

Figure 12: Photograph of Prototype Chiller (Front View)

Figure 13: Photograph of Prototype Chiller (Side View)

Condenser Cooling Water System

The absorption chiller module contains two cooling towers (combined rating of 117 RT) that supply water to cool the absorption chiller's condenser, a condenser water circulating pump, and the appropriate flow control valves needed to maintain required fluid temperatures.

The two cooling towers are manifolded together. Operation of the individual cooling towers is controlled by the master controller, which maintains the desired chiller condenser supply water temperature. The cooling water system is equipped with an automatic treatment system to maintain proper water chemistry to minimize scaling and fouling of the chiller condenser tubes.

Figure 14 is the user interface screen on the system master controller for operating the absorption chiller system.

Figure 14: User Interface Screen for Chiller
Laboratory Testing of Alpha Prototype

The laboratory testing performed under the project consisted of two distinct tests to assess key performance characteristics and validate the system and individual component designs. The cogeneration module was tested at GTI's Distributed Energy Technology Center in Des Plaines, Illinois, and the absorption chiller was performance-tested at Trane's factory laboratory test facility in La Crosse, Wisconsin.

The tests fully mapped the separate thermal performance of the cogeneration module and the chiller. These test results were used to predict the overall IES performance without incurring the cost of repeating these tests with the units joined together.

Cogeneration Module Testing

Test Purpose

The purpose of laboratory testing was to verify proper system operation and performance, as well as verify design assumptions to the greatest extent possible. Testing focused on measuring the operating parameters necessary for evaluating electrical and thermal output and efficiency, and exhaust gas emission levels in all operating modes.

GTI performed these tests under the ASERTTI (draft) distributed generation performance testing protocol and its requirements for stability and uncertainty of measurements. The purposes of testing under the ASERTTI protocol were to verify that the newly drafted protocol was feasible and to improve data quality. One exception to the protocol was that noise measurements were not made because the walls for the modular enclosure were not yet selected. The intent was to select the walls based on conditions at a to-be-determined field site. The testing performed under ASERTTI protocols was done from January to April 2005. GTI also took performance data on the unit in September 2004 to support an earlier draft of this report. Several of the 2004 data points were taken hastily to meet schedule goals and did not meet the stability criteria outlined in the ASERTTI protocols. The initial (2004) test points were re-measured in 2005 and found to be of lesser quality, so they are not included in this report.

The fuel mass-flow rate measurements made in 2005 still did not quite meet the stability requirements of the ASERTTI protocol. GTI will recommend that the protocol may need to be revised to loosen the fuel flow rate stability requirements. The mass flow measurements were made with a Coriolis meter, which is the most accurate flow meter currently available. The fuel flow rate measurement would have met the protocol if the stability requirement had been $\pm 3\%$ instead of $\pm 2\%$. Appendix A lists the stability requirements as well as the maximum uncertainty constraints of the protocol and test matrix, with complete descriptions of each test.

Test Setup Overview

The cogeneration module was tested in the Distributed Energy Technology Center (DETC) at GTI from January through April 2005.

The test bay in which the module was tested chamber is approximately 35 feet long, 18 feet wide, and 20 feet high. The module was situated in the building to allow the engine heat rejection radiators to be outdoors, as they would be in actual installations. Engine combustion

intake air was supplied via the DETC's environmental control system to maintain the specified intake air temperatures. The engine exhaust discharged into an exhaust test section, where exhaust flow, emissions, temperature, and pressure were measured. The auxiliary coolant circuit that will provide warm water was connected to the DETC cooling tower. The high-temperature circuit (jacket coolant) was connected to an external flow meter and routed through the cogeneration module's own radiators. Figure 15 is a piping and instrumentation diagram for the test configuration and serves as the mechanical boundary diagram for these tests.

Figure 16 is an electrical boundary diagram of the test setup. The system boundary includes parasitic loads, such as the radiator fans, battery charger, engine controls, and coolant pumps. Net electrical output is the power that crosses the boundary. Net electrical output efficiency is the calculated fuel-to-electricity conversion efficiency of the system, based on the net power output and the fuel energy required to operate the system. Specific parasitic loads included in the net electrical output are noted for each test in the appropriate section.

Performance Test Results from Cogeneration Module

GTI conducted a series of performance tests to determine or validate the electric and thermal output and efficiency of the system. Appendix A contains a detailed description of the test facility, instrumentation, data collection methods, and test program.

Exhaust System Back-Pressure Tests

The purpose of these tests was to verify the system's ability to operate within the allowable 15 in. w.c. back-pressure, as measured at the turbocharger exhaust outlet, and to determine the effect of increased back-pressure on engine performance. In these tests, the system was tested at zero back-pressure and 6.5 in. w.c. back-pressure, measured at the module exhaust outlet flange, which corresponded to 8.5 in. w.c. and 15 in. w.c., respectively, at the turbocharger exhaust. For these tests, the unit was loaded to full power, while the intake air temperature was maintained at 59°F. A manual exhaust damper was used to vary the exhaust back-pressure. There was no discernable difference in unit efficiency with increased back-pressure at either of these test points.

In field installations of this unit, any connections made to the module's exhaust outlet connection at the customer site must be limited to a maximum pressure of 6.5 in. w.c. at the product boundary interface.

Figure 16: One-Line Schematic of Electrical Subsystem and Electrical Boundary Diagram

Ambient Air Temperature, Electric Efficiency, and Electric Power Output Tests

Tests were conducted at ambient air temperatures of 59°F (15°C), 77°F (25°C), and 104°F (40°C) and at 50%, 75%, and 100% of rated electrical output. The purpose of these tests was to evaluate the system's electrical output without heat recovery and to verify that the equipment worked satisfactorily within this temperature range. Tests were conducted at 59°F because this temperature is representative of an ISO standard day. Chiller rating is normally performed at 95°F, such as in ARI 560, so this temperature was included in the test matrix as well. Tests at 104°F were included to determine how the engine would respond to temperatures above 95°F. It appeared that the delivered power started to drop off at 104°F.

The engine was not tested below 50% rated electrical output, because most manufacturers recommend not operating engines below this power level due to engine life issues. These data were taken assuming that the system was operated in an electric-only mode, meaning that the system did not recover any thermal output. Heat generated by the engine was rejected through the radiator fans or out of the exhaust stack.

GTI did not assess the effect of fuel inlet pressure, as this would have required changes to the factory fuel control settings.

Table 5 compares the system's design parasitic loads to those actually measured. However, net power output and efficiency can vary, depending on operating conditions. For example, on a warm day, more radiator fans would be used, increasing the parasitic load and decreasing the net electric efficiency. The electrical efficiency in electric-only mode is expected to be lower than in the heat recovery mode, because more radiator fans will be operating in the electric-only mode to dissipate the heat generated by the system. Both modes require that the same number of pumps be operating.

The cogeneration module can be installed with sidewalls and a wall separating the engine from the controls. In this configuration, engine compartment ventilation fans would be used to keep the engine at proper operating temperatures. In addition, a heat pump/air conditioning unit was specified to keep the control components within their respective operating temperature limits. The walls and the heat pump/air conditioner were not installed or operating during the tests. Table 6 shows the ventilation and heat pump parasitic loads that would potentially be included in the system parasitic loads, depending on ambient temperatures. The ventilation fans, space heating, and space cooling would be switched on and off by the master control system, depending on the ambient temperature, engine power level, solar radiation, and number of radiator fans turned on at the site. It would be difficult to calculate the exact thermal load for each test condition, but the worst-case impact of these loads can be gauged by assuming that all of the ventilation fans are turned on, along with either the controls space heater or cooler. The worst-case sum of these loads is 8.6 kW.

Parameter/Component	Design, Full Load	Actual, Full Load	Design, 50% Load	Actual, 50% Load
Fuel input (LHV), MMBtu/hr	6.10	6.10	No data available	3.65
Generator power output, kW	615	615	308	308
Jacket coolant and high-temperature heat recovery pumps, kW	9.7	9.5	9.7	9.5
Auxiliary coolant circuit pump, kW	2.2	3.1	2.2	3.1
Jacket coolant radiator fans, kW	3.7/fan	4/fan	3.7/fan	4/fan
Auxiliary radiator fans, kW	3.7/fan	3/fan	3.7/fan	3/fan
Controls and battery charger, kW	No data available	5	No data available	5

 Table 5: Parasitic Power – Electric-Only Tests

 Table 6: Potential Parasitic Loads Not Included in Test Results

Parameter/Component	Design Load
Control room heat pump (heating mode)	4.1kW
Control room heat pump (cooling mode)	~ 4.1kW
Three ventilation fans	1.5kW each
Worst case: Full ventilation (3 fans) + heating or cooling	8.6 kW

The results of the intake air temperature, efficiency, and electrical output tests are shown in Table 7, Figure 17, and Figure 18. Net and gross output and efficiency are presented, based on both higher heating value and lower heating value. The efficiency results are similar to efficiency results for other lean-burn natural gas engines and to Waukesha's specifications for this engine. Ambient air temperature has a minimal effect on the electrical efficiency, as shown in the table and figures, although some power de-rating may have started to occur at 104°F, as the full-load power output dropped from 614 kW to 602.8 kW.

Setpoints		Higher He	ating Value	Lower Heating Value		
Power Output	Intake Air Temperature	Gross Electrical Efficiency	Net Electrical Efficiency	Gross Electrical Efficiency	Net Electrical Efficiency	
(kW)	(°F)	(%)	(%)	(%)	(%)	
309.7	59.5	26.1	23.9	29.0	26.5	
462.6	58.1	29.1	27.4	32.3	30.4	
615.3	58.3	30.9	29.5	34.3	32.8	
308.4	77.2	26.0	23.8	28.8	26.4	
459.6	77.8	29.0	27.3	32.1	30.3	
609.5	78.0	30.7	29.4	34.1	32.7	
310.9	95.7	26.4	24.0	29.2	26.7	
462.8	95.1	29.3	27.5	32.5	30.6	
614.0	95.0	31.0	29.7	34.4	32.9	
310.9	103.7	26.4	24.0	29.3	26.7	
462.6	104.3	29.3	27.6	32.5	30.6	
602.8	104.4	31.0	29.6	34.3	32.8	

Table 7: Electrical Efficiency as a Function of Engine Intake Air Temperature andPower Output⁵

⁵ Net power in the "electric-only" tests includes the auxiliary and jacket-water radiator fans; the auxiliarycoolant, jacket-water, and heat-recovery pumps; controls; and battery charger. Module ventilation and space heating or cooling loads were not included in the net power or net efficiency calculations.

Figure 17: Gross Electric Efficiencies as Functions of Output

Figure 18: Net Electric Efficiencies as Functions of Output

Exhaust Gas Emissions

Steady-state exhaust gas emissions were measured during testing at the previously stated operating conditions (electric only). The results are presented in Figure 19. The air/fuel ratio controller was adjusted during setup to maintain an excess oxygen level in the exhaust at the nameplate setting of 7.8% at the unit's full power output.

Table 8 lists the minimum, maximum, and mean emissions output in multiple units and at power output levels of 308, 461, 550, and 615 kW. The levels of emissions fluctuated at the various power output levels, as the oxygen level was being maintained by the air/fuel ratio controller.

The measured NO_x emissions level at full load (1.24 g/bhp-hr) is typical of lean-burn engines in this size range. It is well below the 2.0 g/bhp-hr specified by Waukesha, but the performance of this new engine may degrade with time. The emissions are an order of magnitude higher than the goal of the ARES program.

Figure 19: Exhaust Gas Emissions as Functions of Output

Set-		Power Output	NO _x	СО	CO ₂	O ₂		NO _x					CO	
Point Point	Point	kW	ppm	ppm	%	%	lb/hr	g/bhp-hr	g/kW-hr	lb/MW- hr	lb/hr	g/bhp- ·hr	g/kW-hr	lb/MW-hr
200	Average	310.6	55.3	346.3	6.86	8.22	0.26	0.28	0.38	0.84	1.52	0.75	1.65	4.89
308 kW, 77°F	Min	309.9	51.4	343.6	6.83	8.16	0.23	0.26	0.34	0.76	1.46	0.72	1.59	4.71
// 1	Max	311.4	59.4	349.3	6.90	8.29	0.29	0.32	0.42	0.93	1.59	0.78	1.73	5.10
461	Average	462.1	161.0	352.4	6.95	7.89	0.98	0.72	0.97	2.13	2.01	0.67	1.47	4.34
461 kW, 77°F	Min	460.8	152.3	350.0	6.92	7.85	0.91	0.67	0.90	1.98	1.96	0.65	1.44	4.24
// Г	Max	463.2	170.3	354.5	6.98	7.92	1.02	0.74	1.00	2.20	1.97	0.65	1.44	4.26
550	Average	552.0	248.9	344.0	6.97	7.75	1.70	1.04	1.39	3.07	2.18	0.61	1.34	3.95
kW, 77°F	Min	550.8	235.8	341.8	6.94	7.71	1.56	0.96	1.29	2.84	2.11	0.59	1.30	3.83
	Max	553.2	266.3	346.3	7.00	7.79	1.86	1.14	1.52	3.36	2.25	0.62	1.38	4.07
615	Average	613.3	303.4	335.1	6.99	7.71	2.24	1.24	1.66	3.66	2.31	0.58	1.27	3.76
kW, 77°F	Min	612.0	287.2	333.0	6.96	7.67	2.08	1.15	1.54	3.40	2.25	0.56	1.24	3.67
	Max	614.8	320.7	337.8	7.02	7.47	2.37	1.30	1.75	3.85	2.32	0.58	1.28	3.78

 Table 8: Emissions Levels as Functions of Power Output

Transient Load Testing

The purpose of these tests is normally to verify that the unit can accept load changes within the manufacturer-specified limits. However, Waukesha does not provide written guidance on the transient capabilities of its engines in terms of recovery time and frequency and voltage drop with respect to the applied load. The testing performed (25% load increments every 10 seconds) was in accordance with tests performed by Waukesha and with Waukesha distributor's recommendations. The test matrix is in Appendix A. Based on these recommendations, building applications for black starts should be designed for block loading of no more than 150 kW at a time. Load-shedding breakers would be required to ensure that the unit would not attempt to take on more than a 150-kW load from a black start in power backup applications.

Load testing, utilizing a resistive load bank, was performed to assess the system's ability to accept and recover after application of block loads. The test is intended to simulate grid-isolated operation for black-start applications. The power analyzer measured the voltage and frequency deviation and recovery time during successive applications of 25% of the generator's rated output. The test results indicate that the engine could handle 25% load blocks with minimal effect on voltage and frequency transients. The voltage traces during the tests are displayed in Figure 20 through Figure 22 for each of the three power phases.

VOLTAGE TIME PLOTS FROM 01/26/05 15:00:00 TO 01/26/05 15:40:00

Figure 20: Voltage-Time Plots for Transient Load Testing – Phase A

Figure 21: Voltage-Time Plot for Transient Load Testing – Phase B

Figure 22: Voltage-Time Plot for Transient Load Testing – Phase C

As indicated in the three figures above, there was a voltage sag (a momentary decrease in the rms voltage magnitude) on all three phases during the last load step. The voltage fell to 233 V for at least one second in all three phases. This generator response during grid-isolated operation could harm equipment that is sensitive to transient voltages.

Figure 23 indicates that there were three voltage sags during the test period.

VOLTAGE SAGS FROM 01/26/05 15:00:00 TO 01/26/05 15:40:00

Figure 23: Number of Voltage Sags during Transient Load Testing

Table 9 shows that all three voltage sags were momentary disruptions in voltage, not continuous events. There were no voltage swells during transient loading. Voltage swells are increases in the rms ac voltage, at the power frequency, for durations from a half-cycle (8 milliseconds) to a few seconds. There were no voltage interruptions (complete losses of voltage) during testing.

Site Name: DRANETZ 658 Power Quality Analyzer Da								
Of 3 total VOLTAGE SAGS Occurring from 01/26/05 15:00:00 TO 01/26/05 15:40:00								
CRITERIA	PHASE	CATEGORY	DATA	DATE/TIME				
Lowest Magnitude	А	MOMENTARY	232.7V, 1.060 sec	01/26/05 at 15:10:56.30				
	С	MOMENTARY	233.8V, 1.000 sec	01/26/05 at 15:10:56.36				
	В	MOMENTARY	234.7V, 1.050 sec	01/26/05 at 15:10:56.26				
Longest Duration	А	MOMENTARY	232.7V, 1.060 sec	01/26/05 at 15:10:56.30				
	В	MOMENTARY	234.7V, 1.050 sec	01/26/05 at 15:10:56.26				
	С	MOMENTARY	233.8V, 1.000 sec	01/26/05 at 15:10:56.36				
Most Energy Missing	В	MOMENTARY	234.7V, 1.050 sec	01/26/05 at 15:10:56.26				
	А	MOMENTARY	232.7V, 1.060 sec	01/26/05 at 15:10:56.30				
	С	MOMENTARY	233.8V, 1.000 sec	01/26/05 at 15:10:56.36				

Table 9: Worst-Case Transient Load Summary

Table 9 shows that the voltage dropped to 233 to 234 volts on all three phases during the last load step of 150 kW for one second. This voltage drop was not sustained, but it could damage voltage-sensitive equipment.

Heat Recovery Testing

The purpose of these tests is to determine the quantity and quality (temperature) of the heat available from the system. Thermal output was measured at intake air temperatures of 59°F and 95°F. Since the thermal testing is time-consuming, the test matrix was reduced to these two points when Waukesha left the project. As mentioned previously, 59°F represents ISO standard day conditions. To simplify test conditions, GTI used 59°F to approximate operation when only heat output but no cooling would be required. Data were taken at 95°F, since this is the typical rating temperature for chillers. The thermal data at 95°F can be used to give an indication of thermal output at high intake air temperatures for thermal uses at the site or for driving the absorption chiller module.

It was intended to test the thermal output between 200°F and 230°F jacket coolant temperatures. However, during testing, the engine thermostat did not allow the engine to operate above 220°F jacket coolant temperature. The jacket coolant temperature was controlled at TB0 (see Figure 15), but the engine thermostat that protects the engine and the limit control would shut the engine down when TB0 was set for 230°F. The engine distributor was asked to re-adjust the engine thermostat, but the technician used an infrared gun when making the adjustment. After the technician left, the problem persisted. GTI recommends using a more reliable method of calibrating the thermostat such as an oil bath, but decided not to test the system beyond 220°F because of time and budget considerations.

Testing at an air intake temperature 59°F was intended to represent conditions requiring hot water heating. Table 10 shows the heat output in the form of hot water from the cogeneration module. In the table, HT HW refers to the heat output of the heat recovery circuit, and HT AW refers to the heat output of the auxiliary coolant circuit (see Figure 15). The unit was able to obtain net system efficiencies⁶ (net electrical + thermal output divided by HHV fuel input) ranging from 62.2% to 67.4% while in hot-water heat-recovery mode.

The first two columns in Table 10 and Table 11 are in italics because they represent system setpoints rather than measurements.

Testing at 95°F was intended to represent conditions requiring thermal output for firing an absorption chiller. Table 11 shows the heat output from the cogeneration module in the form of hot water. This hot water could be supplied to the chiller module or to other thermal loads in the building. The expected chiller capacity, based on the hot water delivered from the cogeneration module, is described in a later section. The unit was able to obtain net system efficiencies (net

⁶ Net efficiency includes the effects of the following parasitic loads: auxiliary water pump, hightemperature heat recovery pump, jacket coolant pump, controls, and battery charger. Radiator fan loads were excluded from parasitic loads because these fans would not be operated during conditions of maximum thermal demand by the building. All thermal output would be absorbed by the building loads. Parasitic loads do not include the module's ventilation fans or space heating or cooling for reasons discussed in a previous section. If these loads were included for maximum ventilation and space heating, they would add a maximum 8.6 kW of additional parasitic load which would translate to 0.4% electric or system efficiency points. These results do not include parasitic loads associated with the chiller modules. Those loads will be covered in a later section.

electrical + thermal output divided by HHV fuel input) ranging from 60.1% to 74.1% while in hot-water heat-recovery mode.

Power Output Setpoint	Engine Jacket Coolant Setpoint	Engine Jacket Coolant Outlet Temperature (TB0)	Design HT Heat Output ⁷	HT HW Output	LT AW Output	Net Electrical Efficiency (HHV) ⁶	Net System Efficiency (HHV)
(kW)	(°F)	(°F)	(Btu/hr)	(Btu/hr)	(Btu/hr)	(%)	(%)
	200	199.3		1,569,160	242,342	23.5	67.4
308	210	209.6		1,506,703	167,259	24.0	64.6
	220	218.4		1,412,149	82,069	24.0	60.5
	200	200.8		1,867,096	300,579	27.6	67.4
461	210	209.7		1,781,713	303,531	27.6	66.0
	220	219.0		1,737,262	246,745	27.6	64.3
	200	198.9	2,564,000	2,259,960	249,230	29.2	65.7
615	210	207.9	2,527,000	2,227,421	312,377	29.1	66.4
	220	219.5	2,486,000	2,138,266	121,220	29.2	62.2

Table 10:	Cogeneration Module Performance for Hot Water Heat Recovery (59°F
	Intake Air Temperature Setpoint)

As expected, the auxiliary coolant thermal output was much higher at 95°F than at 59°F air intake temperature, because more heat has to be rejected from the turbocharger after-cooler at 95°F. The auxiliary coolant temperature was regulated to be 150°F, so the auxiliary coolant thermal output was largely a function of intake air temperature. The decrease in auxiliary coolant thermal output with decreasing intake air temperature is the primary reason that the overall efficiency at 59°F was lower than at 95°F. The effect of the declining thermal output reduced the net system efficiency by approximately 6 percentage points.

⁷ Design performance was calculated for full load at 77°F engine air intake temperature.

Power Output Setpoint	Engine Jacket Coolant Setpoint	Engine Jacket Coolant Outlet Temperature (TB0)	Design Heat HT Output ⁸	HT HW Output	LT AW Output	Net Electrical Efficiency (HHV) ⁹	Net System Efficiency (HHV)
(kW)	(°F)	(°F)	(Btu/hr)	(Btu/hr)	(Btu/hr)	(%)	(%)
	200	193.3		1,018,986	378,172	25.3	60.1
308	210	205.2		998,116	403,549	25.3	60.3
	220	215.6		1,040,475	421,039	25.3	62.0
	200	199.5		1,845,315	526,403	28.4	72.5
461	210	211.8		1,850,647	531,873	28.4	72.7
	220	220.1		1,760,152	555,904	28.5	71.7
	200	201.4	2,564,000	2,307,616	668,184	30.1	74.1
615	210	211.6	2,527,000	2,259,684	674,765	30.2	73.6
	220	221.3	2,486,000	2,202,365	709,261	30.2	73.1

 Table 11: Cogeneration Module Performance at 95°F Intake Air Temperature

The comparison of design performance with actual performance is only approximate, because the design conditions were based on 77°F intake air temperature, while the actual heat recovery test measurements were made at 59°F and 95°F.

⁸ Design conditions were calculated for full load at 77°F air intake temperature.

⁹ Net efficiency includes the effects of the following parasitic loads: auxiliary water pump, hightemperature heat recovery pump, jacket coolant pump, controls, and battery charger. Radiator fan loads were excluded from parasitic loads since the radiator fans would normally be off during periods of maximum thermal output. Parasitic loads do not include ventilation fans or space heating or cooling. If these loads were included for maximum ventilation and space cooling, they would add a maximum 8.6 kW of additional parasitic load, which would translate to 0.4% electric system efficiency points. These results do not include parasitic loads associated with the chiller module, as these will be covered in a later section.

Table 12 and Table 13 summarize an energy balance comparison between design and test conditions for 200°F jacket coolant, 130°F auxiliary coolant inlet, and 100% power, simulating a situation where the building uses all of the heat generated by the cogeneration module. Table 12 describes the electrical energy balance, and Table 13 describes the thermal energy balance. Table 12 shows individual parasitic losses and net power output. All of the parasitic loads were connected to the MCC bus so the total parasitic load could be measured. During the tests, the radiator fans were used to reject the heat from the system. However, during conditions of maximum thermal demand by the building, the radiator fans would be off because all thermal output would be absorbed by the building loads. Therefore, the power consumption of the radiator fans was not included in the net power calculations.

In Table 13, the heat not accounted for is the difference between the thermal output plus known losses and the fuel input. The heat not accounted for is negative for the design case at 77°F and at 95°F, with the design data being more negative. This may indicate that the losses due to heat rejection to the lube oil, engine heat radiation, and generator heat radiation were overestimated in the design. Alternately, it may indicate that the heat recovery was overestimated. A possible reason for overestimation might be that no thermal losses were assumed for HX1. At 59°F, the heat not accounted for was positive. This could indicate that some of the heat losses were higher than expected in the design.

	Design (esign (at 77°F) Actual (at 59°F) Actual (at		Actual (at 59°F)		t 94.5°F)			
Fuel energy in (HHV)	6,841,000 Btu/hr	100%	7,000,000 Btu/hr	100%	6,777,000 Btu/hr	100%			
Units	kW	% of Fuel Energy Input	kW	% of Fuel Energy Input	kW	% of Fuel Energy Input			
Gross generator power output	615	30.7	613	29.9	612	30.8			
Parasitic Losses									
Jacket coolant and heat recovery pumps	7.5	0.37	Not measured separately	Not measured separately	Not measured separately	Not measured separately			
Auxiliary coolant pump	2.2	0.11	Not measured separately	Not measured separately	Not measured separately	Not measured separately			
Instruments, controls, and other	6.6	0.33	Not measured separately	Not measured separately	Not measured separately	Not measured separately			
Total parasitic load	16.3	0.81	14.8	0.72	13.3	0.67			
		Net	t Output						
Net IES power output	598.7	29.9	598.6	29.2	598.7	30.1			

 Table 12: Electric Power Balance Summary for Heat Recovery Tests at 100% Rated Power¹⁰

¹⁰ Radiator fan loads were excluded from parasitic loads because the radiator fans would normally be off during periods of maximum thermal output to the building. Parasitic loads do not include the module's ventilation fans or space heating or cooling. If these loads were included, they would add a maximum 8.6 kW of additional parasitic load, which corresponds to 0.4% electrical or system efficiency points at full rated power. These results do not include parasitic loads associated with the chiller module, as these will be covered in a later section.

	Design (at 77°F)		Actu	ual (at 59°F)	Actual (at 94.5°F)	
	Btu/hr	% of Fuel Input	Btu/hr	% of Fuel Input	Btu/hr	% of Fuel Input
Fuel energy in (HHV)	6,841,000	100	7,000,000	100	6,777,000	100
Fuel energy equivalent of generated gross electric power	2,098,000	30.7	2,093,000	29.9	2,088,000	30.8
Heat generated by engine-generator	4,743,000	69.3	4,907,000	70.1	4,689,000	69.2
		Useful Heat				
Heat to building from jacket coolant circuit	2,564,000	37.5	2,260,000	32.3	2,308,000	34.0
Heat to building from auxiliary coolant circuit	609,000	8.9	249,000	3.5	668,000	9.9
Total useful heat	3,173,000	46.4	2,509,000	35.8	2,976,000	43.9
	E	leat Not Recovere	d			
Sensible heat in engine exhaust11	668,000	9.8	789,000	11.3	686,000	10.1
Latent heat in engine exhaust	676,000	9.9	689,000	9.8	670,000	9.9
Radiation from equipment surfaces12	457,000	6.7	457,000	6.5	457,000	6.7
Heat not accounted for	-231,000	-3.4	463,000	6.6	-100,000	-1.5
Total heat not recovered	1,570,000	22.9	2,398,000	34.3	1,703,000	25.3
		Efficiency				
Gross overall efficiency (HHV)		77.1%		65.7%		74.7%

Table 13: Thermal Energy Balance Summary for Heat Recovery Tests at Full Rated Power

¹¹ Exhaust flow rate was estimated from emissions test data at similar conditions.

¹² Estimate from Charles Equipment (Waukesha Distributor).

Figure 24 shows sensitivity of thermal output to engine intake air temperature. The total thermal output was based on the output from the low temperature and high temperature coolant circuits. Both total thermal output and net system efficiency increase with increasing intake air temperature. The net HHV system efficiency was calculated per note 13, so the values shown are slightly lower than those shown in Table 11.

Total Thermal Output vs Intake Air Temperature

Figure 24: Sensitivity of Thermal Output to Engine Intake Air Temperature

Analysis of Heat Exchanger Performance

The cogeneration module was instrumented to determine the thermal output of the hightemperature and low-temperature coolant loops. The unit's control system was set up to monitor internal temperatures, but the instruments used for this purpose were not calibrated of verified per GTI's normal laboratory procedures because they were part of the product offering assembled by the subcontractors. However, post-test calibrations did not reveal any large discrepancies in either the laboratory or product instrumentation.

¹⁵ Net system efficiency and net output include the effects of the following parasitic loads: auxiliary water pump, high-temperature heat recovery pump, jacket coolant pump, controls, battery charger, environmental control of the control room, and loads from the chiller module.

Table 14 compares estimates of the actual performance of heat exchanger HX1 to its expected performance. The design conditions are shown for 95°F intake air temperature, 615 kW gross electrical output, and 200°F jacket coolant temperature. The purpose of this table is to help identify performance shortfalls of the system. It is important to mention the experimental uncertainty when comparing the experimental data to the design conditions. Experimental uncertainty on the heat recovery was estimated to be on the order of plus or minus 20% and was largely influenced by the plus or minus 2°F uncertainty from the temperature measurements. The majority of the temperature uncertainty was caused by the signal conditioning, not the RTDs themselves.

Since the measured fuel flow was less than design conditions, the expected heat exchanger performance was corrected for fuel input differences from values shown in Table 2 by multiplying the design heat exchanger duty by the ratio of the actual fuel flow to the design fuel flow. The duty calculated from the hot side of HX1 was higher than that calculated on the cooler side. This difference could have been caused by heat exchanger not being insulated and being in a cold outdoor environment (~45°F) during testing. Experimental uncertainty may have also contributed to the difference. This heat exchanger was not insulated because it was difficult to insulate since the resulting insulation blanket would have several protrusions through it and because it would normally be contained in a much warmer environment inside the cogeneration module enclosure. In these calculations, the coolant flow rate on the hot side of HX1 was not measured, but was assumed to be at the design conditions. The short length of hot-side flow loop between the heat exchanger and engine did not allow space for installing a flow meter. Initial test energy balances indicated that the flow rate was approximately correct, so no further attempts were made to measure the flow rate on the hot side during testing. It is believed that the hot side flow rate is fairly close to the design flow rate, although small differences in this flow rate could cause the calculated duty on the hot side to be incorrect.

The 1.9% performance shortfall on HX1 was calculated as a shortfall in duty on the cold side of the heat exchanger. This shortfall is within the range of experimental accuracy, as a 1°F error in temperature measurement would lead to a 6.7% error in the duty calculation. In addition to experimental error, this shortfall could have been caused by the heat exchanger not being insulated, the hot side flow rate being inexact, or the heat exchanger being undersized.

During testing, the cold side inlet temperature to HX1 had to be reduced to 177°F in order to hold the jacket coolant outlet temperature to 200°F. This is an indication that the heat transfer within HX1 was lower than expected. This low heat transfer may have been due to the flow rate on the engine side of HX1 being too low or the thermal output of the engine being higher than expected.

It is doubtful that the flow rate on the engine side of HX1 was off by a significant amount, since the expected and actual temperatures on the engine side were close to expectations. If the flow rate on the engine side had been too low, one would expect a wider range of temperature differences on the engine side. It also appears that the thermal output on the engine side was not off by very much since the cold side duty was fairly close to expectations. Although some of above effects may have been present, it is felt that the primary reason for the higher-thanexpected pinch point is that the heat exchanger was undersized. Since HX1 is a brazed-plate exchanger, and therefore difficult to modify, the only way to improve its performance would be to replace it with a larger one.

	Expected	<u>Actual</u>
Engine fuel flow (Btu/hr HHV)	6,841,000	6,777,000
HX1 hot side inlet temperature (°F)	200	199.5
HX1 hot side outlet temperature (°F)	185	184.4
HX1 hot side flow rate (lb/min)	1836	1836 ¹⁴
HX1 cold side inlet temperature (°F)	181	177.4
HX1 cold side outlet temperature (°F)	196	191.9
HX1 cold side flow rate (lb/min)	1836	1845
HX1 hot side duty (Btu/hr)	1,495,000	1,519,000
HX1 cold side duty (Btu/hr)	1,495,000	1,466,000
HX1 hot side/cold side difference	0.0%	3.5%
HX1 performance shortfall		1.9%

Table 14: Estimated Performance of HX1

Table 15 compares the estimated performance of the exhaust heat exchanger to its expected performance. Note that the expected thermal output was corrected for fuel flow differences, just as it was for heat exchanger HX1. The actual exhaust temperatures and the exhaust temperature change across the heat exchanger were higher than expected. The exhaust flow rate was estimated from data taken during the emissions measurements 77°F. There is probably a small difference in exhaust flow between data taken at 77°F and 95°F. However, this difference in exhaust flow would not account for the large unexpected drop in heat recovery on the cold side (water side) of the heat exchanger. The estimated heat transfer from the exhaust side of the heat exchanger was higher than expectations, and the calculated heat transfer on the water side was much lower than expectations. The shortfall in expected thermal output was more than 20%, and it is thought to be related to the large discrepancy (30%) between the calculated hot side and cold side heat exchange rates. Experimental measurement error may also have been a factor.

¹⁴ The actual flow rate was not measured, but was assumed to be at design conditions for the purpose of these calculations.

	Expected	<u>Actual</u>
Exhaust HX hot side inlet temperature (°F)	849	922.5
Exhaust HX hot side outlet temperature (°F)	349	373.8
Exhaust HX hot side flow rate (lb/min)	130.2	131.5
Exhaust HX cold side inlet temperature (°F)	196	191.9
Exhaust cold side outlet temperature (°F)	207	200.3
Exhaust cold side flow rate (lb/min)	1,836	1,845
Exhaust HX hot side duty	1,076,000	1,215,000
Exhaust HX cold side duty	1,076,000	848,000
Exhaust HX hot side/cold side difference	0.0%	30.2%
Exhaust HX performance shortfall		21.2%

Table 15: Estimated Performance of Exhaust Heat Exchanger

There are several possible causes of the difference between the calculated hot side and cold side heat exchange rates, assuming that the mass flow assumptions are reasonably correct. It was suggested that a leaky diverter valve could have caused the apparent shortfall in thermal energy transferred to the water. However if this were the case, the final downstream exhaust temperature would have been much higher, somewhere in the neighborhood of 550°F instead of the measured 374°F. This would have been an unusually large error. The 30.2% discrepancy could have been caused by a 3°F error in water temperature measurement. This is a possibility, because the total uncertainty of the measurement was on the order of plus or minus 2°F. However, the indicated temperatures were confirmed by temperatures reported by the master controller PLC at other points in the system. The final exhaust outlet temperature downstream the mixing point from the flow through the heat exchanger and the flow bypassed by the exhaust diverter was also confirmed within a few degrees of the exhaust temperature measured by the data acquisition system. Other possibilities include an error in the exhaust temperature measurements upstream and downstream of the exhaust heat recovery heat exchanger. However, errors in exhaust temperature measurement would have to be very large to cause a 30% discrepancy.

A final possibility is that high thermal losses (due to cold weather) in the exhaust heat exchanger and instrumented exhaust tailpipe could have caused the heat transfer on the exhaust side to appear higher than it actually was. The exhaust heat exchanger was not insulated. Normally, it would be inside the enclosure, where insulation would not be necessary. During GTI's tests, the heat exchanger cogeneration module was not enclosed, and the heat exchanger was exposed to colder temperatures than normal. The final exhaust thermocouples were approximately twelve feet downstream of the exhaust silencer. These thermocouples were installed to determine exhaust properties at the point where the emissions measurements were taken, not for diagnostics, so the tailpipe was not insulated. Rough one-dimensional heat transfer calculations indicate that heat losses could be on the order of 100,000 Btu/hr, assuming an air temperature of 30°F and a ten mile per hour wind. These heat losses can probably explain part of the thermal output discrepancy. The actual thermal output shortfall may be due to a combination of the heat losses and measurement errors related to the water temperature.

Table 16 compares of the high-temperature circuit thermal output to expectations. The expected thermal output was adjusted for fuel flow, so it does not match the design values shown in Table 11. The thermal output was lower than expected in terms of both temperatures and thermal output for 200°F jacket coolant temperature. As discussed above, the outlet temperature is lower than expected and is hypothesized to be low due to the jacket water heat exchanger being too small and the thermal output of the exhaust heat recovery heat exchanger being too low. As mentioned above, the indication of low thermal output may have been due to the measurement uncertainty for the inlet and outlet temperatures.

	Expected	<u>Actual</u>
High-temperature circuit outlet (°F)	207	200.3
High-temperature circuit return (°F)	181	177.4
High-temperature circuit flow (lb/min)	1836	1845
High-temperature thermal output (Btu/hr)	2,540,000	2,308,000
Thermal output difference		9.1%

Table 16: Analysis of Thermal Output

Additional Testing Observations

• The unit had difficulty starting on the first attempt on days when the ambient temperature was below 40°F. There were at least 15 days of testing at these conditions, and the unit did not start on the first attempt on those days. This required a reset of the control alarms and a second attempt to start. The engine always started on the second attempt.

- After difficulties controlling the temperatures in the heat recovery circuits, GTI had proportional-integral-differential (PID) control loops added to all of the three-way valves in the fluid circuits. These PID loops tremendously improved temperature control. Without them, stable temperature control would not have been possible without continual operator intervention.
- The oxygen sensor in the engine exhaust had to be recalibrated during testing. From initial commissioning in September to the time that the oxygen sensor was recalibrated in March, the oxygen controller had changed from maintaining 7.8% oxygen to 7.1%. This decrease in oxygen concentration caused the unit to emit more NO_x. Units in the field may require periodic checks of the oxygen sensors to ensure that the unit is meeting emission requirements.
- The exhaust diverter in the unit, as received, was not installed correctly, which may have hurt the sealing characteristics of the valve. Care should be taken when installing these devices to avoid damaging them during commissioning.
- The oil delivery system for the makeup tank did not work in cold weather. Heat tape had to be installed on the delivery lines to keep the oil flowing to the fill chamber. The tank may need the addition of a heater in some installations to keep the lubricant flowing in cold weather.

Prototype Absorption Chiller Testing

Test Purpose

Performance testing of the prototype absorption chiller at Trane Company's laboratory in La Crosse, Wisconsin verified the low-temperature hot-water-fired chiller design. The test program was planned and conducted to verify operation and performance of the following components, features, and functions:

- Solution and refrigerant flow systems including pumps, piping, sprays, sumps, and heat exchangers.
- Vapor-liquid separation devices in the generator-condenser and evaporator-absorber.
- Heat and mass transfer performance of all tube bundles and the heat exchanger.
- Fully manual purge system.
- Overall chiller performance and operational range.
- All automatic and manually operated valves.
- Control system including soft-start, crystallization prevention, and heat input reduction to avoid generator carry-over.

Test Results

Performance in the 90-RT Mode

The nominal capacity of the chiller, based on ARI design reference conditions, is 90 RT when driven by 207°F fluid heated by both the exhaust stream and jacket coolant of a nominal 400-kW

gas engine (the original design capacity). Lab performance of the stand-alone chiller was close to expectations and was in reasonable agreement with model predictions.

Table 17 summarizes the full-load performance of the prototype when operating in the 90-RT mode, with heat supplied at 207°F. Under Trane rating conditions, the expected performance was 90-RT versus 86.4-RT from the laboratory tests. Trane considered this to be within the range of acceptable performance, especially when considering experimental uncertainty.

		Performance at Trane Rating
Parameter	Units	Conditions
Capacity	%	96%
Capacity	RT	86.4
СОР		0.72
Chilled water flow rate	gpm	217
Chilled water leaving temperature	°F	44.1
Tower water flow rate	gpm	329
Tower water entering temperature	°F	85.0
Hot water flow rate	gpm	178
Hot water entering temperature	°F	207.1
Hot water leaving temperature	°F	190.4

Table 17: Prototype Chiller Performance Summary (90-RT Mode)

Figure 25 shows the performance of the chiller as a function of the source heat input temperature, at design temperatures for chilled water delivery and cooling water supplied to the chiller. As expected, the chiller capacity increases steadily with source temperature. The COP is relatively constant and above 0.7 for hot water temperatures above 185°F.

Full-Load Performance, 90-Ton Mode 85°F Tower Water, 44°F Chilled Water

Figure 25: Chiller Performance as a Function of Hot Water Supply Temperature

Figure 26 and Figure 27 show the sensitivity of the capacity and COP, respectively, to off-design temperatures of the chilled water delivered by the unit.

Figure 28 and Figure 29 show the sensitivity of the capacity and COP, respectively, to off-design temperatures of the water returned from the cooling towers.

As would be expected, the COP declines sharply when trying to deliver colder-than-design water temperature or trying to accommodate poor cooling tower performance at lower-than-design heat input temperature.

Figure 30 shows part-load performance of the unit when operating at design temperatures of hot water supply, chilled water delivery, and cooling tower water. The unit capacity was modulated by regulating the hot water supply flow rate.

Full-Load Performance, 90-Ton Mode 85°F Tower Water

Figure 26: Effect of Chilled Water Delivery Temperature on Chiller Capacity

Full-Load COP, 90-Ton Mode 85°F Tower Water

Figure 27: Effect of Chilled Water Delivery Temperature on Chiller COP

Full-Load Capacity, 90-Ton Mode 44°F Chilled Water

Figure 28: Effect of Tower Water Temperature on Chiller Capacity

Full-Load COP, 90-Ton Mode 44°F Chilled Water

Figure 29: Effect of Tower Water Temperature on Chiller COP

Figure 30: Part-Load Chiller Performance at Design Temperatures

Performance in the 125-RT Mode

Table 18 summarizes the performance when operating in the 125-RT mode, with heat supplied at 237°F. The chiller output at the design condition was 131 RT and exceeded the expected 125-RT output.

Figure 31 shows the performance of the chiller as a function of the source heat input temperature at design conditions for chilled water delivery temperature and cooling tower water temperature. As expected, the chiller capacity increased steadily with source temperature. The COP is relatively constant and above 0.7 for hot water temperatures of 175 to 230°F. It is interesting to note that the estimated performance of the chiller, based on a curve fit of the data, at 207°F hot water supply temperature is 94 RT, which exceeds the measured performance in the 90-RT mode by approximately 8 RT. The increased performance was largely due to the higher hot water flows in the 125-RT mode

Figure 32 and Figure 33 show the sensitivity of the chiller performance to off-design chilled water and tower water temperatures, respectively.

Parameter	Units	Performance at Trane Rating Conditions
Capacity	%	105
Capacity	RT	131.5
СОР		0.68
Chilled water flow rate	gpm	300
Chilled water leaving temperature	°F	44.0
Tower water flow rate	gpm	447
Tower water entering temperature	°F	85.0
Hot water flow rate	gpm	231
Hot water entering temperature	°F	237.4
Hot water leaving temperature	°F	216.8

 Table 18: Prototype Chiller Performance Summary (125-RT Mode)

Full-Load Performance - 125-Ton Mode 85°F Tower Water, 44°F Chilled Water

Figure 31: Sensitivity of Chiller Performance to Hot Water Temperature – 125-RT Mode

Full-Load Performance - 125-Ton Mode 230°F Hot Water, 85°F Tower Water

Figure 32: Sensitivity of Chiller Performance to Chilled Water Temperature – 125-RT Mode

Figure 33: Sensitivity of Chiller Performance to Tower Water Temperature – 125-RT Mode

Modifications to the Chiller

In the initial stages of the testing, Trane engineers found that liquid refrigerant from the condenser was slinging back into the generator. As a result, they blocked some of the condenser tubes to reduce this effect. The condensate slinging effect was reduced, but not completely eliminated.

Trane also found that the flow rate out of the absorber was limited to less than the design value due to higher than expected pressure drop, possibly caused by an unexpected vortex in the solution outlet pipe. This was expected to have only a marginal effect on performance. Trane made other minor modifications to the chiller during the initial stages of testing.

Modeled Overall Performance of Combined System

Chiller output was modeled based on data taken from the cogeneration module and data taken by Trane on the absorption chiller. The chiller output calculation was based on an interpolation of the data taken in the 90- and 125-RT modes, based on the temperature and flow from the cogeneration module at 95°F. The condenser return temperature and the chilled water outlet temperature were set at their design values of 85°F and 44°F, respectively.

Table 19 shows that, with its current configuration, the combined cogeneration/chiller module will generate 83 RT of cooling, rather than the design capacity of 90 RT, at 200°F jacket coolant temperature. These results are based on curve fits of the data, as shown in Figure 25, Figure 30 and Figure 31. Most of this capacity shortfall can be attributed to lower-than-expected thermal output from the cogeneration module, as described in the cogeneration module test results section. Table 19 also compares the design and actual chiller inlet temperature and shows the results of curve fits for 90-RT and 125-RT mode capacities as functions of hot water supply temperature. As the hot water supply temperature increased, chiller performance improved.

Power Output Setpoint	Jacket Coolant Setpoint	Design Chiller Inlet Temperature	Chiller Inlet Water Temperature (TB4)	High- Temperature Circuit Output	Modeled Chiller Output 218 gpm HW flow	Expected (Curve Fit) Chiller Output 90-RT Mode 177 gpm HW flow	Interpolated Chiller Output 218 gpm HW flow	Expected (Curve Fit) Chiller Output 125-RT Mode 231 gpm HW flow
(kW)	(°F)	(°F)	(°F)	(Btu/hr)	(RT)	(RT)	(RT)	(RT)
308	200	Not tested	193.3	1,018,986	Not tested	Not tested	Not tested	Not tested
	210		205.2	998,116				
	220		215.6	1,040,475				
	200		199.5	1,845,315				
461	210		211.8	1,850,647				
	220		220.1	1,760,152				
615	200	207	201.4	2,307,616	83	85	90	92
	210	217	211.6	2,259,684	96	97	103	104
	220	227	221.3	2,202,365	108	110	114	116
	230	237		Not tested		123	126	127

Table 19: Calculated Chiller Output, 95°F Engine Intake Air Temperature

The chiller module also entails parasitic losses in addition to the losses in the cogeneration module. These losses were not measured during the testing at Trane, but were estimated, based on datasheet information for the related equipment at 218 gpm hot water flow rate. These estimated losses are shown in Table 20. Table 21, shows that these parasitic losses, together with the 16.3 kW loss in the cogeneration module and the 8.6-kW worst-case module and control room ventilation and space-conditioning load will reduce the net power output to 543 kW at the full 615-kW gross power rating point. Taking all of these parasitic loads into consideration, the combined net system efficiency ¹⁵ based on the thermal energy of the hot water and the electrical output was 71.2% at 95°F intake air temperature and 200°F jacket coolant temperature. The combined net system efficiency based on the thermal energy of the chilled water and the electrical output was 42.1% at 95°F intake air temperature and 200°F jacket coolant temperature.

Parameter/Component	Design Load
Chiller pumps and controls	9.7 kW
Cooling tower fans	11.2 kW each
Cooling tower pump	14.9 kW
Total chiller module parasitic losses	47.0 kW

 Table 20:
 Additional Parasitic Loads Associated with Chiller Module

¹³ Net system efficiency and net output include the effects of the following parasitic loads: auxiliary water pump, high-temperature heat recovery pump, jacket coolant pump, controls, battery charger, environmental control of the control room, and loads from the chiller module.

¹⁶ This calculated efficiency credits the cooling capacity of the chiller, rather than the heat input to the chiller.

	Design at 200°F		Actual at 200°F		Actual at 220°F			
	Jacket Coolant		Jacket Coolant		Jacket Coolant			
Fuel energy input (HHV	6,841,000	100%	6,777,000	100%	6,784,000	100%		
Btu/hr)								
		% of		% of		% of		
		Fuel		Fuel		Fuel		
Units	kW	Input	kW	Input	kW	Input		
Generator gross power output	615	30.7	612	30.8	612.8	30.8		
	Pa	rasitic Loss	es					
Cogeneration module parasitic load	16.3	0.81	13.3	0.67	13.3	0.67		
Chiller module parasitic load	47	2.3	47	2.3	47	2.3		
Worst-case module and control								
room ventilation and space-	8.6	0.4	8.6	0.4	8.6	0.4		
conditioning load								
Energy Output								
Net IES power output with ¹⁷ control room ventilation	543.1	27.1	543.1	27.3	543.9	27.4		
Auxiliary coolant output (kW	178.5	8.9	195.8	9.9	207.9	10.5		
High-temperature output from								
cogeneration module (kW	751 5	27.5	676 3	24.0	645 5	22.5		
thermal) ¹⁸	/51.5	57.5	070.5	34.0	045.5	52.5		
Combined net electric power								
and thermal output	1,473	73.5	1,415	71.2	1,397	70.3		
Chiller output $(kW \text{ cooling})^{19}$	316.5	15.8	293 3	14.8	379 1	191		
Combined net power and				1	0,7.1			
20 20	868.2	43.3	836.4	42.1	931.6	46.9		
cooning output								

Table 21: Combined System Net Energy Output and Efficiency at 95°F Air Intake

Figure 34 shows the sensitivity of estimated chiller output to engine jacket coolant temperature. Both chiller output and net system efficiency increase with increasing jacket coolant temperature. Net HHV system efficiency was calculated per footnotes 16 and 19.

¹⁷ See footnote 15.

¹⁸ See footnote 15.

¹⁹ Calculated on the basis of 1 RT = 12,000 Btu/hr and 1 kW = 3,412 Btu/hr.

²⁰ See footnotes 16 and 19.

Chiller Output vs. Jacket Water Temperature

Figure 34: Sensitivity of Chiller Output to Engine Jacket Coolant Temperature

Assessment of Potential IES Markets

In industrial applications, IES can provide heat for a variety of process uses, but in commercial buildings, the uses are mainly limited to space heating, cooling, and water heating. As a result, climate (and, therefore, geographical location) will influence IES economics. Location also influences economics because electric rates in various states or cities differ significantly. Economics will also be influenced by the type of building and its use. Some segments of the commercial building sector will be more amenable to IES than other segments. Segment size, building size, and balances between the needs for electrical energy and thermal energy are important factors.

Best Locations

The potential application for integrated energy systems should be based on the competing cost of conventionally supplied electricity and should focus on locations where the commercial building market is large and growing dynamically.

Figure 35 shows the ten states with a combination of the highest average electric power rates and the largest power consumption in commercial buildings.

Figure 35: States with High Electric Power Rates and High Commercial Building Energy Needs

As described later in this report, the economic analysis revealed that, although Illinois, Massachusetts, and Florida represent large potential markets with high electric power rates, the rates in Chicago, Boston, and Miami are not now high enough to make those cities good candidates for initial IES marketing efforts. Economically viable locations would have to have average electric power costs of 8-9 cents/kWh or more. As shown in Figure 35, New York Massachusetts, Connecticut, New Jersey, New Hampshire, and

Because of their high electric rates, New York and California are the best states for initial entry of IES for commercial buildings

California meet this criterion. However, the Northeastern states shown in the lower right-hand corner of the figure are not suitable because they have punitive interconnect and standby rate policies and smaller commercial markets. Therefore, a second economic analysis, based on more flexible IES sizing, focused on New York City and San Diego.

Best Market Segments

The following large market segments were ranked, based on their total energy use, and are shown in descending order.

- 1. Office*
- 2. Retail*
- 3. Food Sales
- 4. Lodging*
- 5. Education*
- 6. Food Service
- 7. Health Care*
- 8. Warehouse
- 9. Public Assembly
- 10. Houses of Worship

From this list, the food sales (supermarkets, grocery stores, etc.) and food service segments (restaurants, carryouts, etc.) were not selected for analysis because individual establishments in these segments are usually too small for economical application of engines. After removing those two applications from the ranked list, the five largest remaining applications (marked with asterisks) were selected for further analysis.

To refine the selection, the size of the facility was matched to 300- to 800-kW engine-generators, typical of the range of economical engine-driven systems. The results of this analysis determined the general size of the targeted facilities and narrowed the range of promising application sizes to those shown in Table 22 or larger. This report refers to these applications as market sub-segments.

Sub-segment	Application Size
Large Office	142,000 SF (square feet)
Large Retail	125,000 SF
Large Hotel	220,000 SF
Large Educational	120,000 SF (Predominantly secondary schools)
Health Care	125,000 SF (Typically large nursing care facilities)

Table 22: Sub-Segments of the IES Market Consistent with Engine-Driven IES

Recommended Marketing Strategies

Summary

The market study examined different market segments and sub-segments to identify the market potential for IES application. Factors considered included:

- Segment size.
- Energy intensity (per square foot).
- Potential for operating cost savings.
- Market concentration (to enable reaching a large part of the segment through a small number of owners).
- Existence of desirable sub-segments within a segment.
- Attractiveness of IES to decision-makers within the segment.
- Potential growth of the segment.

The characteristics of the five market sub-segments are compared in Table 23, summarized in the paragraphs that follow Table 24, and described in detail in Appendix B.

Segment	Advantages for IES Acceptance	Disadvantages
Large hotel	24/7 operation Good electric/thermal ratio Good national chain concentration	High rise central system sub- segment only – a relatively small sub-segment
Hospital and other healthcare	24/7 operation Large maintenance staff (hospitals) Backup power implications	High electric/thermal ratio Limited maintenance staff (nursing care facilities)
Large office	Large market On-peak operating hours Some market concentration	Short operating hours Sizable fraction are rental facilities (Tenants pay the energy costs)
Large retail	Large, well-defined market Long operating hours Good electric/thermal ratio	Sizable fraction are rental facilities (Tenants pay the energy costs) Require short payback times
Large (K-12) school	Institutional owner- will accept longer payback times Level Thermal Load	Limited maintenance staff Low summer use

 Table 23: Sub-Segment Advantages and Disadvantages for IES Marketability

The markets shown in Table 24 are highly focused, consisting of specific sub-segments. The purpose of this tight focus is to identify the best introductory markets that could be addressed with minimum marketing effort and cost. Particular emphasis was placed on sub-segments that: 1) dominate the segment in sales or revenues, 2) have a limited number of major players who could be identified, and 3) best fit the power, heating, and cooling outputs of engine-driven IES equipment.

Segment	Existing Market Size, GW	Notes
Large hotels	4.65	Facilities with more than 150 rooms
Medium-size healthcare facilities	10.9	Facilities from 50,000 to 150,000 SF
Large offices	12.5	Buildings using between 100 and 1,000 kW
Large retail stores	6.45	Retail stores larger than 65,000 SF
Large schools	11.9	Schools over 400 kW
Total	46.4	Equivalent to 90,000 500-kW systems

Table 24: Electric Load Size of the Selected Market Sub-Segments

Appendix B includes the following detailed information for each market segment:

- Size.
- Pros and cons for IES, by segment.
- Best economic regions for IES overall.
- Structure, size, occupancy, and operating schedule of typical buildings.
- HVAC equipment and fuel types currently used.
- The major equipment decision-making processes.
- Division of the market into new construction and existing building retrofit opportunities.
- Major market players.
- Ownership concentration.
- Determination and characterization of the most practical sub-segments, where applicable.
- Summary of market size by number of buildings and overall electric demand and use.
- Suggested marketing strategy.

Lodging

Lodging is a highly concentrated market, with 50 chains (identified in the Appendix B) dominating the market. However, some of these chains have a large number of small motel-type facilities, which would not be appropriate for IES in the 300-800 kW size range and are not usually equipped to use the centralized hot and chilled water provided by an IES. Therefore, 24 of the chains that featured average facility sizes above 300 rooms were selected. The 24 operators identified in the report control over 1,600 of the 6,000 domestic large hotels (as well as

running 1,500 large hotels overseas). The overall retrofit market potential is 4.65 GW for domestic large hotels with 300+ rooms each.

Marketing strategy:

- Initially focus on the 24 chains identified.
- Make an economic case, based on the unusual thermal load profile in large lodging establishments, which is characterized by daily patterns of fluctuation.
- Target high-electric-cost states, due to the concentration of the hotel industry in those states.
- Include the backup power features, particularly for overseas locations.
- Include the potential for stand-alone operation for remote resort locations.

Medium-Size Medical and Healthcare Facilities

In the medical facility market, medium-size facilities were chosen to correspond to the size range of the packaged systems. In general, for larger hospital facilities in the 2+ MW range, a custom-applied system would be more cost-effective than using numerous packaged systems.

Medium-size medical facilities are a diverse market, including small hospitals, nursing care facilities, community nursing homes, and medical office buildings. The most concentrated subsegment was found to be large, privately owned nursing care facilities, which often belong to multi-site systems or chains. These facilities have appropriate power usage for IES. The most common heating and cooling systems are centralized boilers and chillers, making these facilities a good retrofit opportunity for IES.

There is also the potential for IES to be used as emergency power equipment in these facilities, providing both power and cooling during power blackouts, thereby avoiding potentially life-threatening evacuations.

The overall retrofit market potential is 10.9 GW, concentrated in large, privately owned nursing care facilities with central hydraulic cooling and heating systems.

Marketing strategy:

- Focus on large, privately owned nursing care facilities.
- Make the case for backup power, keying on the difficulty of evacuating patients.
- Show how IES provides operating cost reductions and backup power and cooling for critical business operations in one package.

Office

Office buildings represent one of the largest applications in terms of occupied floor space. An office building may operate 3,500 to 4,500 hours per year, rather than 24/7 operation or 8,760 hours per year, but most of the electric load is during peak hours when electric prices are highest. This makes IES for office building economically attractive in states such as New York and California, where peak electric rates are high.

There are over 705,000 office buildings in the United States, but only 57,000 of them have electric demand of 100-500 kW, and 12,000 have electric demand of 500-1,000 kW. The overall retrofit market potential is 12.5 GW.

Key to this market is that many large office buildings need some back-up power, and some need 24/7 space cooling for their computer servers and data centers. An IES system can provide some back-up service while also reducing energy costs.

Marketing strategy:

- Target 4-5 large commercial real estate firms, such as Equity Office Properties, Boston Properties, and Vornado Realty Trust.
- Provide IES with some back-up power capability for critical loads.
- Apply a multiple-engine approach for higher reliability and better load-following capability.
- Show how IES reduces energy costs and can provide energy security.
- Initially concentrate on areas that have high electric costs to have better economics in spite of the current high gas prices.

Retail

The retail market segment was focused down into the large general-merchandise sub-segment, which dominates all retail sales with a small percentage of all stores. The large general-merchandise sub-segment comprises less than 1% of all retail stores but comprises over 47% of all retail stores with individual site sales of over \$25 million per year. The peak demand for stores of this size will be in the 400-700 kW range, which is an excellent match for engine-driven IES. The overall retrofit market potential is 6.45 GW. Because retail stores have limited needs for backup power, IES packages will have to be sold largely on economics.

Marketing Strategy:

- Focus effort on large general merchandising chains (identified in Appendix B).
- Focus the marketing effort on fewer than 12,000 sites in the identified chains.
- Focus on operating-cost advantages.

Schools

Although educational facilities have been pioneers in IES usage, this has largely been through large systems serving college campuses. College applications are generally too large for packaged integrated energy systems in the 300-800 kW range. Many secondary schools are in the appropriate size range.

About 10% of existing schools have backup generation. One element in this use of power backup is schools that serve as community emergency storm shelters, summer cooling shelters, or winter warming shelters in the event of weather or other emergencies, generally leading to or caused by power outages.

There are more than 91,000 schools nationwide, comprising a very small segment of the overall 4.6 million commercial buildings. The peak electric demand of these buildings is 25,580 MW.

However, many of these facilities are smaller than would be desirable for most IES. Enginedriven IES produce better payback with loads of at least 300 kW. Fifty percent of schools have electric demands in the range of 200-400 kW, and 40% of schools have electric demands greater than 400 kW. Although 88% of elementary and middle schools have electric demands less than 400 kW, 45% of high schools have electric demands greater than 400 kW.

The target market for IES should be the 17,400 schools that have electric demands greater than 400 kW. This represents a retrofit market potential of 11.9 GW. The most amenable buildings for IES are buildings with central cooling and heating and natural gas available at the site. Almost 50,000 schools have gas available, and, of those 50,000, only 14,000 have central cooling/heating, and only 2,000 use absorption cooling.

Secondary (9-12) schools should be an attractive growth market for CHP systems. Unlike other sectors of the commercial buildings market, ownership and continued use of school buildings is extremely stable, leading to a willingness to undertake longer-term investments like IES. In addition, back-up power is a significant benefit in buildings that house children, are becoming more computer-intensive, and often serving as emergency shelters. The ability of IES to supply surplus heat affordably to power desiccant dehumidification of ventilation air or to heat large quantities of ventilation air is also a plus in buildings where indoor air quality can be a major public concern. Systems used in larger school buildings today lend themselves to integration with CHP systems.

Marketing strategy suggestions:

- Steer product information toward high-school applications.
- First target districts on the 50 Largest Districts Lists in high-power-cost states.
- Target district engineering or facility management staff at the district headquarters level. There is no need to market to individual schools. In many cases, the key influencer may be the engineering consultant for the district rather than district employees.
- The backup power and heating/cooling capability of IES may be additional benefits.
- Make the economic case first for high schools that have partial- or full-day summer school programs, noting that even partial-day summer operation triggers high summer demand rates.

Schools are a technically attractive target market for IES. Their payback hurdles are often not as demanding as other commercial sites. However, in its efforts to identify a candidate site for an IES demonstration, GTI found that there are institutional hurdles that will make it difficult to market to schools. The concentration of ownership is very low. Each school district is autonomous, often requiring school board approval of each sale.

Economic Assessment of Selected Applications of IES

The first economic analysis was based on a 615-kW IES system corresponding to the 615-kW alpha prototype that was built and tested under this project. The purpose of the analysis was not to design an IES for a given building, but merely to characterize which building types and locations would represent promising IES market opportunities.

The practicality of IES depends on the timing and amount of typical electric and thermal loads in buildings. For economically favorable applications, the thermal and electrical loads typically coincide in order to effectively use the waste heat. Therefore, energy use patterns in typical buildings for these five sub-segments were analyzed on an hourly basis. The fraction of the available heat that could be recovered and used over a year's time was found to depend strongly on both building type and climate.

The effectiveness and economic benefit of utilizing this natural-gas-driven IC-engine-generator were examined, assuming heat recovery for typical commercial building heating and domestic hot water loads and for satisfying a portion of building cooling loads. The analysis assessed, hour by hour, the potential for heat requirements that would be coincident with the electric power requirements of the typical commercial buildings.

A recoverable-heat-driven BCHP-90 Trane prototype absorption chiller was used to generate chilled water. A maximum reached chiller capacity of 112 RT was determined by the maximum temperature of hot water available from the IC engine. The target buildings were selected, based on the methodology described in the Market Potential Assessment chapter of this report, using criteria of high energy density, total number of buildings, and electric demand that can be satisfied or supported with a 615-kW system. Building Energy Analyzer (BEA), a commercial software/engineering tool utilizing the DOE2.1E hour-by-hour computational engine, was used to generate 8760-hour-per-year load profiles (cooling, heating, and electric and gas consumption by end use) for the analyzed buildings. GTI developed a separate program to model the engine, generator, heat recovery system, and absorption chiller integration with the building HVAC and utility systems, using load profiles developed in the first stage of the modeling process.

Detailed economic analyses were conducted for four market sub-segments (applications), at five large cities (Boston, Chicago, Miami, New York, and San Diego), in geographical locations representing a range of climates. Local electric rates were used, and simple payback periods were calculated, based on targeted installed costs (\$/kW) and annual energy cost savings. The modeling assumptions, charts showing calculated payback periods, and details of the analysis are described in Appendix C.

Based on this assessment, the following changes were made, followed by a second economic analysis:

• Initial sensitivity analysis indicated that the 615-kW prototype was not optimal for the target markets. A second analysis was based on a smaller 336-kW unit. In addition, a number of virtual IES units having performance characteristics identical to the 336-kW unit but having capacities ranging from 136 kW to 936 kW were analyzed for each application to find the best size/capacity match.

- The updated analysis was based on the climate conditions and updated (current as of May 2005) electric rates and for two geographical locations. New York and San Diego were selected, because they were indicated by the first study to be the most favorable for initial market entry of new IES products.
- To help identify optimal system size, in addition to the simple payback analysis used previously, we did a more practical total present worth (TPW) analysis, based on life-cycle cost savings.

As during the first assessment, the optimal IES operating strategies were determined for each application in both cities. Three operating strategies were considered:

- Operating only during the on-peak demand hours specified by the utility.
- Operating only during periods of on-peak energy costs.
- Operating whenever the application needs electric power.

The optimal operating strategy was based on maximizing building annual energy cost savings. For all three strategies, the generator was only operated when the electric power demand was higher than 35% of generator capacity. (It is not practical to operate the engines below this level.)

No consideration was given to operating the IES to supply heating or absorption cooling service when electric power was not needed. With the current high costs of natural gas, the economics of IES are driven primarily by the value of the electric power they produce.

Nomenclature and Abbreviations

The following nomenclature is used throughout this chapter:

- 24/7 Available 8,760 hours per year
- AC Air conditioning
- BEA Building Energy Analyzer
- CFM Cubic feet per minute
- CHP Cooling, heating, and power generation
- COP Coefficient of performance
- DHW Domestic hot water
- Overall Efficiency ((Generated kWh * 3412) + recovered heat)) / generator fuel heating value input (HHV), %
- Heat Recovery Effectiveness Recovered heat / recoverable heat, %
- HVAC Heating, ventilation, and air conditioning
- IC Internal combustion
- kW Thousand watts
- MMBtu Million Btus

- O&M Operation and maintenance
- RT Refrigeration ton (12,000 Btu/hour)
- SCFM Standard cubic feet per minute
- SF Square feet

Characteristics of the Typical Buildings

Five different building types were evaluated: large hotel, nursing home, large office, large retail store, and large school. Table 25 shows the assumed attributes of the selected building applications.

Table 26 summarizes the HVAC equipment characteristics in each typical type of building, and the following text provides more detail. The HVAC characteristics were selected to represent widespread practice for each building type. Figures 36 through 40 show the floor plans assumed in the analysis for each building type.

	Application				
Attribute	Nursing Home	Large School	Large Office	Large Hotel	Large Retail
Typical floor space, SF	125,000	110,000	142,000	220,000	125,000
Number of buildings	16,000	48,000	38,000	6,000	30,000
Operating schedule, hours	24/7	0700 to 1800 hours MonFri. and 1000 to 1300 hours Sat.**	0700 to 1800 hours MonFri.	24/7	0600 to 2400 hours Mon Sat. and 0700 to 2200 hours Sun.
Typical* annual electric consumption, kWh	1,692,378	1,412,817	1,617,239	3,605,393	2,573,888
Typical* annual demand, kW	~550	~700	~633	~900	~700
Typical* annual gas consumption, MMBtu	10,411	10,414	1,859	17,518	7,240

Table 25: Basic Parameters of Analyzed Buildings

* Based on Chicago, IL location

** Limited-operation summer schedule July to September

	Application				
Attribute	Nursing Home	Large School	Large Office	Large Hotel	Large Retail
Cooling equipment type	Electric screw, cooling tower	Electric screw, cooling tower	Electric centrifugal, cooling tower	Electric centrifugal, cooling tower	Electric Screw, Cooling Tower
Chiller design capacity,* RT	242	516	391	489	384
Chiller energy rating, kW/RT	0.78	0.78	0.68	0.68	0.78
Heating equipment type	Natural gas boiler	Natural gas boiler	Natural gas boiler	Natural gas boiler	Natural gas boiler
Heating design capacity, MMBtu/hr*	4.1	11.8	7.7	6.9	6.9
Boiler energy efficiency, %	82	82	82	82	82
Outside air, SCFM	25,084	78,000	12,720	58,030	37,510
Thermal Economizer	No	Yes	Yes	No	No
Active humidity control	No	No	No	No	No

 Table 26:
 Basic HVAC Parameters of Analyzed Buildings

* Based on Chicago, IL location

Hotel

The typical large hotel characteristics are:

- Slab on grade construction with interior corridors. Lobby and meeting rooms on first floor; guest rooms on upper floors (four-story building).
- 40% wall glazing, 0° North orientation, and 10-foot floor height.
- Comfort control settings, schedules, and internal loads and ventilation values apply to 154,000 SF of guest rooms.
- Building construction materials are: walls; 10-inch HW concrete + 3-inch R-10 insulation, windows; double-pane tinted, roof; 6-inch LW concrete + 5.5-inch R-17 insulation, roof color dark.
- Constant-volume chilled-water air-handling system using two water-cooled chillers; electric centrifugal chiller with inlet-vane control (0.68 kW/RT) each sized at 60% of building ASHRAE design point cooling capacity.

- System configured without economizer.
- Cooling tower uses 1-speed fan with fixed temperature control at 85°F.
- System does not use relief air heat recovery, direct-cooling option is not engaged, gas energy is used for heating.

Figure 36: Layout of Typical Large Hotel

Nursing Home

The typical nursing home characteristics are:

- 1-story slab on grade construction with attic and three independently controlled zone types (patient rooms, common areas, kitchen, and laundry).
- 25% wall glazing, 0° North orientation, and 8-foot floor height.
- Dehumidification system serves only ventilation air for the patient wings (56% of total floor area).
- Humidity control air treatment can be applied independently in each zone to cover up to 125,000 SF of the entire building.
- Each zone has separate profiles of internal loads, ventilation, and infiltration.

- Building construction materials are: walls; (default) frame + 3.5-inch R-12 insulation, windows; (default) single-pane tinted, roof; (default) plywood + 6-inch R-19 insulation, roof color dark.
- Constant-volume chilled water air-handling system using three types of air-cooled chillers: A) One electric screw (0.84 kW/RT) sized at 40% of building ASHRAE design point cooling capacity, B) One electric screw (0.84 kW/RT) sized at 40% of building ASHRAE design point cooling capacity, C) One electric screw (0.84 kW/RT) sized at 40% of building ASHRAE design point cooling capacity.
- System configured without economizer.
- System does not use relief air heat recovery, direct-cooling option is not engaged, gas energy used for heating.

Figure 37: Layout of Typical Nursing Home

Office

The typical large office building (high-rise) characteristics are:

- Five-story (plus basement) window-wall construction.
- 75% wall glazing, 0° North orientation, and 10-foot floor height.
- Comfort control settings, schedules, and internal loads and ventilation values apply to 127,800 SF floor area.

- Building construction materials are: walls; 1-inch stone + 3-inch R-10 insulation, windows; double-pane tinted, roof; 4-inch LW concrete + 5.5-inch R-17 insulation, roof color dark.
- Variable-volume chilled-water air-handling system using three water-cooled chillers; electric centrifugal inlet-vane control (0.68 kW/RT) each sized at 40% of building ASHRAE design point cooling capacity.
- System configured with temperature economizer.
- Cooling tower uses 1-speed fan with fixed temperature control at 85°F.
- System does not use relief air heat recovery, direct-cooling option is not engaged, gas energy is used for heating.

Office – High-Rise

Figure 38: Layout of Typical Large Office Building

Retail

The typical large retail store characteristics are:

- One-story slab-on-grade construction, typical of a national-chain discount department store.
- 8% wall glazing, 0° North orientation, and 25-foot floor height.
- Comfort control settings, schedules, and internal loads and ventilation values apply to 125,000 SF floor area.
- Building construction materials are: walls; (default) 4-inch brick + 2.5-inch R-7.5 insulation, windows; double-pane tinted, roof; plywood + 6-inch R-19 insulation, roof color dark.

- Constant-volume chilled- air-handling water system using two water-cooled chillers: electric screw (0.84 kW/RT) each sized at 60% of building ASHRAE design point cooling capacity.
- System configured without economizer.
- Cooling tower uses 1-speed fan with fixed temperature control at 85°F.
- System does not use relief air heat recovery, direct-cooling option is not engaged, gas energy used for heating.

School

The typical school characteristics are:

- Single-story slab-on-grade construction, typical of suburban secondary schools.
- 20% wall glazing, 0° North orientation, and 10-foot floor height.
- Building construction materials are: walls; 8-inch MW concrete + 3-inch R-10 insulation, windows; double-pane clear, roof; (default) plywood + 6-inch R-15 insulation, roof color dark.
- Constant-volume chilled-water air-handling system using two water-cooled chillers: electric screw (0.84 kW/RT) each sized at 60% of building ASHRAE design point cooling capacity.
- System configured with temperature economizer.
- Cooling tower uses 1-speed fan with fixed-temperature control at 85°F.
- System does not use relief air heat recovery, direct-cooling option is not engaged, gas energy used for heating, humidifier not used.

The Conceptual Beta IES System

Sensitivity analysis of the data from the updated economic analysis indicated that a 615-kW IES would be too large to have satisfactory economics in a wide range of buildings in the market subsegments being considered. It appeared that, in most applications, an optimal IES should be sized at about 50% to 75% of the peak electric demand of the targeted application. After analysis of the characteristics of various engine-generators, a Cummins 336-kW engine-generator was found to have optimal characteristics for use as a model for a second evaluation of IES economics.

A mass and heat balance of this new IES system was performed to determine the best match in absorption chiller hardware, allowing maximum recovery of available waste heat. Figure 41 is a diagram of the IES, showing placement and capacity of components, critical fluid and energy flows, and temperatures.

The engine characteristics fixed many of the IES design variables. To cool the engine adequately, the jacket coolant leaving the engine cannot be higher than 203°F with a fixed flow of 69.7 lb/hr. Consequently, to remove engine heat, the returning water jacket coolant must be no hotter than 191°F. Based on that and, assuming 4°F water heat exchanger temperature approach, the hot water leaving the chiller can be no hotter than 187°F.

An investigation of the performance characteristics and cost of absorption chillers suggested that the best option would be to use a conventional single-effect multi-pass absorption chiller. The chiller had to be derated to 62% of its rated capacity because it would be operated on 205°F hot water rather than its 260°F rated capacity activation temperature. (See Figure 42.)

Figure 41: IES Concept Diagram

Figure 42: Typical Capacity De-Rating Factor for Single and Multi-Pass Single-Effect Absorption Chillers

These characteristics fixed the relationship between the capacities of the engine-generator and the chiller. A chiller matched to the 336-kW engine-generator would produce ~92 refrigeration tons (RT) of cooling. To accommodate the 62% derating, the chiller's rated capacity would have to be 147 RT. Based on these requirements, a commercially available York 155-RT unit was selected as one that was closest to the required nominal capacity of 147 RT. Its characteristics were used to model the IES chiller.

The chiller parasitic losses of chilled water, tower water, and hot water circuit pumps were modeled, using manufacturer's data (York Catalog Form 155.16-EG1).

Marley cooling tower model AV6231 performance and parasitic electric losses were modeled based on data from the manufacturer (Marley AV Series Cross-Flow Cooling Tower Engineering Data Catalog TECH-AV-01).

Cummins 336-kW engine-generator performance was modeled, using manufacturer-provided data (Cummins Gen-set Designation 334GFBA Data Sheet, 2004).

For modeling purposes, the following was assumptions were made as shown in Table 27:

Load, %	Electric Efficiency HHV, %	Fuel Heat Input, Btu/kW
100	31.08	10,978
75	30.35	11,242
50	28.19	12,104

 Table 27: Engine-Generator Electrical Efficiency

Engine Generator Heat Recovery Effectiveness

- High-temperature recovery stream: 42.47% of total engine fuel heat input at 205°F
- Low-temperature recovery stream: 6.5% of total engine fuel heat input at 118°F

IES Electric Parasitic Power

- York 155-RT absorption chiller, 5.9 kW
- Cooling tower water pump, 15 ft H₂O, 3.6 gpm/RT, 82% efficient pump.
- Cooling tower fans, 15 HP, 87%-efficient motor, serving 91 RT from de-rated 1A2 155-RT absorption chiller.
- One 6-HP heat recovery system pump, operating continuously.

Costs

To evaluate the economic benefits, a set of estimated first/installed costs of the equipment was developed, based on updated information from equipment manufacturers. Figure 43 shows the specific cost of single-stage absorption chillers, including the costs of piping and cooling towers. Table 28 shows the aggregated installed costs of IES with and without an absorption chiller. The cost includes selective catalytic reduction emissions controls sufficient to meet emissions standards for California and New York.

O&M cost was \$ 0.011 per kWh, including O&M for the emissions control system.

Figure 43: Specific Cost of a Single-Stage Absorption Chiller, Including Costs of Piping and Cooling Tower

IES Capacity, kW	Cost of Engine/ Generator/ Heat Recovery	Cost of Chiller	Total Installed Cost
136	\$322,886	\$46,976	\$380,475
236	526,318	62,278	604,872
336	700,950	71,110	793,278
436	846,782	75,473	947,918
536	963,814	76,414	1,069,954
636	1,052,046	74,579	1,160,106
736	1,111,478	70,408	1,218,862
836	1,142,110	64,222	1,246,579
936	1,143,942	56,263	1,243,524

Table 28: Installed Cost of IES Components

Modeling

Modeling of the energy requirements of the five typical buildings in both New York and San Diego was based on the TMY2 Weather Database (DOE2.1E). Depending on the application's electric demand, up to nine IES capacities (136, 236, 336, 436, 536, etc kW) were modeled for each of the 10 building-location combinations.

For each combination of building type, location (climate), and IES capacity, an optimal balance between purchased power and self-generated power capacity was calculated, and an optimal IES operational control strategy was determined.

The modeled generator deployment control strategy was to follow the application's electric load profile. A generator could follow the electric load down to a minimum of 35% of the generator's nominal installed capacity.

The generator operating hours were optimized to achieve the highest annual energy cost savings for the building. Consequently, the generator operating hours varied, depending on the location, local utility rates, and the type of application being modeled. Several different generator control strategies were examined for each modeled case:

- Generating electricity during the electric utility energy on-peak hours.
- Generating electricity during the electric utility demand on-peak hours.
- Generating electricity during the electric utility energy on-peak and mid-peak hours.
- Generating electricity during all hours that the building operated and the electric demand exceeded generator minimum part load capacity of 35% of nominal IES installed kW.

Three configurations of engine heat recovery were considered. Heat was recovered for space heating, domestic hot water heating, and for driving a single-stage absorption chiller. The three heat-recovery configurations were:

- Recovery for space heating, domestic hot water heating, and for driving a single-stage absorption chiller (HT+DHW+ABS). Heat recovered from the IC engine was passed to a single-stage absorption chiller if a cooling load was present, then to the space heating/reheating load and the domestic hot water load. Unused heat was rejected to the atmosphere. The absorption chiller was sized to match the recoverable heat from the engine at full rated electrical output. Only that portion of the recoverable heat that was available at temperatures higher than the minimum required for driving single-stage absorption, was used to size and drive the chiller. The actual cooling capacity of the absorption chiller depended on the available recoverable heat. If needed, the remaining building cooling load was satisfied by a standard electric AC system comprised of either a 0.68 kW/RT centrifugal chiller, or a 0.84 kW/RT screw compressor chiller (depending on the application).
- Recovery for space heating and domestic hot water only (HT+DHW). Recovered heat offset the heating load that would otherwise have been satisfied by an 82%-efficient natural gas heater/boiler. Unused heat was rejected to the atmosphere.
- No heat recovery from the IES (NO HEAT REC.). All heat was rejected to the atmosphere.

York YIA-ST 1A2 absorption chiller performance was modeled using manufacturer-provided performance data. The system was modeled assuming the hot water temperature entering the chiller to be 205°F. Chiller rating point cooling capacity and cooling COP as functions of cooling tower water temperature were modeled using the test data presented in Figure 44.

Figure 44: Part-Load Performance Characteristics of Modeled Absorption Chiller

Local electric rates for San Diego and New York were used, and a fixed natural gas price of \$6/MMBtu was used for all analyses. Later, sensitivity to a range of gas prices (\$5, \$7, and \$9/MMBtu) was calculated. Actual gas prices have been volatile. According to data published by the Energy Information Administration,²¹ industrial market gas prices in California averaged \$7.19/MCF in 2003 and \$7.95/MCF in 2004²², and were \$8.75/MCF in May 2005. Industrial market gas prices in New York averaged \$7.35/MCF in 2003 and \$8.68/MCF in 2004, and were \$10.34/MCF in May 2005.

These high gas prices are retarding the adoption of integrated energy systems, but this situation is, hopefully, temporary. Projections by the Energy Information Administration²³ indicate that

²¹

www.eia.gov/emeu/states/ngprices/

²² These figures are based on gas rates to industrial customers, in keeping with EIA's classification of self-generation and CHP as industrial uses.

²³ Energy Information Administration, "Annual Energy Outlook 2005," Table A3.

gas prices are moderating and will return to the \$5/MMBtu level within the next five years, as shown in Table 29. Many gas companies now recognize the benefits of IES to their load-leveling efforts, since demand for gas by IES systems is highest when overall demands for natural gas are lowest. In one example, the New York Public Service Commission has mandated that IES installations receive favorable rate treatment by gas companies.²⁴

Year	Gas Cost, \$/MCF
2002	3.89
2003	5.86
2010	4.37
2015	4.82
2020	5.23
2025	5.47

 Table 29: EIA Projection of Gas Costs to Industrial Gas Consumers (2002\$)

Realistic equipment installed costs were used to calculate simple payback times and life-cycle cost savings.

Electric Rates

San Diego, California

One electric rate, SDG&E AL-TOU_DER + EECC (1/22/04) was used during analysis of the San Diego location. (See Table 30.) Because the engine is clean-burning, there is no standby rate.

The optimal IES control strategy was to run it 24/7, whenever the application's electric power requirements exceeded 35 % of the generator's rated capacity.

State of New York Public Service Commission, Case 02-M-0515 Order Providing for Distributed Generation Gas Service Classifications, Issued and Effective April 24, 2003.

	SDG&E AL-TOU_DER + EECC 01/22/2004		
	Summer	Winter	
	Months	Months	
	05 to 09 (inclusive)	10 to 04 (inclusive)	
	Time (on-peak, m	nid-peak, off-peak)	
On-peak	11 to 18	17 to 20	
Mid-Peak	6 to 11 and 18 to 22	6 to 17 and 20 to 22	
Off-Peak	22 to 6	22 to 6	
	Energy C	ost \$/kWh	
On-peak	0.10786	0.10691	
Mid-Peak	0.08143	0.08145	
Off-Peak	0.08071	0.08074	
	Demand Charges \$/kW		
On-peak	5.59	3.83	
Mid-Peak	0	0	
Off-Peak	0	0	
Standby	0	0	
**Non-Coincident	11.58		
	Customer Charge \$/meter/month		
	48.52 (<500kW) and 194.06 (>500kW)		

Table 30: Electric Rate for San Diego

**Higher of Actual or Ratcheted 50% from last 12 months

(NOTE - No standby charge – based on Ultra Clean DG. Cost of emission control should be included in the first/installed cost)

** Applied to the customer's loads served by the customer's generator, as measured by the generator net output meter.

New York, New York

Two different electric rates ConEd SC9 Rate 1 (<1500 kW, 5/1/2005) and ConEd 14-RA Standby (<1500 kW, 5/1/2005), were used. (See Table 31 and Table 32.)

The optimal IES control strategy was to run it 24/7, whenever the application's electric power requirements exceeded 35% of the generator's rated capacity.

	ConEd SC9 Rate I (<1500 kW)		
	Winter	Summer	
	Months	Months	
	11 to 4 (inclusive)	5 to 10 (inclusive)	
	Energy Cost \$/kWh		
	0.1053	0.1053	
	Demand Charges \$/kW		
First 900 kWs	21.36	24.04	
Over 900 kW	20.06	22.74	
	Customer Charge \$/meter/month		
	0.00		

Table 31: Electric Rate for New York Baseline Runs

(NOTE – ConEd SC 9 rate energy cost changes slightly from month to month and is not published for the entire year ahead of time. The above May 2005 energy cost structure was used uniformly for all 12 months of the simulation process.

Table 32: Electric Rate for New York DG Alternative Runs

	ConEd SC14 Standby Service SC9 Rate I (<1500 kW)		
	Winter Summer		
	Months	Months	
	11 to 4 (inclusive)	5 to 10 (inclusive)	
	Energy Cost \$/kWh		
	0.1053	0.1053	
	Demand Charges \$/kW		
Contract \$/kW	3.89	3.89	
8am to 6pm*	0.0000	0.2893	
8am to 10pm**	0.3454	0.5736	
Customer Charge \$/meter/month			
	62.88		
*A			

*As-used daily Monday - Friday only (Transmission) **As-used daily Monday - Friday only (Distribution)

(NOTE – ConEd SC 14 rate energy cost changes slightly from month to month and is not published for entire year ahead of time. The above May 2005 energy cost structure was used uniformly for all 12 months of the simulation process.

Results of the Analysis

Figure 45 through Figure 84 show the results of the modeling of economic performance of typical buildings for the five modeled applications in San Diego and New York. Each page contains four charts, showing:

- Total present worth of the IES to the customer, based on life-cycle cost savings.
- Predicted use of thermal energy by the typical building, as a percentage of the total heat available from the IES. The prediction is based on the building's modeled energy requirements.
- Simple payback, based on a natural gas cost of \$6.00/MMBtu.
- Sensitivity of simple payback to natural gas prices.

The independent parameter in all four charts is the IES capacity.

The first chart in each series of four charts shows the total present worth of an IES installation as a function of IES capacity.

The life-cycle cost analysis used the following parameters:

•	Study period	10 years
•	Depreciation period*	10 years
•	Finance period	7 years
•	% financed	80%
•	Financing interest rate	8%
•	Cost of capital	8%
•	Tax rate	15%
•	Electric rates inflation	2%/year
•	Gas rates inflation	2%/year
•	O&M cost inflation	2%/year

* Straight-line depreciation for both book and tax purposes.

In the chart legends, the following abbreviations are used:

- NO HEAT REC: A distributed generation system with no heat recovery.
- HT + DHW: Heat recovered only for space heating and domestic hot water.
- HT + DHW + ABS: Heat recovered for space heating, domestic hot water heating, and powering an absorption chiller.

Payback time is often used as an indication of whether an IES project is economically feasible, but payback time is only a very preliminary screening value, and the choice of optimum IES capacity for an installation would normally be based on a present worth calculation. For example, although Figure 47 indicates that a 336-kW IES system with a chiller would have the shortest payback time for a typical hotel in San Diego, Figure 45 shows that the maximum total present worth of a 536-kW IES would be \$160,000 higher than that of a 336-kW IES.

The second chart in a series shows the annual heat recovery effectiveness as a function of IES capacity. The effectiveness is the amount of heat that would be recovered for use in the building divided by the total amount of heat generated by the IES when the IES is operating to fulfill the power needs of the building. The annual heat recovery effectiveness gives an indication of the extent to which the application makes use of the available heat from the IES. For example, Figure 46 shows that a typical San Diego hotel would use nearly all of the heat provided by any size of IES equipped with a corresponding absorption chiller, while it would use relatively little of the heat if it were not equipped with a chiller.

The third chart in each series shows how estimated simple payback time depends on IES capacity. The figure headings show the annual electric power demand (kW) of the building. For example, the San Diego hotel has an annual demand of 736 kW. It is not surprising that Figure 47 shows long payback times for an 836-kW IES, because the IES is clearly oversized.

The fourth chart in each series shows the sensitivity of simple payback time to natural gas prices in the range of \$5 to \$9/MMBtu.

The Value of Using Absorption Chillers

Figure 45 through Figure 84 show that equipping IES systems with absorption chillers improves their economics for all five typical buildings in San Diego. Table 33 summarizes this observation for San Diego sites, showing the total present worth²⁵ (TPW) of an optimal-size IES with an absorption chiller and comparing it to the TPW of an IES used only for space and water heating. Table 34 shows comparable information for New York. The tables show that the TPW of optimal-size IES in the typical New York buildings is much higher than in San Diego. However, there is much less inducement to add absorption chillers in New York. The difference between the two cities reflects the difference in electric power rates and relatively lower air conditioning loads in New York.

²⁵ Total present worth calculations are based on natural gas costs of \$6.00/MMBtu.

Typical Building	IES Capacity, kW	TPW, No Chiller, S K	TPW with Chiller, \$K	Improvement Due to Chiller, %
Large hotel	536	531	871	64
Nursing home	236	115	204	77
Large office	436	117	354	203
Large retail	336	62	305	392
Large school	336	126	202	60

Table 33: Financial Value of Adding an Absorption Chiller to an IES in San Diego

Table 34: Financial Value of Adding an Absorption Chiller to an IES in New York

Typical Building	IES capacity, kW	TPW, no Chiller, \$K	TPW with Chiller, \$K	Improvement Due to Chiller, %
Large hotel	636	2,317	2,471	7
Nursing home	236	766	809	6
Large office	336	996	1,062	7
Large retail	436	1,209	1,350	12
Large school	336	1,098	1,058	-4

Value of Heat Recovery

The charts for New York (Figure 65 through Figure 84) show clearly that payback period alone should not be used to select an optimal IES capacity. Although the charts indicate that the smallest systems have the shortest payback times, the maximum cost savings (TPW) are much higher for larger IES capacities.

The New York charts appear to show that there is little sensitivity to gas prices. However, this is a visual effect. The relative increases in payback time with increasing gas price are nearly the same in New York and San Diego.

All charts show that adding an absorption chiller to an IES would substantially increase its annual heat recovery effectiveness (and, therefore, its overall energy efficiency).

Table 35 and Table 36 compare the total present worth and simple payback time of IES with an absorption chiller to distributed generation systems with no heat recovery. The improvement in total present worth due to heat recovery is higher in New York than in San Diego.

	DG, N	o Heat Rec	overy	IES	with Chille	r
Typical Building	Optimal Capacity, TPW, kW \$K		Simple Payback, Years	Optimal Capacity, kW	TPW, \$K	Simple Payback, Years
Large hotel	550-650	200-300	7	450-650	820-840	5
Nursing home		<0	9	200-280	170-200	7
Large office	400-550	100-120	8	380-480	320-350	6.5
Large retail	330-470	50-80	8	300-420	270-300	6.5
Large school	300-400	<10	8.5	260-430	150-200	7

 Table 35: Financial Value of Heat Recovery to DG Systems in San Diego²⁶

Table 36:	Financial	Value of H	leat Recovery	y to DG S	ystems in	New York ²⁶

	DG,	No Heat Reco	very	Ι	IES with Chiller		
Typical Building	Optimal Capacity, kW	TPW, \$K	Simple Payback, Years	Optimal Capacity, kW	TPW, \$K	Simple Payback, Years	
Large hotel	550-750	1,700-1,800	3.5	450-750	2,400-2,500	3	
Nursing home	200-350	480-500	5	200-300	750-800	4	
Large office	250-450	900-950	4	200-450	1,000-1,050	4	
Large retail	450-650	1,00-1,020	4.5	350-650	1,200-1,350	4	
Large school	150-350	900-950	3	150-400	1,050-1,100	3	

Source Energy Savings

Table 37 and Table 38 Show the source energy (fuel used at the building and fuel used to generate central electric power) savings that would occur if optimal-size IES, with absorption chillers, were installed in the typical buildings. The data show the considerable source energy savings that would result from successful implementation of typical integrated energy systems. Savings would be even greater with ARES engine performance.

²⁶ Based on a natural gas price of \$6.00/MMBtu.

By all of the measures shown in Table 35 through Table 38, total present worth, simple payback, and source energy conservation, of the five typical building types, large hotels offer the best prospects for IES, in both San Diego and New York.

Typical Building	Optimal Capacity	Annual Heat Recovery Effectiveness	Utilized Recoverable Heat	Source Energy Used without IES	Source Energy Used with IES	Source Energy Savings	Source Energy Savings	
	kW	%		Thousand Btu/SF/year				
Large hotel	536	96	154	219	196	23	10	
Nursing home	236	93	61	197	182	15	8	
Large office	436	94	62	156	145	11	7	
Large retail	336	66	67	239	233	6	3	
Large school	336	91	47	181	168	13	7	

Table 37: Performance of Optimally Sized IES in San Diego

Typical Building	Optimal Capacity	Annual Heat Recovery Effectiveness	Utilized Recoverable Heat	Source Energy Used without IES	Source Energy Used with IES	Source Energy Savings	Source Energy Savings
	kW	%		%			
Large hotel	636	95	161	253	215	38	15
Nursing home	236	95	63	241	213	28	12
Large office	336	71	42	157	150	7	4
Large retail	536	65	78	278	250	28	10
Large school	236	90	36	247	223	24	10

Table 38: Performance of Optimally Sized IES in New York

Page 93

Page 94

Figure 59: Simple Payback – Large Retail Store in San

Figure 61: Total Present Worth – Large School in San Diego

Figure 65: Total Present Worth – Large Hotel in New York

Figure 67: Simple Payback – Large Hotel in New York

Figure 69: Total Present Worth – Nursing Home in New York

Figure 72: Gas Price Sensitivity – Nursing Home in New York

Figure 73: Total Present Worth – Large Office Building in New York

Figure 76: Gas Price Sensitivity – Large Office Building in New York

Figure 81: Total Present Worth – Large School in New York

Summary of Results

Goal 1 – Overall Efficiency Greater Than 70%

The system met the stated goal of achieving 70% thermal overall efficiency (based on higher heating value, HHV). The design called for 73.5% efficiency, which included a margin above the 70% efficiency goal. The tests results demonstrated a system efficiency of 71.2% when the engine was operated with a jacket coolant temperature of 200°F and 70.3% with the jacket coolant at 220°F. The measured thermal output was 6.2% lower than the design output, but 1.2% above the 70% goal.

Measured engine electric and thermal output and efficiency data were very close to manufacturer specifications, certainly within the measurement accuracy of the equipment. Exhaust backpressure, within the manufacturer's specified range, had very little effect on performance. The electric power and efficiency were flat over a range of intake air temperatures. Measured NO_x levels were 1.24 g/bhp, compared to the manufacturer's specification of 2 g/bhp. The engine thermostat did not allow the jacket coolant temperature to exceed 225°F.

Space cooling is often an important need that can be met with the heat recovered in an integrated energy system by using the heat to power an absorption chiller. Conventional absorption chillers are typically designed to be powered by heat at higher temperatures (270°F) than normally available from engines. This project developed a prototype chiller that was optimized for a 207°F hot water supply, which can be provided by most engines. This chiller achieved a measured full-load coefficient of performance of 0.7.

Performance testing of the chiller indicated that the chiller output at 200°F engine jacket coolant temperature would be 83 RT, rather than the design intent of 90 RT. This performance shortfall was primarily due to the thermal output of the high-temperature coolant circuit of the cogeneration module being lower than expected. This will be corrected by using larger heat exchangers and incorporating other improvements into the heat recovery loop.

Goal 2 – 50% Reduction in Installation Cost

The project developed a modular system that can be transported to a customer's site and installed with very little custom engineering design and field work – significantly reducing the installation costs. Because each installation is unique, it is not possible to predict accurately how much this modularization will reduce installation costs in every case; but Table 39 shows our best estimates for typical installations. The goal of 50% site-related cost savings was achieved for the alpha unit, which is to be installed for approximately \$300,000 or 40% of typical system installation costs.

	Baseline 600 kW	Alpha R&D Results	R&D Target
Equipment			
Engine/generator	\$219,000	\$219,000	\$219,000
Heat recovery and rejection	94,000	94,000	94,000
Switchgear and controls	113,000	113,000	113,000
Chilled water system	153,000	153,000	102,000
Package	0	130,000	130,000
Emission controls	0	0	0
Subtotal	579,000	709,000	658,000
Module Assembly Costs			
Labor	0	198,000	100,000
Site Costs			
Installation and interconnect	750,000	300,000	300,000
Risk and warranty	200,000	100,000	100,000
Subtotal	950,000	400,000	400,000
Total	\$1,529,000	\$1,307,000	\$1,158,000

 Table 39: Estimated Cost Savings from Modularizing IES

Notes: Equipment costs include shipping and startup costs.

As important as first costs, the packaged systems will also have lower maintenance, repair, and standby costs.

Equity Office Partners provided actual average project costs from completed IES projects as the baseline.

Goal 3 – Adaptability to a Variety of Building Types and Thermal Demand Requirements

The project successfully designed a modular IES to provide appropriate performance and flexibility for the target commercial building market segments. A full-scale prototype cogeneration module was built and tested in GTI's Distributed Energy Technology Center. It performed nearly as well as expected. There was a 6.2% shortfall in the amount of recoverable heat (compared to the design value), but this should be correctable with better coordination between the engine jacket coolant limit control and the temperature setpoint sensor and by improving the sizing of the heat exchangers.

The project developed a prototype low-source-temperature absorption chiller to match the heat recovery capacity of the cogeneration module. The chiller was tested by its manufacturer, Trane, and met its performance goals of 90 RT capacity and 0.7 COP when powered by 207°F water.

The project encouraged Waukesha to raise the allowable jacket coolant temperature of the engine used in the prototype cogeneration module to 230°F to enable a low-source-temperature absorption chiller to meet peak cooling demands when necessary. A flexible control system was developed to take full advantage of the different jacket coolant temperatures and a full range of variation in a customer's varying thermal needs. The system provides a controlled variable hot water supply temperature of 200 to 237°F (Only 220° was achieved, but this shortfall is correctable.) to meet a wide range of customer heating needs without modification, while minimizing engine maintenance requirements by operating at the lowest coolant temperature required.

The optimization analysis, when updated in early 2005, identified an optimal system size of 300 to 400 kW (highest applied efficiency and shortest payback). The optimization analysis also identified potential improvements over the heat recovery system.

Goal 4 – Reliability

One of the reasons for developing a modular IES was to improve system reliability through appropriate integration of all system components into a standardized manufactured product. This would help avoid incompatibility of components, which often delays the installation and startup of conventional integrated energy systems and sometimes causes persistent problems in operating the systems. Better system integration would include advanced system controls and monitoring equipment. The availability of standardized components and system designs would reduce package design costs, improve manufacturing quality control and quality assurance, and facilitate the incorporation of lessons learned into the manufacturing process.

GTI hosted workshops on February 8 and 9, 2005 and May 9 and 10, 2005 to identify reliability issues. They were attended by representatives from GTI, IES system operators, and one IES system manufacturer. The purposes of the workshops were to document lessons learned from operating and maintaining IES systems throughout the U.S. and to recommend changes that could mitigate unplanned outages.

The meetings illustrated the prime importance of IES reliability and identified a host of problems that have occurred in the field, mainly caused by inappropriate engineering or installation. The causes include inappropriate material selection, excessive vibration, exhaust noise, inadequate design ambient temperature, inconvenient locations of piping connections, interfaces with

building energy system controls, lack of capability to send key operating data to the building maintenance staff and the energy system manager, inadequate insulation of heat recovery and exhaust piping, inadequate protection of sensitive components from high temperature and from maintenance activities, and inability to warn operators when emissions control is out-of-compliance. Many of these problems can be addressed by improvement in system design specifications, improved engineering, and quality control during the manufacturing process. However, some will require R&D. R&D needs include:

- Intelligent operating systems.
- Low cost Btu-measurement devices.
- Low cost flow sensors.
- Improved vibration dampers.
- Low cost cylinder monitoring.
- Low cost continuous emission monitoring.
- Adaptation of exhaust gas emissions monitoring systems to ensure compliance with air quality regulations.
- Fuel injection systems for natural gas engines for better control of engine performance and emissions.
- Long-life spark plugs.

The participants agreed that IES equipment could be more reliable if it were modular, comprised of standardized factory-assembled subsystems or modules that could be easily connected to one another at a customer's site. Modules that might be considered are:

- Engine/generator.
- Electric utility interconnection standard subsystem designs for each major utility.
- Heat recovery modules various options to meet building requirements.
- System master controls.
- A menu of standard options of pre-engineered and factory-assembled components, such as:
 - Standard switchgear panel for utility metering and utility protection.
 - ➤ Gas pressure boosters.
 - Circuit breakers.
 - Vapor-phase heat recovery.
 - > Absorption chiller modules (and remote cooling towers).

Goal 5 – Market Identification and Characterization

For an IES to provide energy cost savings that justify its purchase, the purchaser should have onsite thermal energy needs that can use much of the byproduct heat available from the engine – at the time that the heat is available. This project identified commercial building applications that can most effectively make use of the heat, quantified the market potential of the most promising applications, and suggested strategies for approaching customers in those market sectors.

However, the project also showed that marketplace acceptability of IES in commercial buildings is far from universal. Lower first cost of the equipment and emissions compliance are necessary, but not sufficient. The basic economics requires that users recoup the initial cost through savings in energy costs in a reasonable time. Two aspects are vital:

- The difference between natural gas electric power rates should be large enough to generate significant energy cost savings.
- The building should have enough demand for thermal services at the time the electric generator is operating to enable energy cost savings through the recovery and use of the recycled thermal energy from the prime mover. In a great preponderance of commercial buildings, this means that the heat should be used to drive an absorption cycle chiller for space cooling.

Conclusions and Lessons Learned

Performance and Testing

The system met the stated goal of achieving 70% thermal overall HHV efficiency. The overall efficiency of actual installations will depend on the individual customer's thermal energy needs and the temporal patterns of those needs.

The cogeneration module performance shortfall of 7°F was primarily due to the jacket coolant circuit heat exchangers. Possible reasons for the lower-than-expected high-temperature output are that the jacket coolant heat exchanger was too small and to high heat losses from the exhaust heat exchanger due to its environment being colder than planned for in actual installations.

The jacket coolant heat exchanger was undersized due to errors in design assumptions and calculations for parameters, such as specific heat and heat transfer coefficient. A brazed plate heat exchanger was used because heat exchangers of this type are generally less expensive and smaller than plate-and-frame heat exchangers. The advantage of plate-and-frame heat exchangers is that additional plates can be added if more heat transfer is needed, while with brazed plate heat exchangers, the entire heat exchanger would have to be replaced. When using brazed-plate heat exchangers, it would be advisable to slightly oversize them to ensure that the heat transfer is not limited.

The exhaust heat exchanger was not insulated because the design intent was for it to operate in a much warmer environment than the test environment. Because the test unit is expected to be tested in the field, we recommend that the performance of the exhaust heat exchanger be closely monitored during the field tests.

Measurement uncertainty may have been part of the reason for the shortfall in expected thermal output. Thermal output measurements are particularly sensitive to temperature measurements because the difference between the inlet and outlet temperatures is typically less than 20°F. GTI recommends that other testing organizations use differential RTD temperature transmitters to measure these temperatures to reduce measurement errors. GTI also found that most of the measurement error in these tests was induced during signal processing to convert the analog temperature readings to the digital form used by the data recording system. The signal processors or input/output modules used for this conversion process were set to default values and covered a very large temperature range. In the future, the input/output modules should be reprogrammed to cover a much narrower temperature range to improve the accuracy of the temperature measurements. Additionally, GTI recommends that for measuring thermal output purposes, delta T transmitters should be used instead of single point transmitters. The delta-T transmitters measure the difference in temperature between two RTD measurement points instead of measuring the temperate at a particular point. The result of using a delta-T type transmitter is that it reduces the experimental uncertainty because the measurement system is based and calibrated on temperature difference and not the sum of errors from measuring two different temperatures and subtracting the result.

During testing GTI encountered problems in adjusting the jacket coolant setpoint as well as holding the jacket coolant temperature stable within GTI's specified stability parameters. The primary reasons for these issues were related to using stepped logic for controlling the radiator

fans and jacket coolant temperature. GTI added PID controls for managing the thermal side of the CHP system, and these controls greatly increased the stability of the jacket coolant temperature and made it much easier to change and maintain setpoints.

Reliability

Reliability continues to be an issue for IES marketability, as indicated in the failure modes and effects analysis workshops. There are three aspects to reliability:

- First and foremost is inadequate system design, which leads to problems during startup or to failure after some period of operation. Components that are not properly specified or do not perform as expected can cause long delays in commissioning the equipment and getting it to operate as planned.
- Second is quality. Poor component quality or installation quality (such as mislabeled wiring) has led to a number of startup and operational failures.
- The third contributor to poor performance is the inability of the IES to adequately respond to or accommodate common interruptions or interferences. This will be referred to as long-term reliability.

These failure mechanisms increase the cost of installation and operation while tarnishing the IES industry's reputation and further impeding market penetration.

A basic premise of this project was that, in factory-assembled integrated energy systems, the components would interact properly and perform as expected. Factory-built modules are built to quality control standards, components can be standardized, and failure modes can be identified and corrected in the standard design and fabrication process.

The two industry workshops led by GTI provided extensive information about common failure modes and the likelihood of their occurring in the field. Several of the problems that have been encountered in the field resulted from inadequately specified designs or incorrect matching of the IES equipment to the building, and they underline the importance of having a well-designed IES. Because of the vital importance of IES reliability, GTI began to develop a predictive maintenance system and intelligent operating system for engine-driven IES installations under a separate gas-industry-funded project. These systems would reduce O&M costs by forestalling unplanned outages and improving IES reliability and availability.

In order to specify requirements for the *Intelligent Operator*,²⁷ GTI identified many critical parameters for monitoring IES equipment and developed an extensive list of these parameters for use in developing the *Intelligent Operator*. The next step should be to perform an economic evaluation of these parameters to help determine which monitoring points are cost-effective. The most cost-effective parameters should be selected, and specifications should be written for future software development.

Because there are no suitable commercial software offerings, software development will be required for the *Intelligent Operator*. The software should allow for features that require relatively fast response to be embedded in the IES master controller. Software for trending and

²⁷ GTI is pursuing a trademark on this name.

other slow-response control functions should be run on a separate system that would communicate with the master controller.

Modularity

The project demonstrated that modularization could greatly simplify site installation and the associated costs. Prefabrication reduced the on-site work considerably, with only four building connection points. The alpha prototype is to be installed at a middle school for less than \$450/kW, a 50% reduction from typical installation costs for systems of this size.

The project also demonstrated that making an entire IES a single module for plug-and-play installation at a building was too ambitious. Designing the system revealed that a single module could be too large to lift to a building roof or to accommodate the setback requirements or space limitations at many sites. The two-module design was transportable, but maneuvering it at a site could be costly. It became clear that the range of energy needs at various sites dictates that integrated energy systems should be comprised of more modules with narrower functionality to enable matching the IES to the needs of the building.

Market Applicability

GTI and partner analysis concur that there is a significant potential in the buildings market for IES of 300-kW to just over 1,000-kW capacity. Specifically, large hotels, nursing homes, office buildings, big-box retail buildings, and large schools offer primary market targets. In terms of maximizing fuel savings through heat recovery, large hotels and nursing homes are the preferred markets. As shown in Figure 85 (based on a study of the remaining potential IES markets in New York²⁸), these applications represent large potential markets.

GTI's economic analysis indicated that a smaller engine-generator (336-kW rather than 615 kW) would be adaptable to a broader range of building sizes, and it would be easier to transport and maneuver during installation. Multiples of these smaller modules could serve larger buildings.

The expected improvement in system performance and cost from ongoing R&D and the expected improvement in natural gas prices will increase the market for IES. For the present, California and New York are the states that offer the best initial possibilities for economically successful IES applications. Higher natural gas prices have eroded IES system economics in the Midwest and Southeast. Therefore, initial IES application efforts should focus on California and the Northeast, where high electricity prices offer better economics. Because a high fraction of the power plants in these two areas are fueled with natural gas, rising gas prices drive electric power prices higher, helping maintain economics favorable to gas-fueled cogeneration.

²⁸

²⁸ Hedman, Bruce A. and Darrow, Ken (Energy Nexus Group Onsite Energy Corporation) and Bourgeois, Tom (Pace Energy Project), "Combined Heat and Power Market Potential for New York State," Report 02-02 of the New York State Energy Research and Development Administration, October 2002.

Figure 85: Remaining Commercial Sector CHP Technical Potential in New York²⁸

Based on the economic evaluation of IES performance in typical building types, large hotels in both California and New York offer the most promising market targets.

Office buildings are the largest potential IES market in New York.²⁸ GTI's analysis of potential application economics found that IES systems sized at 25 to 50% of the office building peak load provide excellent thermal utilization. Working with Equity Office Partners, GTI determined that the office building market should be included in this program.

As expected, adding space-cooling equipment to IES in California would have a much higher marginal value than in New York.

Secondary schools are a technically attractive target market for IES, and schools are more tolerant of lengthy payback periods. However, GTI found that there are institutional barriers to exploiting this market. Each school district is autonomous, often requiring board approval of each sale.

The economic analysis performed under this project revealed that commercial building applications represent a potentially important market IES, but the systems need further R&D to improve their first cost and operating costs.

Commercialization Strategy

GTI's objective is to secure a commercialization partner that can design, manufacture, warrant, sell, and maintain a wide range of IES systems. At the outset of this project, GTI secured commitments from Waukesha and Trane to participate in the R&D effort while we explored commercialization partners. GTI initially pursued Waukesha as the manufacturer for the packaged system. Competing priorities and markets made it difficult for Waukesha to divert resources from its core business – reciprocating engines.

GTI shifted its initial commercialization strategy and sought an experienced engine-generator-set packager that is willing to expand its scope of supply to include heat recovery and chilled water. GTI identified Enercon Engineering, Inc. as such a commercialization partner and created a partnership to design, manufacture, warrant, and sell a line of IES with nominal capacities of 300 to 1,100 kW.

Enercon's involvement would provide a clear path to market for IES equipment for commercial buildings. Enercon's full field support of all components of its IES equipment would help reduce customer uncertainty and

Customers are interested in buying electricity, heating, and cooling - not switchgear. engines. and heat recovery equipment. Existing IES suppliers expect customers to shoulder the burden of operating and maintaining IES systems. This business model may work in industrial and institutional settings, where large maintenance staffs exist, but the model has become a barrier in commercial markets.

risk. Enercon has been manufacturing custom-designed engine-generator assemblies and packages since 1981 and has a solid reputation for integrity and expertise. In 2004, Enercon's Vice President and General Manager was chairman of the U.S. Combined Heat and Power Association.

Enercon has a unique "complete systems" approach that meets customers' power generation requirements by combining high-quality electrical controls and custom assembly services to ensure that the power generation system will function in a coordinated fashion. Enercon also provides follow-up support through its product support department and field-service engineers who are available whenever and wherever they are needed. Enercon's field service technicians are some of the most experienced in the industry and have an exceptional knowledge of all components in the system. The technicians are available for startup commissioning and for regular maintenance service.

Enercon power generation systems are in operation worldwide, in more than 80 countries. Enercon's services include customized training on its equipment, as needed by its customers, and Enercon can provide extended warranty and preventive maintenance programs for generator switchgear. Enercon will expand these services to include all IES components.

Enercon also provides a unique path to market by forming partnerships with the OEM distributors, leveraging their sales and maintenance capabilities. This will help the distributors see Enercon as an IES supplier, rather than a competitor.

GTI, through the National Accounts Energy Alliance, will provide Enercon and the distributors with opportunities to supply IES modules to property management, lodging, big-box retail, and health care establishments.

Recommendations

GTI, in cooperation with Waukesha, Ballard Engineering, and Trane, developed, designed, and tested a 600-kW alpha prototype IES packaged system. The team integrated the engine, controls, heat recovery, grid interconnect, and absorption system into two modular portable units that could be quickly and inexpensively installed in the field. IES performance testing verified that we achieved our overall efficiency goal of greater than 70%. This testing, combined with an independent review identified several aspects that will be addressed in Phase II, with the development of the commercial unit. They include:

- Identify design changes and system specifications that will directly improve operability and reliability. Utilize the results of a formal failure modes and effects analysis (FMEA) to develop an innovative design for system controls integration and automation, using state-of-the-art on-board diagnostics and trending techniques to predict operational patterns and failures.
- Change the IES package design to use proportional-integral-differential (PID) controllers rather than the step logic controllers used in the alpha design. This change would improve operational stability of the IES.
- Increase modularization (a larger number of smaller modules) to facilitate transport of the unit and reduce installation costs. For example, one module could include the engine, generator, switchgear, and hot water recovery, while a second module would include the radiators, exhaust treatment, and excess heat rejection radiators. A third module could house the absorption chiller and its associated auxiliaries. Improvements to the total system layout, based on lessons learned, will increase footprint flexibility and the number of sites compatible with the modular system. Integration of the switchgear and controls with the generator would reduce system size and complexity.
- Integrate means for capturing and using the radiated heat to improve the overall efficiency by capturing an additional 5% of the total energy input.
- Develop a smaller capacity IES to better match the energy needs of typical commercial buildings. The updated economic analysis demonstrated the value of using smaller systems.

The IES market will be expanded by developing IES packagers that fabricate, sell, warrant and maintain IES products; supplying electricity, heating, and cooling for a fixed price. GTI selected a commercialization partner, Enercon, that can provide this full service. Enercon also provides a unique pathway to the buildings market by working in partnership with all three U.S. OEM manufacturers. GTI and Enercon will propose further development work in Phase II to develop modules based on ARES engines. Under the current market conditions, now is the time to invest in R&D, positioning our partner to take advantage of the DE market as it improves. Lower natural gas prices, improved prime-mover technology performance and cost, reliable packaged systems, favorable policy changes, and incentives will provide for an improved IES market in the future. While the GTI alpha system achieved a number of the program goals, further improvements are needed prior to commercial launch.

Appendix A – Cogeneration System Testing Description

[Submitted as a separate file.]

Appendix B – Market Analysis

[Submitted as a separate file.]

Appendix C – Economic Analysis of Alpha Design

[Submitted as a separate file.]

A Strong Energy Portfolio for a Strong America

Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for America. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy invests in a diverse portfolio of energy technologies.

For more information contact:

EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov

GTI Integrated Energy System for Buildings Final Report

Appendix A – Cogeneration System Testing Description

List of Tables
Laboratory Facilities and Measurement Specifications
Air Intake Subsystem
Exhaust Gas Subsystem
Fuel Supply Subsystem
Electrical Subsystem
Thermal Load System
Testing Requirements
Data Collection Equipment7
Data Sampling Rate and Test Run Data Collection Duration7
Instrumentation and Measurement Accuracy
Steady-State Stability Criteria9
Stabilization
Post-Test Verification of Steady State Conditions9
Exhaust Back-Pressure Performance Test 9
L'Andre Duck Tressure Terrormanee Test
Test Conditions
Test Conditions
Test Conditions
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11 Measurements 11 Test Conditions 11 Measurements 11
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11 Measurements 11 Island-Mode-Acceptance and Load-Rejection Test 12
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11 Measurements 11 Island-Mode-Acceptance and Load-Rejection Test 12 Test Conditions 12
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11 Measurements 11 Island-Mode-Acceptance and Load-Rejection Test 12 Test Conditions 12 Measurements 14
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11 Measurements 11 Island-Mode-Acceptance and Load-Rejection Test 12 Test Conditions 12 Measurements 14 Heat Recovery Tests 14
Test Conditions 10 Measurements 10 Intake Air Temperature Performance Tests 11 Test Conditions 11 Measurements 11 Island-Mode-Acceptance and Load-Rejection Test 12 Test Conditions 12 Measurements 14 Heat Recovery Tests 14 Test Conditions 14
Test Conditions10Measurements10Intake Air Temperature Performance Tests11Test Conditions11Measurements11Island-Mode-Acceptance and Load-Rejection Test12Test Conditions12Measurements14Heat Recovery Tests14Measurements14Measurements17
Test Conditions10Measurements10Intake Air Temperature Performance Tests11Test Conditions11Measurements11Island-Mode-Acceptance and Load-Rejection Test12Test Conditions12Measurements14Heat Recovery Tests14Test Conditions14Measurements17

List of Tables

Table A - 1: Instrumentation and Parameters of Air Intake Subsystem	4
Table A - 2: Parameters and Instrumentation for Monitoring Exhaust Gas Subsystem	5
Table A - 3: Instruments and Parameters for Fuel Supply Subsystem	5
Table A - 4: Parameters and Instrumentation on Electrical Subsystem	6
Table A - 5: Parameters and Instrumentation for Monitoring Thermal Load System	7
Table A - 6: Maximum Allowable Measurement Uncertainty and Instrument Location	8
Table A - 7: Maximum Deviation in Test Conditions During Testing Measurement Period	9
Table A - 8: Measured Parameters for Exhaust Back-Pressure Tests	10
Table A - 9: Intake Air Temperature Test Matrix	11
Table A - 10: Measured Parameters for Intake Air Temperature Tests	12
Table A - 11: Island-Mode-Acceptance and Load-Rejection Test Matrix	13
Table A - 12: Measured Parameters for Intake Air Temperature Tests	14
Table A - 13: Heat Recovery Circuit Test Matrix	15
Table A - 14: Test Matrix for the Hot Water and Auxiliary Coolant Circuit	16
Table A - 15: Measured Parameters for Intake Air Temperature Tests	17

Laboratory Facilities and Measurement Specifications

This appendix describes aspects pertaining to the testing of the Waukesha cogeneration module. An earlier report¹ describes the physical arrangement of GTI's Distributed Energy Technology Center laboratory and its measurement and control arrangements.

Air Intake Subsystem

An extensive ductwork subsystem is integrated into the Distributed Energy Technology Center (DETC) to monitor and control the temperature and humidity of the test unit's intake air. The intake air subsystem consists of several components including a natural-gas-engine-driven reciprocating chiller, motorized dampers, fans, heaters, cooling coils and a desiccant to control the temperature and humidity of the intake air. Fresh air is drawn in through an air filter and is heated, cooled, dried, or humidified, depending on the temperature and humidity setpoint. For these tests, the conditioned intake air was discharged through ducts upstream of the air filters on the engine. A programmable logic controller was used to control the temperature, humidity, and flow rate setpoints based on temperature sensors mounted on the engine combustion air intake filters. The humidity and flow rate sensors are located in the outdoor air intake, the return duct, and the supply duct to the engine. Table A - 1 is a complete list of the measured parameters.

¹ Kollross, C. Todd, "Distributed Energy Test Procedures Development," Gas Research Institute report number GRI-03/0110, May 2003.

Parameter	Equipment	Range	Units	Accuracy
Temperature of outdoor (fresh) air for combustion air make-up Temperature of air at intake at engine air filter	Type K thermocouple	0-150	°F	±0.75% of range
Relative humidity of outdoor (fresh) air for combustion air make-up Relative humidity of air entering engine air filter	Humidity transmitter	0-100	%	±2.0% of reading
Air flow rate through air intake system ducting	Air monitoring station(s) with differential pressure transducer	0-10000	scfm	±3% of scale accuracy
Barometric pressure of outdoor (fresh) air for combustion air make- up	Barometric pressure indicator	450.0- 795.1	mm Hg	±0.38 mm Hg

 Table A - 1: Instrumentation and Parameters of Air Intake Subsystem

Exhaust Gas Subsystem

The exhaust test section consisted of a 10-inch-diameter, 10-foot-long straight pipe connected to the cogeneration module exhaust connection. Exhaust velocity and mass flow rate were measured by a Pitot tube located near the end of the straight pipe. Exhaust temperature and static pressure were measured downstream of the Pitot tube. Emissions were measured at the end of the straight pipe. Table A - 2 lists the measured parameters and instrumentation.

Parameter	Equipment	Range	Units	Accuracy
Temperature of exhaust exiting DE unit	Type K thermocouple	-400 to +800	°F	$\pm 0.75\%$ of range
Pressure of exhaust exiting DE unit	Pressure transmitter	0-22	Inches of Water	±0.25% of reading
Amount of CO in DE unit exhaust		0-1000	ppm	±1% of range
Amount of O ₂ in DE unit exhaust	Emissions	0-25	%	±1% of range
Amount of NO _x in DE unit exhaust	analyzer	0-1000	ppm	$\pm 1\%$ of range
Amount of CO ₂ in DE unit exhaust		0-10	%	±1% of range

Table A - 2: Parameters and Instrumentation for Monitoring Exhaust GasSubsystem

Fuel Supply Subsystem

The gas supply pressure to the DETC is approximately 45 psig. The gas is filtered with a 5micron filter and regulated to the required inlet pressure. Although the allowable inlet gas pressure for the Waukesha VGF 36 GLD engine is 8 in. w.c. to 4 psig with the supplied regulator, all testing was performed at 4 psig inlet pressure, as the air/fuel ratio was set prior to testing at 4 psig inlet pressure to the gas train. Thus, varying the inlet pressure would require verification and adjustment of the gas train components. Throughout testing, the gas supply pressure, the gas flow rate, and gas composition were recorded. Table A - 3 lists the instrumentation used to monitor this subsystem.

Parameter	Instrument	Range	Units	Accuracy
Fuel inlet pressure	Pressure transmitter	0-200	psig	$\pm 0.25\%$ of reading
Fuel flow	Coriolis flow meter	0-200	scfm	±0.25% of range
Fuel heating value	Gas chromatograph	20000- 22000	Btu/lb	±1 Btu/lb
Fuel inlet temperature	Type K thermocouple	0-150	°F	±0.75% of range

Table A - 3: Instruments and Parameters for Fuel Supply Subsystem

Electrical Subsystem

During the tests, the main 480 VAC bus was connected to a load bank capable of testing resistive loads up to 2 MW. The main bus was disconnected from the grid. Parasitic loads were measured on this bus as well. It should be noted that the unit's wiring was modified for the purpose of testing and measuring the parasitic loads. Table A - 4 lists the instrumentation used to monitor this subsystem.

Parameter	Instrument	Range	Units	Accuracy
Phase to phase voltage at output of DE unit		0-600	V	±0.1% of reading
Current at output of DE unit		0-150	Amps	$\pm 0.1\%$ of reading
Voltage frequency on output of DE Unit		0-100	Hz	$\pm 0.01\%$ of reading
True power output from DE unit		0-100	kWe	IEC 60687 Class .2S ±0.2% of reading
Reactive power output from DE unit	Power analyzer	0-100	kVar	IEC 60687 Class .2S ±0.2% of reading
Apparent power output from DE unit		0-100	kVA	IEC 60687 Class .2S ±0.2% of reading
Power factor of output of DE unit	·	0-1		$\pm 0.5\%$ of reading
Harmonics (to 40 th)		0.001-100	%	IEC 61000-4-7
Harmonics (to 63rd)		0.001-100	%	±0.5% of full scale

Table A - 4: Parameters and Instrumentation on Electrical Subsystem

Thermal Load System

The thermal load system used as a heat sink for the heat available from the cogeneration system consisted of three loops. A cooling tower with city water cooled the customer side of the auxiliary coolant heat recovery exchanger. A complete description of the heat recovery streams within the engine module is contained in the design section of this report. Table A - 5 lists the instrumentation used to monitor this subsystem.

Parameter	Instrument	Range	Units	Accuracy
Cooling water inlet temperature				
Cooling water outlet temperature	Platinum			
Chilled & hot water inlet temperature	RTD	0-500	°F	±0.025 % of range
Chilled & hot water outlet temperature				
Chilled & hot water flow rate	Coriolis Meter	0-600	gpm	±0.1 % of rate
Cooling water flow rate	Turbine Meter	0-100		± 1 % of rate
Cooling water inlet pressure				
Cooling water outlet pressure	Drogguro			10.25.% of
Chilled & hot water inlet pressure	transmitter	0-60	psig	$\pm 0.23\%$ of range
Chilled & hot water outlet pressure				

Table A - 5: Parameters and Instrumentation for Monitoring Thermal LoadSystem

Testing Requirements

Data Collection Equipment

Wonderware InTouch operator interface software was used to collect and log test data. InTouch uses object-oriented graphics to create animated, touch-sensitive display windows that are connected via software drivers to the various input/output (I/O) systems comprised of the test instrumentation.

After each test run reported in the results, a historical log file was queried to extract data and write the data to a comma separated file for further data reduction. The Wonderware software allows data to be extracted at a user specified sampling rate.

Data Sampling Rate and Test Run Data Collection Duration

The data used for test reporting was extracted from the historical log file at a sampling rate interval of 2 seconds and averaged over a ten (10) minute period. For each parameter reported, the minimum, maximum, and average values were determined over each test period to validate system stability.

Instrumentation and Measurement Accuracy

To control data accuracy and repeatability, GTI established maximum uncertainty limits for the test parameters. The measurement instruments were selected to ensure that these maximum uncertainty limits would be met. The overriding requirement for accuracy of instrumentation, data acquisition hardware, data sampling rates, minimum test duration, and minimum test runs is the specified maximum uncertainty listed in Table A - 6. Unless stated otherwise, the units of uncertainty are expressed as a percentage of the reading.

Parameter	Units	Maximum Uncertainty	Location of Instruments
Real power	kW	+0.45%	
Reactive power	KVAR	±0.1370	
Voltage	Volts		
Current	Amperes	±0.30%	Customer electrical connection panel
Frequency	Hz		Customer electrical connection panel
Total harmonic distortion – voltage	0/0	n/a	
Total harmonic distortion – current	70	n/u	
Parasitic power	kW	±1.0%	
Intake air pressure	psia	±2.0%	Within 6 inches of intake structure
Intake air temperature	°C [°F]	±1.1°C [±2°F]	within 6 inches 6j iniake structure
Barometric pressure	Inches of Hg	±0.5%	Outdoor location at test site
Exhaust backpressure	Inches of H ₂ O	±3.0%	
Exhaust temperature	°C [°F]	$\pm 2.8^{\circ}C[\pm 5^{\circ}F]$	Customer connection flange, but
Average standard volumetric exhaust flow	scfm	±3.0%	- within exhaust pipe
Fuel supply pressure	psia	±1.5%	
Fuel supply mass flow rate	lb/hr or scfh	±1.0%	
Fuel higher heating value	Btu/lb or	.1.00/	
Fuel lower heating value	Btu/scf	$\pm 1.0\%$	
High-temperature coolant mass flow			7
rate	Ib /han	+1.50/	
Low-temperature coolant mass flow	10/11/	±1.370	
rate			
High-temperature coolant inlet			Customer connection flange
temperature			Customer connection junge
High-temperature coolant outlet			
temperature			
Low-temperature coolant inlet	°C [°F]	$+0.5^{\circ}C[+1.0^{\circ}F]$	
temperature	$C_{I}I_{J}$		
Low-temperature coolant outlet			
temperature	_		
Heat recovery fluid inlet temperature	_		
Heat recovery fluid outlet temperature			
Heat recovery fluid or coolant	°C [°F1	$+0.5^{\circ}C[+1.0^{\circ}F]$	Customer connection flange
differential temperature	<i></i>		ensioner connection junge
Heat recovery fluid mass flow rate	lb/hr	±1.5%	Customer connection flange
Specific heat	Btu/lb °F	±1.0%	
Noise level	dB	$\pm 3 dB$	Per ISO Standard 9614 2

 Table A - 6: Maximum Allowable Measurement Uncertainty and Instrument

 Location

Steady-State Stability Criteria

With exception of the island-mode-acceptance and load-rejection tests, all tests were performed when the unit had been operated for a sufficient period and stability to achieve steady-state conditions. The following procedures were performed to ensure steady state operation.

Stabilization

Before starting a performance test, the unit was operated at the requisite conditions until stabilization was established. Stabilization was considered to be established when continuous monitoring indicated that all system parameters were within the maximum permissible deviation (variance from nominal setpoints), as specified in Table A - 7 for at least 15 minutes prior to collection of test data.

Post-Test Verification of Steady State Conditions

At completion of each test run, average, minimum, and maximum values were determined to verify that the system stability limit criteria specified in Table A - 7 were maintained throughout the run. If the stability criterion were not satisfied throughout the entire test run, the run was repeated.

Table A - 7: Maximum Deviation in Test Conditions During Testing MeasurementPeriod

Parameter	Units	Maximum permissible deviation during test
Electrical Output	kW	±2%
Parasitic Load	kW	±5%
Intake Air Temperature	°C [°F]	$\pm 2.2^{\circ}C [\pm 4^{\circ}F]$
Barometric Pressure	inches Hg	±1%
Fuel Supply Flow Rate	lb/min	±2%
Fuel Heating Value	Btu/lb	±1%
High-temperature water (coolant) flow	gpm	±5%
Low-temperature water (coolant) flow	gpm	±5%
Heat recovery inlet temperature (if steam)	°C [°F]	±2.8°C [±5.0°F]
Heat recovery outlet temperature (if steam)	°C [°F]	±2.8°C [±5.0°F]
Heat recovery inlet temperature (if liquid)	°C [°F]	±5°F
Heat recovery outlet temperature (if liquid)	°C [°F]	$\pm 5^{\circ}F$
Heat recovery differential temperature	°C [°F]	±5%
Exhaust gas backpressure	inches H ₂ O	±5%
Exhaust gas flow rate	inches H_2O	±5%
Exhaust gas static pressure	inches H_2O	±2%
Exhaust gas temperature	°F	±10°F

Exhaust Back-Pressure Performance Test

Site design factors, such as ductwork, dampers, and silencers can impose back-pressure on the system's exhaust. Back-pressure usually reduces output power and efficiency. The purposes of these tests were to verify the systems capability to operate within the allowable 15 in. w.c. back-pressure as measured at the engine exhaust outlet and to determine the effect of increased back-

pressure on engine performance. For this test, the generator was operated to rated electrical output and the intake air temperature was maintained at 59°F.

The system exhaust back-pressure is the difference between the static pressure measured at the engine exhaust connection and barometric pressure.

Test Conditions

The back-pressure tests were performed under the following conditions:

- Intake air temperature: 59°F (15°C)
- Fuel pressure: 4 psig
- Customer exhaust back-pressure: Zero and maximum
- Power output: Rated load.
- Operating mode: Stand-alone (grid-isolated)

Measurements

Table A - 8 shows the parameters that were measured during the tests for the purposes of recording relevant data and verifying operating stability.

Measurement Group	Parameter	Units
	Fuel supply flow	lb/hr
Fuel gas measurements	Fuel supply pressure	psig
	Fuel heating value	Btu/lb, LHV and HHV
	Exhaust temperature	°F
Exhaust gas measurements	Exhaust flow	scfm
measurements	Exhaust back-pressure	in. H ₂ O
	Real power output	kW
	Parasitic power	kW
Electrical performance	Voltage output	VAC
mousurements	Current output	А
	Frequency	Hz
	Intake air temperature	°F
Ambient (intelse) ein	Relative humidity	%
measurements	Barometric pressure	mm Hg
	Intake air flow (if possible)	scfm

 Table A - 8: Measured Parameters for Exhaust Back-Pressure Tests

Intake Air Temperature Performance Tests

Tests were performed to evaluate the sensitivity of net power output and electrical efficiency to ambient temperature.

Test Conditions

The intake air temperature tests were performed under the following conditions:

- Intake air temperatures: Tests were conducted at 59°F, 77°F, 95°F, and 104°F.
- Electrical Output: At each intake air temperature, measurements were taken at 50%, 75%, and 100% of rated electrical output.
- Fuel pressure: Set at 4.0 psig
- Exhaust back-pressure: Zero back-pressure at the customer interface flange.
- Operating mode: Stand-alone (grid-isolated)

Table A - 9 is the test matrix.

Generator Output Setpoint (kW)	Intake Air Temperature (°F)
308	59
461	59
615	59
308	77
461	77
615	77
308	95
461	95
615	95
308	104
461	104
615	104

 Table A - 9: Intake Air Temperature Test Matrix

Measurements

Table A - 10 shows the parameters that were measured during the tests for the purposes of recording relevant data and verifying operating stability.

Measurement Group	Parameter	Units
Fuel gas measurements	Fuel supply flow	lb/hr
	Fuel supply pressure	psig
	Fuel heating value	Btu/lb, LHV and HHV
Exhaust gas measurements	Exhaust temperature	°F
	Exhaust back-pressure	in. H ₂ O
Electrical performance measurements	Real power output	kW
	Parasitic power	kW
	Voltage output	VAC
	Current output	А
	Frequency	Hz
Ambient (intake) air measurements	Intake air temperature	°F
	Relative humidity	%
	Barometric pressure	mm Hg

Table A - 10: Measured Parameters for Intake Air Temperature Tests

Island-Mode-Acceptance and Load-Rejection Test

The purpose of this test was to determine the test (generator) equipment's ability to respond to load changes while the unit is operated in isochronous (island) mode from normal standby condition.

Test Conditions

Unless specified otherwise, the tests were conducted under the following conditions:

- Intake air temperatures: 59°F.
- Fuel pressure: 4.0 psig.
- Exhaust back-pressure: Zero back-pressure at the customer interface flange.
- Operating mode: Stand-alone (grid-isolated).

In this series of tests, the engine was started from the normal standby condition and allowed to idle at rated speed for two minutes after starting following a two-minute prelube cycle. After approximately two minutes of idle operation, resistive loads were added at ten-second intervals in increments of 25% of rated generator output until the unit reached full power. Once at full power, the load was removed in increments of 25% of rated power until there was no load on the engine. Table A - 11 shows the test matrix.

Intake Air Temperature (°F)	Fuel Inlet Pressure (psig)	Time from Generator Start (seconds)	kW Load to Apply	Resulting Generator Output (kW)
59	4	120	+150	150
		130	+150	300
		140	+150	450
		150	+150	600
		270	-150	450
		280	-150	300
		290	-150	150
		300	-150	0

 Table A - 11:
 Island-Mode-Acceptance and Load-Rejection Test Matrix
Measurements

The following parameters were measured during the tests:

Measurement Group	Parameter	Units	
P 1	Fuel supply flow	scfm	
Fuel gas	Fuel supply pressure	psig	
	Fuel heating value	Btu/scf, LHV and HHV	
51	Exhaust temperature	°F	
Exhaust gas	Exhaust flow	scfm	
mousurements	Exhaust back-pressure	in. H ₂ O	
	Real power output	kW	
Electrical	rical Parasitic power kW	kW	
performance	Voltage output	VAC	
measurements	Current output	А	
	Frequency	Hz	
	Intake air temperature	°F	
Ambiant (intaka) air	Relative humidity	%	
measurements	Barometric pressure	mm Hg	
	Intake air flow (if possible)	scfm	

 Table A - 12: Measured Parameters for Intake Air Temperature Tests

Heat Recovery Tests

The purpose of the thermal energy production/heat recovery test is to determine the quantity and quality of thermal energy (both heating and cooling, as applicable) that is available for use by the end user. The systems overall energy efficiency largely depends on the amount of heat that can be recovered from the prime mover exhaust and other auxiliary subsystems.

Test Conditions

Heat recovery tests were made using different combinations of intake air temperature, generator output and jacket coolant temperature to verify off rating condition performance for design and economic evaluation purposes. Referring to **Error! Reference source not found.** or **Error! Reference source not found.**, the customer sides of the heat recovery loop and the auxiliary coolant loop were tested. The hot water heat recovery supply to the absorption chiller was tested at 95° F intake air temperature to simulate site conditions during the cooling season. The

auxiliary coolant loop and the hot water circuit were tested simultaneously at 59° F intake air temperature.

Other conditions during the tests were as follows:

- Electrical Output: At each intake air temperature, measurements were taken at 50%, 75%, and 100% of rated electrical output.
- Fuel pressure: Set at 4.0 psig
- Exhaust back-pressure: Zero back-pressure at the customer interface flange.
- Operating mode: Stand-alone (grid-isolated)

Table A - 13 is the test matrix used for the heat recovery circuit.

Intake Air Temp. (°F)	Generator Output Setpoint (kW)	Jacket Coolant Outlet Temp. (F°)	Auxiliary Coolant Circuit Inlet Temp. (°F)	Jacket Coolant Flow Rate (gpm)	Hot Water Circuit Flow Rate (gpm)	Auxiliary Coolant Circuit Flow Rate (gpm)
		200	130	218	218	62
	615	210	130	218	218	62
	015	220	130	218	218	62
		230	130	218	218	62
		200	130	218	218	62
05	461	210	130	218	218	62
75	401	220	130	218	218	62
		230	130	218	218	62
		200	130	218	218	62
	308	210	130	218	218	62
	500	220	130	218	218	62
		230	130	218	218	62

Table A - 13: Heat Recovery Circuit Test Matrix

Table A - 14 is the test matrix used for the hot water and auxiliary coolant circuits.

Intake Air Temp. (°F)	Gener- ator Output Setpoint (kW)	Jacket Coolant Outlet Temp. (°F)	Auxiliary Coolant Circuit Inlet Temp. (°F)	Jacket Coolant Flow Rate (gpm)	Hot Water Circuit Flow Rate (gpm)	Auxiliary Coolant Circuit Flow Rate (gpm)
		200	130	219	219	62
	615	210	130	219	219	62
	015	220	130	219	219	62
		230	130	219	219	62
		200	130	219	219	62
50	161	210	130	219	219	62
39	401	220	130	219	219	62
		230	130	219	219	62
		200	130	219	219	62
	208	210	130	219	219	62
	308	220	130	219	219	62
		230	130	219	219	62

Table A - 14: Test Matrix for the Hot Water and Auxiliary Coolant Circuit

Measurements

Table A - 15 shows the parameters that were measured.

Measurement Group	Parameter	Units
	Fuel supply flow	lb/hr
Fuel gas measurements	Fuel supply pressure	psig
	Fuel heating value	Btu/lb, LHV and HHV
Exhaust and managements	Exhaust temperature	°F
Exhaust gas measurements	Exhaust back-pressure	in. H ₂ O
	Real power output	kW
	Parasitic power	kW
Electrical performance measurements	Voltage output	VAC
mousurements	Current output	А
	Frequency	Hz
	Intake air temperature	°F
Ambient (intake) air measurements	Relative humidity	%
mousurements	Barometric pressure	mm Hg
	Thermal fluid flow rate	gpm
Thermal recovery measurements	Thermal fluid supply temperature	°F
	Thermal fluid return temperature	°F
	СО	ppm
Emissions massuraments	NO _x	ppm
Emissions measurements	CO_2	%
	O2	%

 Table A - 15: Measured Parameters for Intake Air Temperature Tests

Emissions Measurements

Emissions were measured during the intake air temperature tests. The measurements were taken with a Horiba portable emissions analyzer following GTI procedures for making the measurement. The GTI procedures were based on CARB and EPA procedures but due to the nature of the equipment, exact CARB and EPA procedures could not be used. Some intermediate stability checks and response time checks of the emissions measurement equipment were not carried out. The time required to verify stable operation of the engine, consistent with the ASERTTI stability protocol, was so long that emissions instrument response time was not an issue.

Gas Heating Value

The natural gas was withdrawn with a probe inserted into the flowing gas stream of the fuel inlet pipe and analyzed by an in-line gas chromatograph. The chromatograph continuously flows gas through the sampling line and injects and analyzes a gas sample every five minutes. The chromatograph was calibrated with a certified standard gas every day of testing to ensure accuracy. This analyzer and its software can calculate the higher and lower heating values, based on the component molar compositions.

GTI Integrated Energy System for Buildings Final Report Appendix B – Market Analysis

Contents

- Chapter 1: Preliminary Product Definition and Initial Sector Targeting
- Chapter 2: Educational Buildings
- Chapter 3: Data Processing Centers and Internet Server Farms
- Chapter 4: Medium Size Medical and Healthcare Facilities
- Chapter 5: The Large Retail Sector

Chapter 6: Lodging

Initial Product Definition (from 2001)

Engine Generator	Waukesha
Generator Delivery	Parallel Gear to Larger Load
Generator Capacity	~ 500 kW
Heating Delivery	Hydronic Hot Water 180 F
Heating Capacity	~2,200 MBH at Max Load
Cooling Equipment	Horizon BCHP 90
Cooling Delivery	45 F Chilled Water
Cooling Capacity	90-100 RT

Current Product Range Planned

	Ultimate Product Line			
Generator Size (kW)	310	415	615	830
HT Heat for Space Heating (MBH)	1264	1710	2562	3412
HT Heat for Space Cooling (MBH)	1215	1621	2428	3236
Resulting Cooling Capacity (RT)	75	101	152	203
Low Temp Heat Avail (MBH)	305-320	400-421	609-640	881-852
HT Heat Features Temperature Reset Cor Operation and 200F Water During Heatin Low Temp Heat Availability Increases Du	l ntrol Deliveri g Operation ring Cooling	l ng 235F Wat Operation	l ter During Co	l ooling

Poss	ible Market Sector	6
Segment	Advantages Segment May Have for BCHP	Disadvantages Segment for BCHP
Hospital	24 Hr Operation Large Maintenance Staff Back-Up Power Implications	High Electric/Thermal Ratio
Other Healthcare	24 Hr Operation Back-Up Power Implications	Limited Maintenance Staff Smaller Segment
Larger (K-12) Educational	Institutional Owner- Longer Payback Criteria More Level Thermal Load	Limited Maintenance Staff Reduced Summer Use Schedule
Office Buildings	Large Market On-Peak Operating Hours Some Market Concentration	Short Operating Hours Sizable Sub-segment in Rented Facilities
Retail	Large Well Defined Market Longer Operating Hours Good Electric/Thermal Ratio	Sizable % in Rented Facilities Large Store Sub-Segment? Shorter Payback Criteria
Large Hotel	24/7 Operating Hours Good Electric/Thermal Ratio Good National Chain Concentration	High Rise Central System Sub- Segment Only Smaller Segment

Recip			
Engine	Totals	Notes	
104	106	Suggested Target Sector	
95	98	New Sector to Consider?	
86	131	Suggested Target Sector	
82	85	CHP for Large Heating Load - Little BCHP/Cooling Interest	
77	83	Suggested Target Sector	
76	78	CHP for Large Heating Load - Little BCHP/Cooling Interest	
71	73	Suggested Target Sector	
49	112	Larger Systems than Envisioned for BCHP Package	
34	52	Suggested Target Sector	
25	26	CHP for Large Heating Load - Little BCHP/Cooling Interest	
12	13	Smaller Systems than Envisioned for BCHP Package?	
12	33	Vague Category - Larger Systems than Envisioned for BCHP Package ?	
10	28	Larger Systems than Envisioned for BCHP Package	
10	10	New Sector to Consider?	
9	18	Larger Systems than Envisioned for BCHP Package	
6	6	CHP for Large Heating Load - Little BCHP/Cooling Interest	
4	6	CHP for Large Heating Load - Little BCHP/Cooling Interest	
4	9	Larger Systems than Envisioned for BCHP Package	
2	11	CHP for Large Heating Load - Little BCHP/Cooling Interest	
2	2	Roll in as Subset of Educational	
770	980		
	Lingure 104 95 86 82 77 76 71 49 34 25 12 10 10 9 6 4 2 2 770	Lighte Foundation 104 106 95 98 86 131 82 85 77 83 76 78 71 73 49 112 34 52 25 26 12 13 10 28 10 10 9 18 6 6 4 6 4 9 2 11 2 2 770 98	

D D D D D D D D D D D D D D D D D D D
DIRESSER
Washesha
TRAME

ISP Market Leaders

TRANE'			
Г	Company	Subscribers	An of the
		(Millions)	As of the
1	America Online	26.5	Second Quarter
2	MSN	7.7	of 2002
3	United Online [NetZero + Juno Online]	4.8	•9 = • • =
4	EarthLink	4.7	
5	SBC/Prodigy	3.5	
6	CompuServe [AOL Owned]	3	
7	Road Runner [AOL Owned]	2.5	
8	AT&T Broadband	1.8	
ç	Verizon	1.5	
1	0 AT&T WorldNet	1.4	
1	L Comcast	1.2	
1	2 Cox	1.1	
1	3 Charter	0.9	
1	1 BellSouth	0.8	
1	5 Cablevision	0.61	
1	5 Qwest	0.51	
1	7 RCN	0.46	
1	3 Covad	0.36	
1	OcoreComm [Formerly Voyager.Net]	0.29	
2) Hughes	0.22	23
2	Volaris Online	0.24	23
2	2 Bluelight	0.17	
	3 Other U.S. ISPs	86.2	ati
	Total Market	103.26	yu.

Range of UPS Systems				
 Our Interest is in Sizes Used for Larger Centers (>100 kVA) 				
	UPS Power			
	Range	kVA Typical Applications		
	<1 kVA	PCs, Workstations		
	1 - 5kVA	Multiple Computers Servers		
	5 – 100kVA	Telecom Switching Centers, ISP, Data Networks		
	>100kVA	Larger Telecom Centers, Data Centers	44	
ERC		Ref 6	gti	

DRESSER Walkaha	Comparing to Census Statistics							
 AGA Data Covers All Classes of Hospitals and Nursing Homes Totals Agree Well – AGA Projections Over-Predict Number of Hospitals (Sampling % in Hospitals Exceeded Actual %) 								
	NAIC 622	Hospitals - All	6,685					
	NAICS 6231	Nursing Homes	15,605					
	NAICS 6233	Community Care for the Elderly	15,588					
		Total	37,878	42				
UIC .		AGA Total	38,531	45				
ERC		•		gti				

DRESSER Watesha TRAME	Major NAICS Classes by Store Number					
	NAICS Code	Kind of Business	Establishments (Number)			
	44	Clothing & clothing accessories stores	1,118,447 156,601			
	445 453	Food & beverage stores Miscellaneous store retailers	148,528 129,838			
	447 441	Gasoline stations Motor vehicle & parts dealers	126,889 122,633			
	444 446	Building material & garden equipment & supplies Health & personal care stores	93,117 82,941			
	451 442	Sporting goods, hobby, book, & music stores Furniture & home furnishings stores	69,149 64,725	US Census Data		
	454 443	Nonstore retailers Electronics & appliance stores	44,482 43,373	CS Consus D'ata		
ERC	452	General merchandise stores	36,171	gti		

Summary							
Segment	NAICS Code	Number of Establish- ments	Sales	Floor Space	Overall Market Electric Demand	Overall Market Electric Consump- tion	
Overall Retail (US Census)	44 (All) 45 (All)	1,118,447	\$2,460 Billion				
General Merchandise	452	36,171 (3% of Total)	\$330 Billion (13%)				
Selected General Merchandise	452100 1-3 & 452910	11,896 (1% of Total)	\$302 Billion (12%)	1,313 MSF	6.45 GW	9,064 GWHr/Yr	

³gti

DRESSER	
Vaukesha	
-	
TRANE"	

ERC

DRESSER

Chains with Stores Over 150,000 SF

	Chain Headquarters	Location	
Belk Inc.	CHARLOTTE	NC	
bigg's	MILFORD	OH	
Bloomingdale's	NEW YORK	NY	
The Bon Marche	SEATTLE	WA	
Boscov's Dept. Store LLC	READING	PA	
Burdines	MIAMI	FL	
Dillard's Inc.	LITTLE ROCK	AR	
Famous-Barr	SAINT LOUIS	MO	
Filene's	BOSTON	MA	
Foley's	HOUSTON	TX	
Gottschalks Inc.	FRESNO	CA	
Hecht's	ARLINGTON	VA	
Hudson's Bay Company	TORONTO	ON	
IKEA	PLYMOUTH MEETING	PA	
Kaufmann's Department Stores	PITTSBURGH	PA	
Kmart Corp.	TROY	MI	
The Kroger Co.	CINCINNATI	OH	
Lord & Taylor	NEW YORK	NY	
Macy's East	NEW YORK	NY	
Macy's West	SAN FRANCISCO	CA	
Marshall Field's	MINNEAPOLIS	MN	
Meier & Frank	PORTLAND	OR	
Meijer Inc.	GRAND RAPIDS	MI	
Menard Inc.	EAU CLAIRE	WI	
Nordstrom Inc.	SEATTLE	WA	
Rich's/Lazarus/Goldsmith's	ATLANTA	GA	
Robinsons-May	NORTH HOLLYWOOD	CA	
Saks Incorporated	BIRMINGHAM	AL	
SuperTarget	MINNEAPOLIS	MN	
SUPERVALU Inc.	EDEN PRAIRIE	MN	
Target	MINNEAPOLIS	MN	
Wal-Mart Stores Inc.	BENTONVILLE	AR	^o GT
			gu

Chains with Stores 100,000-150,000 SF

American TV & Appliance of Madison I	r MADISON
Bass Pro Shops L.P.	SPRINGFIELD
BJ's Wholesale Club Inc.	NATICK
Building #19 Inc.	HINGHAM
Burdines	MIAMI
Burdines Furniture Galleries	MIAMI
Burlington Coat Factory Warehouse Co	BURLINGTON
Costco Wholesale Group	ISSAQUAH
Dillard's Inc.	LITTLE ROCK
Edwards Theatres	NEWPORT BEACH
Famous-Barr	SAINT LOUIS
Filene's	BOSTON
Finger Furniture Co. Inc.	HOUSTON
Foley's	HOUSTON
Fred Meyer Inc.	PORTLAND
Fry's Electronics Inc.	SAN JOSE
Gander Mountain	MINNEAPOLIS
Garden Ridge Inc.	HOUSTON
Grossman's	STOUGHTON
Hecht's	ARLINGTON
HomeBase Inc.	IRVINE
Hudson's Bay Company	TORONTO
IKEA Canada	BURLINGTON
J.C. Penney Company Inc.	PLANO
Kaufmann's Department Stores	PITTSBURGH
Kmart Corp.	TROY
Liberty House	HONOLULU
Lord & Taylor	NEW YORK
Lowe's Companies Inc.	WILKESBORO

Macy's East
Marshall Field's
Meier & Frank
Neiman Marcus
R.C. Willey Home Furnishing
Revy Home Centre Inc.
Rich's/Lazarus/Goldsmith's
Robinsons-May
Saks Incorporated
Sam's Club
Sears Canada Inc.
ShopKo Stores Inc.
Target
The Andersons Inc.
The Bon Marche
The Home Depot Canada
The Home Depot Inc.
The Kroger Co.
Von Maur Inc.
Wal-Mart Canada Inc.
Wal-Mart Stores Inc.
Zellers Inc.

WI MAA MA FILINA AR A CAO MA TX TX OR A MA XA A A O O N TX PA MI HINKO

NEW TORK	IN Y
MINNEAPOLIS	MN
PORTLAND	OR
DALLAS	ΤХ
SALT LAKE CITY	UT
SURREY	BC
ATLANTA	GA
NORTH HOLLYWOOD	CA
BIRMINGHAM	AL
BENTONVILLE	AR
TORONTO	ON
GREEN BAY	WI
MINNEAPOLIS	MN
MAUMEE	OH
SEATTLE	WA
SCARBOROUGH	ON
ATLANTA	GA
CINCINNATI	OH
DAVENPORT	IA
MISSISSAUGA	ON
BENTONVILLE	AR
	ON

°gti

	SER H	ow Many are There			
•	Clearly Ho MOST of t Planned H	otels and Motels are the Domina his Market is Not Amenable to lere	ant Market the Size of Equipment	:	
	NAICS	[
	7211101	Hotels > 25 guestrooms	16,782		
	7211102	Hotels < 25 guestrooms	2,386		
	7211103	Motels	21,829		
	7211104	Motor hotels	2,139		
	7211105	Organization hotels	52		
	72112	Casino hotels	257	D (2	
	721199	All Other	736	Ref 2	
			44,181	8	
ERC gti					

	Hotels Over 150 Ro	oms		
		Number	of Facilities	
		in tl	he US	
	Facility Size	Bureau	AHLA	
	Less Than 75 Guestrooms	22,445	21,580	
	From 75 to 150 Guestrooms	6,547	13,820	
	From 150 to 300 Guestrooms	6,341	4,397	
	From 300 to 500 Guestrooms	852	1,091	
	Over 500 Guestrooms	656	505	14
	Number over 150 Guestrooms	7,849	5,993	
ERC				gti

Total Mark	et				
	Number o in tl	of Facilities he US	Floor Space	Peak Power Needs	Market Size
Encility Sizo	Census	م لا ا	CE	kW/Sito	MM
Less Than 75 Guestrooms	22 445	21 580	ЭГ	KW/SILE	14100
From 75 to 150 Guestrooms	6.547	13.820			
From 150 to 300 Guestrooms	6,341	4,397	112,500	550	2,419
From 300 to 500 Guestrooms	852	1,091	200,000	978	1,067
Over 500 Guestrooms	656	505	475,000	2323	1,173
Number over 150 Guestrooms	7,849	5,993			4,659
 Calculation Uses Total Market 4.65 	6 More 5 GW	Conse	rvative	ALHA	Data
RC					g

Does th	e Large Hotel Market N	eed Full BCHP?
Calculable Shower Load		Order of Magnitude Calculation of
Std Shower Head	3 gpm	Shower Load
Supply Temperature	50 F	Average Hotel Gas Consumption
Occupancy	6	(CBECS) is 61
Period	10 min	MBtu/Yr/SF
Daily Shower Load	91,044 Btu/Day/Room	• Scale 10-15
Annual Shower Load	33,231,060 Btu/Year/Room	MBtu/Yr/SF
Based on 500 SF/RM	66,462 Btu/SF/Yr	seems in Scale
Shower Heat Load Est.	13.2 MBtu/SF	with CBECS Total
		24
ERC		gti

Will Year-Round Water Load Make Heat Recovery for Heating and Cooling Unnecessary? - NO

Hotel	400 Rooms
Square Footage	200000 SF
Median Power Demand	4.89 Watts/SF
Demand Required	978 kW
Cogenerator at 50% of Peak	489 kW
Approx. Heat Available from Cogenerator	150.00% of Power Output
Approx. Heat Available from Cogenerator	2503.4355 MBH
If Run 10 Hours	25,034.36 Mbtu/Day
Daily Shower Load	7,283.52 Mbtu/Day
Shower %	29.09% of Heat Available

· The Shower Load is Substantial. However, even if

- Extensive Hot Water Storage were used,
- Generator Sized at 50% of the Electric Load
- Generator Ran Only 10 Hours/Day
- the Shower Load Would Consume only 30% of the Available Rejected Heat 25
- Result: Water Heating is a Good Load But More Rejected Heat is Still Available

gti

This Brings the Focus Down to \sim 3,000 Facilities in the US

Number of Facilities in the			
Strongest Potential Market			
50,000 to 100,000 SF	468		
100,000 to 200,000 SF	684		
200,000 to 300,000 SF	783		
300,000-500,000 SF	436		
>500,000 SF	518		
Total	2,889		

43

gti

ERC

	50 Top Hotel C Brand Names	wners Worldwide an	ld Their Chain	_
-				
[1] Cendant A B K K K S S T V V V V V V V V V V V V V V V V V	Corporation markdast Franchise Systems, Inc. lays Inn Worldwide loward Johnson International nights Franchise Systems upper & Motels Travelodge Hotels Travelodge Hotels Statustics Systems Statustics Travelodge Hotels Travelodge Hotels Travelodge Hotels Statustics Statustics Statustics Statustics Statustics Travelodge Hotels Statustics Statustics Statustics Travelodge Hotels Statustics	[9] Best Western International, Inc. [7] Accor Accor Leisure Division Accor North America Mercure Hoteis Motel 6 * Novotel Red Roof Inns * Sofitei Studio 6 * [8] Starwood Hoteis & Resorts Worldwide, Inc. Four Points Hoteis Sharaton Hoteis, Inns & Resorts St. Regal.Luxury Collection W Hoteis St. Regal.Luxury Collection W Hoteis St. Regal.Luxury Collection	 [36] Wati Disney World Resorts [37] File International Hotels [38] Shangri-La Hotels & Resorts [39] Lodgan, Inc. [40] Choice Hotels Canada, Inc. [41] A.H.M.I. [42] Westmont Hospitality Group Canada [43] JAL, Hotels Company, LTD [44] Fairmont Hotels & Resorts [45] Royal Hotels & Resorts [46] Royal Hotel & Resorts 	
н	Ioliday Inn Select	Country Inns & Suites by Carlson	[47] Suburban Lodges of America, Inc.	
lin	nter-Continental Hotels & Resorts	[10] Bass Hotels & Resorts Europe, Middle East & Africa (EMEA)	[49] AFM Hospitality Corporation	
[3] Marriott C K M R R S S (4) Choice H E F	International Contract by Marriott ainfield Inns by Marriott ainfield Inns by Marriott Aarriott Hotels, Resorts, & Sautes and Ritz Carton Amissamce Hotels and Resorts/Ramada International spring Hill Suites by Marriott comePlace Suites by Marriott International Contoft Inns, Suites conol.odge ligg Hotels, Suites & Inns	1121 Hydri Hanles Corporation 1123 The Universal Group 114] FelCor Lodging Trust 115] Meri Shar Holes & Resorts, Inc. 119] Hillion International Company 110 J.S. Franchieles Systems, Inc. Hawthorn Suites Microtel Inns & Suites (18) Wyndham International, Inc. 19] LaGuint Inns, Inc. 19] LaGuint International, Inc. 19] LaGuint International Inc. 19] LaGuint Internat	Best Inns Hawbrone Suites Howard Johnson Knghis Inn Park Plaza Ramado Ining [50] Omni Hotels	
F M Q	nendship linns IainStay Suites Juality linns, Suites & Hotels	[23] Prime Hospitality Corporation [24] Hospitality Properties Trust		
R	todeway Inns	[25] Interstate Hotels [26] Radisson SAS Hotels Worldwide	Ref	4
5] Hilton Ho [5] Hilton Ho D E H	Source Corporation Conrad International Hotels Jourbart Corporation Jourbarts Suites & Hotels Imbasy Suites Jampton Inns	[27] Le Merdien Hotels & Resorts [28] Mandalay Resort Group [29] MeriStar Hospitality Corporation [30] Prince Hotels [31] Olympus Real Estate Corporation [32] Thanaldson Lodging		70
ERC	larrison Conference Centers & Independents lilton Garden Inns lilton Hotels tornewood Suites by Hilton ked Lion Hotels & Inns	[33] Millennium & Copthorne Hotels PLC [34] Marcus Corp. Baymont Inn & Suites Marcus Hotels & Resorts [35] Preferred Hotels & Resorts Worldwide, Inc.	ç	gti.

Focus on the Large	Rank	Owner	# Properties
DRESSER Hotel Players	8	Starwood Hotels	671
	11	Sol Melia	321
	15	MeriStar Hotels	235
	14	FelCor Lodging	183
Ten 50 Comparations Contact	18	Wyndham International,	166
Top 50 Corporations Sorted	25	Interstate Hotels	146
by Average Hotel Size	16	Hilton International	136
Cut-Off at 200 Rooms per	26	Radisson SAS	133
Property	27	Le Meridien	122
	12	Hyatt Hotels	119
- Lowest value of Arry Corp.	35	Preferred Hotels	112
Listed is 313	29	MeriStar Hospitality	103
 Reorder Short List by 	21	Oakwood Worldwide	99
Number of Properties	33	Millennium &	86
List Shown	20	Hyatt International	81
Those 24 Companies Dup	30 49	Funce Holeis	79
- These 24 Companies Run	40		56
940,000 R00IIIS	38	Shangri-La Hotels	43
List Covers All Rooms	31	Olympus Real	40
Domestic and Overseas	50	Omni Hotels	40
	44	Fairmont Hotels	36
	36	Walt Disney	18
	28	Mandalay Resort	16
ERC		Ref 4	gti

More Detail on Large Hotel Operators						
	Rank	Owner	# Properties	Average Size	% Rooms Overseas	
	8 11 15	Starwood Hotels Sol Melia MeriStar Hotels	671 321 235	313 233 203	39% 100% 2%	This List Cover
	14 18 25	FelCor Lodging Wyndham International, Interstate Hotels	183 166 146	264 247 204	3% 13% 0%	1,070 Domestic Large Hotel Sites Which is Over
	16 26 27	Hilton International Radisson SAS Le Meridien	136 133 122	335 224 233	98% 100% 92%	50% of the Market
	12 35 29	Hyatt Hotels Preferred Hotels MeriStar Hospitality	119 112 103	508 205 263	8% 24% 2%	
	33 20 30	Millennium & Hyatt International Prince Hotels	86 81 79	281 439 342	65% 100% 93%	
	48 43 38	Four Seasons JAL Hotels Shangri-La Hotels	62 56 43	253 337 479	52% 92% 100%	
	31 50 44	Olympus Real Omni Hotels Fairmont Hotels	41 40 36	593 337 507	77% 5% 69%	76
ERC	28	Mandalay Resort Total	18 16 3104	1706	0% 0% 46%	gti

72 ACCOMMODATION AND FOODSERVICES

 The Accommodation and Food Services sector comprises establishments providing customers with lodging and/or preparing meals, snacks, and beverages for immediate consumption. The sector includes both accommodation and food services establishments because the two activities are often combined at the same establishment. Excluded from this sector are civic and social organizations; amusement and recreation parks; theaters; and other recreation or entertainment facilities providing food and beverage services.

87

qti

ERC

GTI Integrated Energy System for Buildings Final Report

Appendix C – Economic Analysis of Alpha Design

Introduction
Nomenclature
Modeling Assumptions
Applications and HVAC Equipment Configuration
Modeled Locations and Electric and Gas Utility Rates
Power Generation and Heat Recovery Equipment Configuration and Performance
Equipment Installed Cost and Generator Operating and Maintenance Costs
Generator Control Strategies
Modeling Output Data Types
Electric Rates for San Diego, California10
Electric Rates for New York, New York12
Electric Rates for Miami, Florida14
Electric Rates for Chicago, Illinois16
Electric Rates for Boston, Massachusetts 19
Modeling Results
Schools
Health Care
Large Retail
Large Hotel
Detailed Data

Introduction

The purpose of the economic analysis was to examine an optimum application of Waukesha 615kWe internal-combustion-engine-based on-site power generation systems for four selected typical commercial buildings (schools, hospitals, retail stores, and hotels) and five geographical locations (Chicago, Miami, New York, San Diego, and Boston). (Although office buildings were also a selected building type, the initial calculations of payback times showed it to be a less attractive market. This was felt to be because the 500-kW IES is too large for the typical building. This issue will be reevaluated in the beta phase of the economic analysis.) We examined the effectiveness and economic benefit of using natural-gas-driven internalcombustion (IC) engines for power generation with heat recovery in commercial buildings. The recovered heat would be used to meet space heating and domestic hot water loads and to satisfy a portion of the building cooling loads. A BCHP-90 Trane prototype absorption chiller, designed to be powered by recoverable heat was used to generate the required cooling capacity, up to the chiller's maximum capacity of 112 refrigeration tons (RT). The target buildings were selected, based on the Commercial Buildings Energy Consumption Study (CBECS) database using criteria of high energy density, total number of buildings, and electric demand that can be satisfied, or supported with 615 KWe generators. Building Energy Analyzer (BEA), a commercial software/ engineering tool utilizing the DOE2.1E hour-by-hour computational engine, was used to generate 8760-hour-per-year load profiles (cooling, heating, and electric and gas consumption by end use) for the analyzed buildings. A separate, GTI-developed program was later used to simulate integration of the engine, generator, heat recovery system, and absorption chiller with the building HVAC and utility systems using load profiles developed in the first stage of the modeling process.

Nomenclature

The following nomenclature is used throughout this appendix:

- 24/7 Available 8760 hours per year
- AC Air conditioning
- ABS Absorption cooling
- BEA Building Energy Analyzer
- CFM Cubic feet per minute
- CHP Cooling, heating, and power generation
- COP Coefficient of performance
- DHW Domestic hot water
- Eff. Efficiency [%]
- Overall Eff. = ((generated kWh * 3412) + recovered heat)) / generator fuel heating value input [%]

- Effect. Effectiveness [%]
- Heat Rec. Effect. = recovered heat / recoverable heat [%]
- HT Space heating
- HVAC Heating, cooling, and air conditioning
- IC Internal combustion
- kW Thousand watts
- kWe Thousand watts electric
- MMBtu Million Btus
- O&M Operation and maintenance
- Rec. Recovery
- RT Refrigerating ton [12,000 Btu/hour]
- SCFM Standard cubic feet per minute
- SDG&E San Diego Gas & Electric Company
- sf Square feet

Modeling Assumptions

The benefits of installing Waukesha 615 kWe on-site power generation systems in commercial building application were studied. The study concentrated on optimizing economic benefits of IC-engine-based on-site power generation with heat recovery for space heating/domestic hot water, and absorption gas cooling. Four commercial building types at four different geographical locations (representing four different climates) were examined. For each geographical location, Spring 2004 local electric utility rate structures were used. The following is a detailed description of specific modeling assumptions.

Applications and HVAC Equipment Configuration

Four different building types were selected for evaluation: Hospital, large school, large hotel, and large retail store. Table C-1 shows assumed attributes of the selected building applications.

		Appli	cation	
Attribute	Hospital	Large School	Large Hotel	Large Retail
Typical floor space [sf]	300,000	110,000	220,000	125,000
Number of buildings	5,000	48,000	6,000	30,000
Operating schedule [hours]	24 / 7	0700 to 1800 hours MonFri. and 1000 to 1300 hours Sat.**	24 / 7	0600 to 2400 hours Mon Sat. and 0700 to 2200 hours Sun.
Typical* annual electric consumption [kWh]	7,222,082	1,412,817	3,605,393	2,573,888
Typical* peak demand [kW]	~1380	~700	~900	~700
Typical* annual gas consumption [MMBtu]	43,432	10,414	17,518	7,240

Table C-1: Basic Parameters of Analyzed Buildings

* Based on Chicago, IL location

** Limited-operation summer schedule 0600 to 0900 hours

Table C-2 provides details of typical HVAC equipment parameters in each type of building.

	Application			
Attribute	Hospital	Large School	Large Hotel	Large Retail
Cooling equipment type	Electric centrifugal, cooling tower	Electric screw, cooling tower	Electric centrifugal, cooling tower	Electric screw, cooling tower
Chiller design capacity* [RT]	584	516	489	384
Chiller energy rating [kW/RT]	0.68	0.78	0.68	0.78
Heating equipment type	Natural gas boiler	Natural gas boiler	Natural gas boiler	Natural gas boiler
Heating design capacity* [MMBtu/h]	11.8	11.8	6.9	6.9
Boiler energy eff. [%]	82	82	82	82
Outside air [SCFM]	64,760	78,000	58,030	37,510
Active humidity control	Surgical suites only	No	No	No

 Table C2 - Basic HVAC Parameters of Analyzed Buildings

* Based on Chicago, IL location

Modeled Locations and Electric and Gas Utility Rates

To limit scope of this study to a practical size for evaluation, we selected one city in California with the objective of analyzing southwest locations that potentially could most benefit economically from BCHP equipment. The first criterion used during the selection was a favorable (high-priced) electric rate structure. The location selected was San Diego, CA and San Diego Gas and Electric (SDG&E) service territory. Another criterion was that the selected locations have a relatively hot climate, so the modeled buildings have a high electric and cooling load factor. A third criterion was that the selected locations represent a relatively high population with high system sales potential. Based on these criteria the following locations were added: Southeast, Miami FL, serviced by Florida Power and Light; New York, NY serviced by Consolidated Edison (ConEd); Boston, MA, serviced by Boston Electric (BE); and Midwest, Chicago, IL, serviced by Commonwealth Edison (ComEd).

Table C- 3 identifies the electric rate structures used in the analysis. Due to recent volatility in natural gas prices, we used a uniform flat delivered gas rate of \$6.00 per MMBtu for all locations.

Location	DC Status	Application			
Target City	DG Status	Hospital	Large School	Large Hotel	Large Retail
Poston MA*	Without DG	Boston Edison T-2	Boston Edison T-2	Boston Edison T-2	Boston Edison T-2
Boston, MA ⁺	DG installed	Boston Edison T-2	Boston Edison T-2	Boston Edison T-2	Boston Edison T-2
Chicago II *	Without DG	ComEd Rate 6L TOU	ComEd Rate 6 TOU	ComEd Rate 6 TOU	ComEd Rate 6 TOU
Chicago, IL	DG installed	ComEd Rate 18 Standby	ComEd Rate 18 Standby	ComEd Rate 18 Standby	ComEd Rate 18 Standby
Miami, FL*	Without DG	FPL GSLDT- 1	FPL GSLDT- 1	FPL GSLDT- 1	FPL GSLDT- 1
	DG installed	FPL SST-1	FPL SST-1	FPL SST-1	FPL SST-1
New York,	Without DG	ConEd PSC No. 9	ConEd PSC No. 9	ConEd PSC No. 9	ConEd PSC No. 9
NY*	DG installed	ConEd 14- RA	ConEd 14- RA	ConEd 14- RA	ConEd 14- RA
	Without DG	SDG&E AL- TOU_DER + EECC	SDG&E AL- TOU_DER + EECC	SDG&E AL- TOU_DER + EECC	SDG&E AL- TOU_DER + EECC
San Diego, CA*	DG installed	SDG&E AL- TOU_DER + EECC + Gen. Charge			

 Table C-3. Electric Utility Rates Applicable to Buildings at Various Locations, With and

 Without On-Site Power Generation Systems

* Note: Uniform flat delivered gas rate of \$6.00 per MMBtu was used for all locations

Power Generation and Heat Recovery Equipment Configuration and Performance

The benefits of installing 615 kWe IC engine-based on-site power generation systems with specific configurations of heat recovery were examined. Heat was recovered for space heating and domestic hot water heating and for driving a single-stage BCHP-90 prototype absorption chiller developed by Trane Co. During simulation, heat recovered from the IC engine was

passed to an absorption chiller if a cooling load was present, then to the space heating/reheating load and the domestic hot water load. Unutilized heat was rejected to the atmosphere. The absorption chiller had a fixed rated cooling capacity. Only that portion of the recoverable heat that was available at temperatures higher than the minimum required for driving single-stage absorption was used to drive the chiller. The actual cooling capacity of the absorption chiller depends on the availability of recoverable heat. If needed, the remaining building cooling load was satisfied by a standard electric AC system, comprised of either 0.78 kW/RT screw chiller or a 0.68 kW/RT centrifugal compressor chiller (depending on the application, see Table C-2).

BCHP-90 absorption chiller performance was modeled using the laboratory test results shown in the main body of this report.

The system was modeled assuming availability of hot water from the IC engine at 230°F (125-RT mode). The BCHP-90 chiller rating point cooling capacity and cooling COP as functions of cooling tower water temperature were modeled using the test data. Chiller part-load performance (cooling capacity and COP) was also modeled using the test data. Although the part load performance data were only available for chiller runs at 207°F (90-RT mode), for modeling purposes, we assumed that, at 230°F (125-RT mode), the relative degradation in cooling capacity and COP at part load would be similar.

BCHP-90 chiller parasitic losses of chilled water, tower water, and hot water circuit pumps were modeled using flow rates from the 125-RT operating mode, however, pressure drops were assumed to be that of the original design 90-RT unit. This assumption was based on the understanding that the BCHP-90 prototype design was optimized for 90-RT operation, and the production unit will have pressure drops more in line with those usually exhibited by typical TRANE products.

Evapco cooling tower model LRT 5-68 performance and parasitic electric losses were modeled, based on the data from the manufacturer. Two LRT 5-68 units with design approach temperature of 7°F at a wet bulb temperature of 78°F will be used. Each unit is equipped with a 7.5-HP electric fan motor and 2.8-gpm fresh-water pump with a head pressure of 2.2 psi. The cooling tower will maintain 85°F as lowest acceptable water temperature. At chiller part-load condition or lower ambient temperatures, only one unit will operate.

Waukesha VGF series 615 kWe engine driven generator performance when operated at a jacket water outlet temperature of 230°F was modeled using actual test data. For modeling purposes, the following was assumed:

Engine-Generator Electrical Efficiency

Load [%]	Electric Efficiency HHV [%]	Fuel Heat Input Btu/kWe
100	30.70	11,107
75	29.40	11,662
50	26.79	12,729

Engine-Generator Heat Recovery Effectiveness

- 36.4% of total engine fuel heat input at 230°F
- 9.3% of total engine fuel heat input at 146°F

Engine-Generator Electric Parasitic Power

- Three wall cooling fans at 2 HP each for a total of 6 HP, operating continuously.
- Eight radiator fans at 3 HP each for a total of 24 HP, operating as needed.
- One 3-HP water jacket pump, operating continuously.
- One 10-HP heat recovery system pump, operating continuously.

Equipment Installed Cost and Generator Operating and Maintenance Costs

To realistically evaluate the economic benefits of the examined systems, a set of estimated first/installed costs of the equipment was developed, based on updated information from the equipment manufacturers. The following equipment installed costs were assumed: 1,700/kW - 1,400/kW.

O&M cost was \$ 0.011 per kWh.

Generator Control Strategies

The modeled generator deployment control strategy was to follow the application's electric load profile. A generator could follow the electric load down to a minimum part-load of 200 kWe.

The generator operating hours were optimized to achieve the highest annual energy cost savings for the building. Consequently, the generator operating hours varied, depending on the location, local utility rates, and the type of application being modeled. Several different combinations of generator control strategies were examined for each modeled case:

- Generating electricity during the electric utility energy on-peak hours.
- Generating electricity during the electric utility demand on-peak hours.

- Generating electricity during the electric utility energy on-peak and mid-peak hours.
- Generating electricity during the electric utility demand on-peak mid-peak hours.
- Generating electricity during all hours that the building operated and the electric demand exceeded generator minimum part load capacity of 200 kWe.

Modeling Output Data Types

The following five modeling output data tables and five charts were created for each modeled case to present the calculated results in a consistent format.

- Table of annual and monthly electric and gas utility consumption, demands, and associated costs for a baseline-case building without on-site power generation.
- Table of annual and monthly electric and gas utility consumption, demands, and associated costs for the building with on-site power generation.
- Table of annual and monthly details of generator performance, including electric, thermal, and overall efficiency.
- Table of annual and monthly details of absorption chiller performance, including overall efficiency and details of displaced electric chiller load.
- Table of annual and monthly details of baseline and alternative building configuration utility costs, value of recovered heat, and total expected annual energy cost savings.
- Chart of monthly electric consumption for the building with and without the IES.
- Chart of monthly electric demand for the building with and without the IES.
- Chart of monthly natural gas consumption for building with and without the IES.
- Chart of monthly natural gas demand for building with and without the IES.
- Chart of monthly availability of recoverable heat from the IES that was actually recovered and utilized.

Some of the above- listed output data types are used directly during the interpretation of the results for each of the 16 analyzed cases, and some are provided only as background information for readers who are interested in a more detailed analysis and interpretation of specific cases.

Electric Rates for San Diego, California

Two different electric rates, SDG&E AL-TOU_DER + EECC SDG&E AL-TOU_DER + EECC + Standby were used during analysis of the San Diego location. (See Tables C-5 and C-6.)

The optimal IES control strategy was to run it 24/7 whenever the application's requirements exceeded the minimum generator capacity of 200 kW.

	Cummon	Winton	
	Summer	winter	
	Months	Months	
	05 to 09 (inclusive)	10 to 04 (inclusive)	
	Time (on-peak, m	id-peak, off-peak)	
On-peak	11 to 18	17 to 20	
Mid-peak	6 to 11 and 18 to 22	6 to 17 and 20 to 22	
Off-peak	22 to 6	22 to 6	
	Energy Co	ost \$/kWh	
On-peak	0.11487	0.11363	
Mid-peak	0.0881	0.087796	
Off-peak	0.08693	0.08696	
	Demand Charges \$/kW		
On-peak	5.73	3.82	
Mid-peak	0	0	
Off-peak	0	0	
Standby	0	0	
Non-coincident	t 10.59		
	Customer Charge \$/meter/month		
	48.95 (<500kW) and 195.8 (>500kW)		

Table C-5. Electric Rate SDG&E AL-TOU-DER + EECC 01/22/2004

	Summer	Winter	
	Months	Months	
	05 to 09 (inclusive)	10 to 04 (inclusive)	
	Time (on-peak, m	id-peak, off-peak)	
On-peak	11 to 18	17 to 20	
Mid-peak	6 to 11 and 18 to 22	6 to 17 and 20 to 22	
Off-Peak	22 to 6	22 to 6	
	Energy Co	ost \$/kWh	
On-peak	0.11487	0.11363	
Mid-peak	0.08810	0.08796	
Off-peak	0.08693	0.08696	
	Demand Ch	arges \$/kW	
On-peak	5.73	3.82	
Mid-peak	0	0	
Off-peak	0	0	
Non-Coincident	10.	.59	
	Generator Outpu	ıt Billing \$/kWh*	
On-peak	0.01348	0.0124	
Mid-peak	0.01073	0.01075	
Off-peak	0.00991	0.00994	
	Customer Charg	ge \$/meter/month	
	195.8		

Table C-6. Electric Rate SDG&E AL-TOU-DER (>500 kW) 01/01/2004

* Applied to the customer's loads served by the customer's generator, as measured by the generator net output meter.

Electric Rates for New York, New York

Two different electric rates ConEd PSC No. 9 ConEd 14-RA Standby, were used. (See Tables C-7 and C-8.)

The optimal IES control strategy was to run it 24/7 whenever the application's requirements exceeded the minimum generator capacity of 200 kW.

	Summer			Winter	
	Months			Months	
	6	7	8	9	10 to 5 (inclusive)
	Energy Cost \$/kWh			ĸWh	
First 15,000 kWh	9.12	10.71	10.56	9.11	8.37
Over 15,000 kWh	9.12	10.71	10.56	9.11	8.37
		Demand Charges \$/kW			
First 5 kW	117.00	110.80	113.00	113.85	100.00
Next 895 kW	23.40	22.16	22.60	22.77	20.00
Over 900 kW	22.18	20.94	21.38	21.55	18.78
	Customer Charge \$/meter/month				
	\$67/month/meter				

Table C-7. Electric Rate ConEd PSC No. 9 (<1500 kW) 5/1/2004

Summer			Winter	
Months			Months	
6	7	8	9	10 to 5 (inclusive)
,	Time (o	n-peak,	mid-pea	ak, off-peak)
	9 to	o 18		9 to 22
	All othe	er hours		All other hours
9 to 22				
All other hours		rs		
]	Energy	Cost \$/	kWh
9.12	10.71	10.56	9.11	8.37
9.12	10.71	10.56	9.11	8.37
	De	emand (Charges	\$/kW
0.3353	0.2737	0.2948	0.3030	0.1408
4.6200	3.7800	4.0700	4.1900	4.1900
0.6812	0.5561	0.5991	0.6158	0.2276
	Custon	ner Cha	rge \$/m	eter/month
74.67	60.95	65.66	67.48	67.65
	6 , 9.12 9.12 0.3353 4.6200 0.6812 74.67	Sum 6 7 6 7 Time (or 9 to 9 to All other 9 to 9 to 9 to 10.71 9.12 10.71 9.12 10.71 9.12 10.71 0.3353 0.2737 4.6200 3.7800 0.6812 0.5561 Custor 74.67 60.95	Summer Momer Momer G 9 to 18 All other hours P to 18 P to 18 All other hours P to 18 P to 10.71 10.56 P to 10.71 10.56 P to 10.71 10.56 P to 10.71 10.2948 All of 0.5561 0.5991 Custor Custor P to 10.5561 0.5061	Summer Montham Montham 6 7 8 9 Fire (\bullet - Feak, mid-peak, mid-peak) 9 to 18 Summer, mid-peak, mid-peak 9 to 18 All other hours 9 to 22 All other hours Suber bours 9 to 22 All other hours Suber bourset law of the state of the s

Table C-8. Electric Rate ConEd 14-RA Standby (<1500 kW) 5/1/2004

Electric Rates for Miami, Florida

Two electric rates, FPL GSLDT-1 and FPL GSLDT-1 Standby were used during simulation of the Miami location, (See Table C-9.)

The optimal IES control strategy was to run it on-peak whenever the application's requirements exceeded the minimum generator capacity of 200 kW.

	Summer	Winter	
	Months	Months	
	4 to 10 (inclusive)	11 to 3 (inclusive)	
	Time (on-peak, n	nid-peak, off-peak)	
On-peak	12 to 21	6 to 10 and 18 to 22	
Mid-peak			
Off-peak	All other hours	All other hours	
	Energy C	ost \$/kWh	
On-peak	0.06364		
Mid-peak			
Off-peak	0.0	4383	
	Demand Cl	harges \$/kW	
On-peak	5	.81	
Mid-peak			
Off-peak			
Standby			
Non-coincident	2	.39	
	Customer Char	ge \$/meter/month	
	38.12		

Table C-9. Electric Rate FPL GSLDT-1 (>500 kW) 11/15/2002

	Summer	Winter	
	Months	Months	
	4 to 10 (inclusive)	11 to 3 (inclusive)	
	Time (on-peak, n	nid-peak, off-peak)	
On-peak	12 to 21	6 to 10 and 18 to 22	
Mid-peak			
Off-peak	All other hours	All other hours	
	Energy C	ost \$/kWh	
On-peak	0.04923		
Mid-peak			
Off-peak	0.0	4433	
	Demand Cl	narges \$/kW	
Standby contract	2	.34	
Reservation	1	.01	
Daily standby on-peak	0	.47	
	Customer Char	ge \$/meter/month	
	12	5.51	

Table C-10. Electric Rate FPL GSLDT-1 (>500 kW) 11/15/2002

Electric Rates for Chicago, Illinois

Three different electric rates were used to model Chicago buildings. Commonwealth Edison Rate 6 TOU (<1000 kW) and Edison Rate 6L TOU (>1000 kW) were used for baseline buildings, and Commonwealth Edison Standby Rate 18 TOU was used during analysis of the Chicago location. (See Tables C-11, C-12, and C-13.)

The optimal IES control strategy was to run it on-peak whenever the application's requirements exceeded the minimum generator capacity of 200 kW.

	Summer	Winter
	Months	Months
	06 to 09 (inclusive)	10 to 05 (inclusive)
	Time (energy or	1-peak, off-peak)
On-peak	9 to 22	9 to 22
Off-peak	22 to 9	22 to 9
	Energy C	ost \$/kWh
On-peak	0.05022	0.05022
Off-peak	0.02123	0.02123
	Time (demand o	n-peak, off-peak)
On-peak	9 to 18	10 to 18
Off-peak	18 to 9	18 to 9
	Demand Ch	arges \$/kW
On-peak	14.24	11.13
Standby	0	0
Non-coincident	N/A	
	Customer Charg	ge \$/meter/month
	39	.93

Table C-11. Electric Rate Commonwealth Edison Rate 6 TOU (<1000 kW) 01/01/1999

	Summer	Winter
	Months	Months
	06 to 09 (inclusive)	10 to 05 (inclusive)
	Time (energy or	n-peak, off-peak)
On-peak	9 to 22	9 to 22
Off-peak	22 to 9	22 to 9
	Energy Co	ost \$/kWh
On-peak	0.05599	0.05599
Off-peak	0.02341	0.02341
	Time (demand o	n-peak, off-peak)
On-peak	9 to 18	10 to 18
Off-peak	18 to 9	18 to 9
	Demand Ch	arges \$/kW
On-peak	16.41	12.85
Standby	0	0
Non-coincident	N	/A
	Customer Charg	ge \$/meter/month
	240	5.39

Table C-12. Electric Rate Commonwealth Edison Rate 6L TOU (>1000 kW) 01/01/1999

	Summer	Winter					
	Months	Months					
	06 to 09 (inclusive)	10 to 05 (inclusive)					
	Time (energy or	n-peak, off-peak)					
On-peak	9 to 22	9 to 22					
Off-peak	22 to 9	22 to 9					
	Energy C	ost \$/kWh					
On-peak	0.05022	0.05022					
Off-peak	0.02123	0.02123					
	Time (demand o	n-peak, off-peak)					
On-peak	9 to 18	10 to 18					
Off-peak	18 to 9	18 to 9					
	Demand Ch	arges \$/kW					
On-peak	15.16	13.41					
Standby	2.99						
Non-coincident	t N/A						
	Customer Charge \$/meter/month						
	137.93 (<1000kW) & 344.39 (>1000kW						

 Table C-13. Electric Rate Commonwealth Edison Rate 18 TOU 06/01/2002

Electric Rates for Boston, Massachusetts

A single electric rate, Boston Electric T-2 (>10 kW), was used for the simulation. (See Table C-13.)

The optimal IES control strategy was to run it on-peak whenever the application's requirements exceeded the minimum generator capacity of 200 kW.

	Summer Months	Winter Months
	06 to 09 (inclusive)	10 to 05 (inclusive)
_	Time (on-pea	ak, off-peak)
On-peak	9 to 18	8 to 21
Off-Peak	11 to 8	11 to 8
	Energy Co	ost \$/kWh
On-peak	0.03051	0.01825
Off-Peak	0.00844	0.00502
	Demand Ch	arges \$/kW
On-peak	24.72	11.54
Standby	0	0
Non-Coincident	N	/A
	Customer Charg	e \$/meter/month
	28 (<150kW), 115 (<30	00kW), 166 (<1000kW)

Table C-13. Electric Rate Boston Electric T-2 (>10 kW) 01/01/2004

Modeling Results

The following charts show payback periods for the 615-kW Waukesha alpha prototype design for the four applications in the five cities studied. The charts show the effect of equipment installed cost and gas costs on the payback times. In general, they show that New York and San Diego have the shortest payback periods, which is consistent with the relatively high electric power rates in those cities.

Figure 1: Payback Chart for Chicago School

Figure 2: Payback Chart for Boston School

Figure 4: Payback Chart for New York School

Figure 5: Payback Chart for San Diego School

Health Care

Figure 6: Payback Chart for Chicago Hospital

Figure 7: Payback Chart for Boston Hospital

Figure 8: Payback Chart for Miami Hospital

Figure 9: Payback Chart for New York Hospital

Figure 10: Payback Chart for San Diego Hospital

Figure 11: Payback Chart for Chicago Retail Store

Figure 12: Payback Chart for Boston Retail Store

Figure 13: Payback Chart for San Diego Retail Store

Figure 14: Payback Chart for Miami Retail Store

Figure 15: Payback Chart for New York Retail Store

Figure 16: Payback Chart for Chicago Hotel

Figure 17: Payback Chart for Boston Hotel

Figure 18: Payback Chart for Miami Hotel

Figure 19: Payback Chart for New York Hotel

Figure 20: Payback Chart for San Diego Hotel

Detailed Data

School Building, Boston 110,000 sf

Baseline Configuration - No electric generation

		Ele	ctric Ener	gy		Natural Gas Energy				Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Utility Load Natural (Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	108950	460.2	1601	5311	7562	18935.6	1010.4	11361	11361	18,924
Feb	98233	467.8	1449	5398	7494	15481.7	943.2	9289	9289	16,783
Mar	118752	497.1	1779	5737	8208	14734.7	754.9	8841	8841	17,049
Apr	118708	540.2	1719	6234	8677	10008.0	625.1	6005	6005	14,681
May	135433	731.2	1966	8439	11299	5284.9	404.9	3171	3171	14,470
Jun	90877	577.2	1951	14267	17520	2520.2	238.0	1512	1512	19,032
Jul	106168	598.0	2326	14783	18473	1292.8	122.8	776	776	19,249
Aug	105674	581.1	2305	14364	18002	1510.8	105.8	906	906	18,909
Sep	130512	717.8	2752	17743	22097	2278.9	191.9	1367	1367	23,464
Oct	128263	526.9	1883	6081	8688	6698.3	413.5	4019	4019	12,707
Nov	108414	527.8	1643	6090	8441	11098.2	802.0	6659	6659	15,100
Dec	105089	488.1	1546	5633	7847	14971.5	1256.2	8983	8983	16,830
Tot.	1,355,074	6,713	22,918	110,080	144,308	104,816	6,869	62,889	62,889	207,198
Avr.	112,923	559	1,910	9,173	12,026	8,735	572	5,241	5,241	17,266
Max		731				I	1,256			

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

School Building, Boston 110,000 sf

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy		Natural Gas Energy					Total	Gen.	Total
	Elec. Gric	Load		Electr. Cost	S	Gas Uti	lity Load	Nat	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	46,424	199	460	2,299	3,119	22,453	1,157	13,472	0	13,472	16,590	707	17,298
Feb	40,253	199	391	2,292	3,037	18,707	1,090	11,224	0	11,224	14,262	654	14,916
Mar	42,490	199	387	2,301	3,043	18,882	919	11,329	0	11,329	14,372	846	15,218
Apr	44,013	200	356	2,307	3,016	14,003	810	8,402	0	8,402	11,417	804	12,221
May	48,312	142	376	1,638	2,321	9,927	595	5,956	0	5,956	8,277	889	9,166
Jun	38,802	48	362	1,185	1,822	5,525	356	3,315	0	3,315	5,137	520	5,657
Jul	43,146	48	403	1,185	1,865	4,933	279	2,960	0	2,960	4,825	616	5,441
Aug	43,351	48	403	1,185	1,866	5,248	260	3,149	0	3,149	5,015	615	5,630
Sep	58,666	142	560	3,508	4,520	6,274	369	3,765	0	3,765	8,285	708	8,993
Oct	44,510	142	355	1,638	2,298	11,147	608	6,688	0	6,688	8,987	876	9,863
Nov	37,616	200	351	2,307	3,011	14,940	960	8,964	0	8,964	11,975	778	12,753
Dec	42,032	200	395	2,307	3,058	18,468	1,404	11,081	0	11,081	14,139	709	14,848
Tot.	529,614	1,767	4,798	24,152	32,976	150,508	8,805	90,305	0	90,305	123,281	8,723	132,004
Avr.	44,135	147	400	2,013	2,748	12,542	734	7,525	0	7,525	10,273	727	11,000
Max		200					1,404						

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

VGF36GLD Engine Generator, 615 kWe

School Building, Boston 110,000 sf Generator Performance Details

Alternative Configuration	-System Supplemented	with 615 kWe IC Generator with	Heat Recovery to Heating,	DHW, and Abs. Chiller
				,

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	64,293	64,293	64,293	7,945	3,631	3,631	100.0	181	181	181	24.3	27.6	73.3
Feb	59,476	59,476	59,476	7,287	3,330	3,330	100.0	161	161	161	24.0	27.8	73.5
Mar	76,942	76,942	76,942	9,335	4,266	4,254	99.7	199	199	199	26.7	28.1	73.7
Apr	73,050	73,050	73,050	8,822	4,032	3,958	98.2	185	185	185	25.7	28.3	73.1
May	80,822	80,822	80,822	9,699	4,432	4,147	93.6	199	199	199	26.7	28.4	71.2
Jun	47,285	47,285	47,285	5,975	2,730	2,435	89.2	147	147	147	20.4	27.0	67.8
Jul	55,996	55,996	55,996	6,807	3,111	2,597	83.5	147	147	147	19.8	28.1	66.2
Aug	55,885	55,885	55,885	6,939	3,171	2,625	82.8	161	161	161	21.6	27.5	65.3
Sep	64,368	64,368	64,368	7,654	3,498	3,000	85.8	152	152	152	21.1	28.7	67.9
Oct	79,659	79,659	79,659	9,622	4,397	4,242	96.5	202	202	202	27.2	28.2	72.3
Nov	70,764	70,764	70,764	8,617	3,938	3,916	99.4	186	186	186	25.8	28.0	73.5
Dec	64,474	64,474	64,474	7,884	3,603	3,598	99.8	173	173	173	23.3	27.9	73.5
Tot.	793,015	793,015	793,015	96,586	44,140	41,733		2,093	2,093	2,093			
Avr.	66,085	66,085	66,085	8,049	3,678	3,478	94.0	174	174	174	24	28.0	70.9
Max							100.0					28.7	73.7

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

School Building, Boston 110,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

	Electric Grid Load				Gen. Total Heat Recovery			Absorption Chiller			Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	108,950	460	46,424	199	3,631	3,631	100.0	35.6	29.3	45.0	12.0	51.3	43	14
Feb	98,233	468	40,253	199	3,330	3,330	100.0	41.8	84.2	131.6	11.8	52.2	37	19
Mar	118,752	497	42,490	199	4,266	4,254	99.7	83.5	419.8	612.5	12.1	65.6	1,340	45
Apr	118,708	540	44,013	200	4,032	3,958	98.2	122.6	986.2	1,407.2	63.8	49.7	3,795	76
May	135,433	731	48,312	142	4,432	4,147	93.6	122.6	1,967.1	2,724.5	270.5	571.1	9,134	76
Jun	90,877	577	38,802	48	2,730	2,435	89.2	122.6	1,454.9	2,010.6	233.1	822.9	6,639	76
Jul	106,168	598	43,146	48	3,111	2,597	83.5	122.6	1,779.7	2,449.9	289.6	2,291.9	8,647	76
Aug	105,674	581	43,351	48	3,171	2,625	82.8	122.6	1,782.3	2,455.6	243.2	1,824.0	8,411	76
Sep	130,512	718	58,666	142	3,498	3,000	85.8	122.6	1,939.0	2,668.8	214.9	1,224.8	9,589	76
Oct	128,263	527	44,510	142	4,397	4,242	96.5	119.9	1,595.3	2,229.3	43.1	32.2	6,979	74
Nov	108,414	528	37,616	200	3,938	3,916	99.4	120.1	559.8	805.9	32.1	56.1	2,050	74
Dec	105,089	488	42,032	200	3,603	3,598	99.8	70.1	160.5	241.3	12.0	61.3	351	35
Tot.	1,355,074	6,713	529,614	1,767	44,140	41,733		1,206.5	12,758	17,782	1,438.2	7,103	57,014	
Avr.	112,923	559	44,135	147	3,678	3,478	94.0	100.5	1,063	1,482	119.8	592	4,751	60
Max		731		200										

Energy Rates:

Generator Type:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

School_Boston_Sby.xls

School Building, Boston 110,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.069	0.600
Feb	0.076	0.600
Mar	0.069	0.600
Apr	0.073	0.600
May	0.083	0.600
Jun	0.193	0.600
Jul	0.174	0.600
Aug	0.170	0.600
Sep	0.169	0.600
Oct	0.068	0.600
Nov	0.078	0.600
Dec	0.075	0.600
Avr.	0.108	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.067	0.600	0.085	2,179	0.051	0.1366
0.075	0.600	0.085	1,998	0.051	0.1295
0.072	0.600	0.084	2,552	0.051	0.1061
0.069	0.600	0.083	2,375	0.051	0.0841
0.048	0.600	0.083	2,488	0.052	0.0517
0.047	0.600	0.087	1,461	0.056	0.0487
0.043	0.600	0.084	1,558	0.056	0.0392
0.043	0.600	0.085	1,575	0.057	0.0409
0.077	0.600	0.082	1,800	0.054	0.0585
0.052	0.600	0.083	2,545	0.052	0.0589
0.080	0.600	0.084	2,350	0.051	0.0960
0.073	0.600	0.084	2,159	0.051	0.1191
0.062	0.600	0.084	2,087	0.053	0.081
			\$25,040		

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat
School Building, Boston 110,000 sf

Electric

VGF36GLD Engine Generator, 615 kWe Energy Rates Gen: With Gen Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Without (Boston Electric Rate T-2 TOU > 300 kW < 1000 kW

UWith Gen.

Without Gen.

School Building, Boston 110,000 sf

Natural Gas

Energy Rates

Linergy reales		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

School Building, Chicago 120,000 sf

Baseline Configuration - No electric generation

		Ele	ctric Ener	gy			Natural Ga	as Energy		Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	113266	475.3	5148	5291	11491	19465.1	1235.7	11679	11679	23,170
Feb	100044	465.9	4546	5186	10715	15567.3	972.0	9340	9340	20,055
Mar	118231	502.0	5463	5587	12162	14721.3	774.8	8833	8833	20,995
Apr	119664	510.7	5337	5684	12131	8865.8	726.1	5320	5320	17,450
May	141105	754.0	6271	8392	16125	4350.1	355.9	2610	2610	18,735
Jun	104684	708.1	4628	10083	16178	1441.4	142.4	865	865	17,043
Jul	115871	697.6	5109	9933	16541	1165.6	69.1	699	699	17,241
Aug	117707	671.2	5247	9558	16282	1362.6	87.8	818	818	17,099
Sep	134842	753.7	5962	10732	18353	2314.1	225.9	1388	1388	19,742
Oct	132286	566.5	5927	6305	13459	6377.1	467.0	3826	3826	17,285
Nov	110691	594.2	5160	6613	12955	11395.7	689.3	6837	6837	19,793
Dec	104425	463.0	4724	5153	10875	17119.2	1504.1	10272	10272	21,146
Tot.	1,412,816	7,162	63,522	88,518	167,266	104,146	7,250	62,487	62,487	229,754
Avr.	117,735	597	5,293	7,376	13,939	8,679	604	5,207	5,207	19,146
Max		754		I			1,504			

Energy Rates:

Chicago Rate 6 TOU < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

School	Building,	Chicago	120,000 sf
--------	-----------	---------	------------

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas Ene	ergy		Total	Gen.	Total
	Elec. Grid	l Load		Electr. Cost	S	Gas Uti	lity Load	Natu	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	52,905	200	1,769	2,224	6,535	22,825	1,366	13,695	0	13,695	20,230	681	20,911
Feb	47,071	200	1,580	2,225	6,329	18,492	1,102	11,095	0	11,095	17,424	597	18,020
Mar	47,846	200	1,522	2,222	6,262	18,566	951	11,140	0	11,140	17,402	784	18,187
Apr	51,911	168	1,544	1,872	5,903	12,501	858	7,501	0	7,501	13,404	724	14,127
May	60,333	142	1,748	1,579	5,806	8,794	526	5,277	0	5,277	11,082	812	11,894
Jun	42,366	48	1,139	683	4,153	5,128	311	3,077	0	3,077	7,230	613	7,843
Jul	47,122	48	1,260	683	4,286	5,274	329	3,165	0	3,165	7,451	674	8,125
Aug	46,122	48	1,239	683	4,263	5,600	330	3,360	0	3,360	7,623	702	8,325
Sep	57,110	142	1,610	2,021	6,138	6,961	429	4,177	0	4,177	10,314	774	11,089
Oct	55,791	142	1,644	1,579	5,691	10,628	637	6,377	0	6,377	12,068	792	12,859
Nov	42,217	168	1,326	1,871	5,663	15,134	861	9,080	0	9,080	14,744	756	15,499
Dec	47,387	177	1,530	1,965	5,989	20,313	1,636	12,188	0	12,188	18,177	644	18,821
Tot.	598,180	1,682	17,910	19,607	67,019	150,216	9,337	90,129	0	90,129	157,148	8,553	165,701
Avr.	49,848	140	1,493	1,634	5,585	12,518	778	7,511	0	7,511	13,096	713	13,808
Max		200					1,636						

Energy Rates:

Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

School Building, Chicago 120,000 sf Generator Performance Details

Alternative Configuration	-System Supplemented with	615 kWe IC Generator with Heat F	Recovery to Heating, DI	HW, and Abs. Chiller
				,

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	61,922	61,922	61,922	7,590	3,468	3,468	100.0	168	168	168	22.6	27.8	73.5
Feb	54,228	54,228	54,228	6,606	3,019	3,019	100.0	143	143	143	21.3	28.0	73.7
Mar	71,314	71,314	71,314	8,656	3,956	3,945	99.7	185	185	185	24.9	28.1	73.7
Apr	65,803	65,546	65,803	7,948	3,632	3,536	97.4	167	166	167	23.2	28.2	72.7
May	73,794	72,828	73,794	8,833	4,037	3,599	89.2	180	176	180	24.2	28.5	69.2
Jun	55,709	55,709	55,709	6,780	3,098	2,536	81.9	147	147	147	20.4	28.0	65.4
Jul	61,299	61,299	61,299	7,312	3,342	2,627	78.6	147	147	147	19.8	28.6	64.5
Aug	63,826	63,826	63,826	7,694	3,516	2,835	80.6	161	161	161	21.6	28.3	65.1
Sep	70,394	66,756	70,394	8,377	3,828	3,058	79.9	167	152	167	23.2	28.7	65.2
Oct	71,964	71,482	71,964	8,673	3,964	3,627	91.5	181	179	181	24.3	28.3	70.1
Nov	68,702	68,702	68,702	8,338	3,810	3,771	99.0	178	178	178	24.7	28.1	73.3
Dec	58,585	58,585	58,585	7,215	3,297	3,297	100.0	162	162	162	21.8	27.7	73.4
Tot.	777,539	772,196	777,539	94,020	42,967	39,319		1,986	1,964	1,986			
Avr.	64,795	64,350	64,795	7,835	3,581	3,277	91.5	166	164	166	23	28.2	70.0
Max							100.0					28.7	73.7

Energy Rates:

Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

School Building, Chicago 120,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric C	Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller		Electric Chiller			
	No Gen	neration	Gene	eration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric	
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller	
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced	
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW	
Jan	113,266	475	52,905	200	3,468	3,468	100.0	43.7	69.4	106.3	12.1	65.5	102	21	
Feb	100,044	466	47,071	200	3,019	3,019	100.0	41.2	92.9	142.3	12.1	58.7	147	19	
Mar	118,231	502	47,846	200	3,956	3,945	99.7	79.3	346.1	514.5	12.2	54.8	866	42	
Apr	119,664	511	51,911	168	3,632	3,536	97.4	106.1	1,014.4	1,435.7	11.0	7.8	4,174	63	
May	141,105	754	60,333	142	4,037	3,599	89.2	122.6	1,997.8	2,755.7	271.6	893.3	9,578	76	
Jun	104,684	708	42,366	48	3,098	2,536	81.9	122.6	1,736.0	2,391.5	435.8	2,185.7	8,363	76	
Jul	115,871	698	47,122	48	3,342	2,627	78.6	122.6	1,830.6	2,523.6	416.4	3,242.8	8,977	76	
Aug	117,707	671	46,122	48	3,516	2,835	80.6	122.6	1,963.1	2,704.6	385.4	2,865.0	9,560	76	
Sep	134,842	754	57,110	142	3,828	3,058	79.9	122.6	1,958.4	2,699.6	260.3	1,566.5	9,614	76	
Oct	132,286	567	55,791	142	3,964	3,627	91.5	122.6	1,603.1	2,228.9	132.7	220.6	7,229	76	
Nov	110,691	594	42,217	168	3,810	3,771	99.0	122.6	479.0	696.5	135.6	157.1	1,566	76	
Dec	104,425	463	47,387	177	3,297	3,297	100.0	32.8	55.2	84.7	12.2	70.7	90	12	
Tot.	1,412,816	7,162	598,180	1,682	42,967	39,319		1,161.2	13,146	18,284	2,097.3	11,388	60,266		
Avr.	117,735	597	49,848	140	3,581	3,277	91.5	96.8	1,095	1,524	174.8	949	5,022	57	
Max		754		200											

Energy Rates:

Generator Type:

Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

School Building, Chicago 120,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.101	0.600
Feb	0.107	0.600
Mar	0.103	0.600
Apr	0.101	0.600
May	0.114	0.600
Jun	0.155	0.600
Jul	0.143	0.600
Aug	0.138	0.600
Sep	0.136	0.600
Oct	0.102	0.600
Nov	0.117	0.600
Dec	0.104	0.600
Avr.	0.118	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.124	0.600	0.085	2,081	0.051	0.1640
0.134	0.600	0.084	1,811	0.051	0.1600
0.131	0.600	0.084	2,367	0.051	0.1328
0.114	0.600	0.083	2,122	0.051	0.1020
0.096	0.600	0.083	2,159	0.054	0.0726
0.098	0.600	0.084	1,522	0.057	0.0644
0.091	0.600	0.083	1,576	0.057	0.0604
0.092	0.600	0.083	1,701	0.057	0.0603
0.107	0.600	0.082	1,835	0.056	0.0726
0.102	0.600	0.083	2,176	0.053	0.0836
0.134	0.600	0.084	2,263	0.051	0.1193
0.126	0.600	0.085	1,978	0.051	0.1589
0.112	0.600	0.084	1,966	0.053	0.104
			\$23,591		

Chicago Rate 6 TOU < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

School Building, Chicago 120,000 sf

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Without (Chicago Rate 6 TOU < 1000 kW

School Building, Chicago 120,000 sf

Natural Gas

Energy Rates

Energy rates			
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm	(flat
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm	(flat

		Ele	ctric Energ	ду			Natural Ga	as Energy		Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	ility Load	Natural C	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	170772	729.7	8543	7539	17245	2519.7	276.0	1512	1512	18,757
Feb	151854	760.9	7604	7822	16544	1668.6	172.1	1001	1001	17,545
Mar	183029	810.5	9175	8141	18566	1952.6	215.2	1172	1172	19,737
Apr	191105	871.9	9933	7149	18316	1349.7	88.8	810	810	19,126
May	236238	933.6	12223	7655	21308	1307.1	58.4	784	784	22,092
Jun	166285	803.8	8467	6609	16169	1037.1	45.0	622	622	16,791
Jul	180422	767.6	9148	6331	16600	1038.7	44.8	623	623	17,224
Aug	188105	813.8	9541	6673	17387	1107.6	44.7	665	665	18,052
Sep	230910	935.0	11838	7667	20908	1128.5	53.4	677	677	21,585
Oct	228503	911.5	11867	7474	20733	1295.9	63.9	778	778	21,511
Nov	179970	812.1	8999	8186	18426	1248.2	71.5	749	749	19,175
Dec	156799	729.2	7848	7542	16505	1556.6	125.4	934	934	17,439
Tot.	2,263,992	9,880	115,183	88,788	218,707	17,210	1,259	10,326	10,326	229,033
Avr.	188,666	823	9,599	7,399	18,226	1,434	105	861	861	19,086
Max	935						276			

Baseline Configuration - No electric generation

Energy Rates:

Miami FPL Rate GSLDT-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas En	ergy		Total	Gen.	Total
	Elec. Grid	Load		Electr. Cost	S	Gas Uti	lity Load	Nat	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	126,698	192	5,738	3,860	11,936	5,310	388	3,186	0	3,186	15,122	453	15,575
Feb	112,210	142	5,081	3,355	10,692	4,221	256	2,533	0	2,533	13,225	406	13,630
Mar	134,498	142	6,086	3,672	12,106	5,152	329	3,091	0	3,091	15,197	497	15,694
Apr	124,968	199	5,724	3,194	11,207	5,882	303	3,529	0	3,529	14,737	670	15,407
May	160,737	260	7,418	3,691	13,552	6,544	309	3,926	0	3,926	17,478	768	18,246
Jun	112,521	138	5,045	2,738	9,993	4,547	228	2,728	0	2,728	12,721	538	13,260
Jul	125,766	130	5,669	2,626	10,541	4,628	222	2,777	0	2,777	13,318	548	13,866
Aug	129,159	147	5,790	2,676	10,724	4,954	226	2,973	0	2,973	13,697	590	14,286
Sep	162,989	262	7,515	3,728	13,696	5,901	335	3,541	0	3,541	17,237	693	17,929
Oct	152,323	238	7,019	3,517	12,939	6,589	339	3,953	0	3,953	16,892	775	17,667
Nov	133,501	142	6,042	3,711	12,101	4,379	251	2,627	0	2,627	14,728	472	15,201
Dec	115,570	142	5,224	3,075	10,546	4,235	239	2,541	0	2,541	13,086	421	13,507
Tot.	1,590,940	2,133	72,350	39,844	140,032	62,343	3,425	37,406	0	37,406	177,438	6,830	184,268
Avr.	132,578	178	6,029	3,320	11,669	5,195	285	3,117	0	3,117	14,786	569	15,356
Max	262						388						

Energy Rates:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

School, Miami 110,000 sf **Generator Performance Details**

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	41,213	41,213	41,213	4,994	2,282	1,807	79.2	106	106	106	14.2	28.2	64.3
Feb	36,898	36,898	36,898	4,452	2,035	1,558	76.6	93	93	93	13.8	28.3	63.3
Mar	45,146	45,146	45,146	5,394	2,465	1,800	73.0	109	109	109	14.7	28.6	61.9
Apr	60,922	60,922	60,922	7,057	3,225	2,070	64.2	126	126	126	17.5	29.5	58.8
May	69,809	69,809	69,809	7,954	3,635	2,228	61.3	132	132	132	17.7	29.9	58.0
Jun	48,928	48,928	48,928	5,485	2,507	1,619	64.6	84	84	84	11.7	30.4	60.0
Jul	49,796	49,796	49,796	5,566	2,544	1,621	63.7	84	84	84	11.3	30.5	59.6
Aug	53,623	53,623	53,623	6,010	2,747	1,774	64.6	92	92	92	12.4	30.4	60.0
Sep	62,978	62,978	62,978	7,130	3,259	1,933	59.3	115	115	115	16.0	30.1	57.2
Oct	70,414	70,414	70,414	8,053	3,680	2,263	61.5	136	136	136	18.3	29.8	57.9
Nov	42,952	42,952	42,952	5,092	2,327	1,608	69.1	100	100	100	13.9	28.8	60.4
Dec	38,254	38,254	38,254	4,653	2,126	1,620	76.2	100	100	100	13.4	28.1	62.9
Tot.	620,932	620,932	620,932	71,842	32,832	21,902		1,277	1,277	1,277			
Avr.	51,744	51,744	51,744	5,987	2,736	1,825	67.8	106	106	106	15	29.4	60.4
Max							79.2					30.5	64.3

Energy Rates:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

School, Miami 110,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric (Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller	Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	170,772	730	126,698	192	2,282	1,807	79.2	113.0	973.6	1,376.0	260.3	744.3	4,455	68
Feb	151,854	761	112,210	142	2,035	1,558	76.6	113.0	911.1	1,286.2	293.5	767.0	4,228	68
Mar	183,029	811	134,498	142	2,465	1,800	73.0	113.0	1,075.8	1,519.4	368.2	1,345.5	5,000	68
Apr	191,105	872	124,968	199	3,225	2,070	64.2	113.0	1,413.9	1,992.3	408.4	3,089.7	6,821	68
May	236,238	934	160,737	260	3,635	2,228	61.3	113.0	1,525.1	2,149.2	491.2	4,648.4	7,431	68
Jun	166,285	804	112,521	138	2,507	1,619	64.6	113.0	1,129.1	1,588.6	531.3	3,618.9	5,670	68
Jul	180,422	768	125,766	130	2,544	1,621	63.7	113.0	1,132.7	1,591.2	487.6	3,996.4	5,693	68
Aug	188,105	814	129,159	147	2,747	1,774	64.6	113.0	1,240.6	1,742.2	543.7	4,117.4	6,235	68
Sep	230,910	935	162,989	262	3,259	1,933	59.3	113.0	1,326.6	1,870.3	517.1	4,620.1	6,466	68
Oct	228,503	911	152,323	238	3,680	2,263	61.5	113.0	1,550.9	2,185.9	460.7	4,306.2	7,526	68
Nov	179,970	812	133,501	142	2,327	1,608	69.1	113.0	1,053.5	1,486.0	369.2	1,618.1	4,989	68
Dec	156,799	729	115,570	142	2,126	1,620	76.2	113.0	988.9	1,395.6	261.2	653.1	4,595	68
Tot.	2,263,992	9,880	1,590,940	2,133	32,832	21,902		1,355.7	14,322	20,183	4,992.2	33,525	69,109	
Avr.	188,666	823	132,578	178	2,736	1,825	67.8	113.0	1,193	1,682	416.0	2,794	5,759	68
Max		935		262										

Energy Rates:

Generator Type:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

School, Miami 110,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.101	0.600
Feb	0.109	0.600
Mar	0.101	0.600
Apr	0.096	0.600
May	0.090	0.600
Jun	0.097	0.600
Jul	0.092	0.600
Aug	0.092	0.600
Sep	0.091	0.600
Oct	0.091	0.600
Nov	0.102	0.600
Dec	0.105	0.600
Avr.	0.097	0.600
Total		

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.094	0.600	0.084	1,084	0.057	0.0863
0.095	0.600	0.083	935	0.058	0.0851
0.090	0.600	0.083	1,080	0.059	0.0814
0.090	0.600	0.081	1,242	0.060	0.0762
0.084	0.600	0.079	1,337	0.060	0.0733
0.089	0.600	0.078	972	0.058	0.0761
0.084	0.600	0.078	973	0.059	0.0734
0.083	0.600	0.078	1,065	0.058	0.0723
0.084	0.600	0.079	1,160	0.061	0.0742

1,358

965

972

1,095

\$13,141

0.060

0.060

0.059

0.059

0.0732

0.0807

0.0815

0.078

On Site Generation

0

Miami FPL Rate GSLDT-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

0.080

0.082

0.084

0.081

0.600

0.600

0.600

0.600

0.085

0.091

0.091

0.088

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Without (Miami FPL Rate GSLDT-1 TOU > 500 kW

Natural Gas

Energy Rates

Lifergy Rales		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

School	San	Diego	110 000 cf
3011001,	Jan	Diego	110,000 51

Baseline Configuration - No electric generation

		Ele	ctric Energ	gy			Natural Ga	as Energy		Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural G	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	129631	259.2	11698	6491	19658	5073.5	300.5	3044	3044	22,702
Feb	115750	257.0	10445	6315	18129	3625.7	223.8	2175	2175	20,305
Mar	134577	268.6	12142	6460	20100	3815.0	240.3	2289	2289	22,389
Apr	131908	216.9	11840	7685	21088	3033.1	197.1	1820	1820	22,908
May	137914	544.0	13669	8878	24321	3170.6	191.8	1902	1902	26,223
Jun	90220	520.0	8937	8487	18840	1632.1	112.7	979	979	19,819
Jul	101637	540.7	10083	8858	20463	1217.4	79.1	730	730	21,193
Aug	109169	532.1	10886	8811	21272	1189.6	53.6	714	714	21,985
Sep	143353	704.7	14259	11500	27758	1329.2	81.3	798	798	28,555
Oct	145016	263.1	13020	8254	22958	1964.0	117.9	1178	1178	24,137
Nov	125015	281.0	11286	6910	19666	3003.1	208.0	1802	1802	21,468
Dec	122373	260.5	11039	6617	19088	4402.7	371.6	2642	2642	21,729
Tot.	1,486,562	4,648	139,303	95,267	253,340	33,456	2,178	20,074	20,074	273,413
Avr.	123,880	387	11,609	7,939	21,112	2,788	181	1,673	1,673	22,784
Max		705				I	372	ľ		

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas Ene	ərgy		Total	Gen.	Total
	Elec. Grid	l Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	27,069	142	2,506	3,264	7,488	10,558	530	6,335	0	6,335	13,823	1,059	14,882
Feb	23,224	142	2,139	3,284	6,990	8,543	477	5,126	0	5,126	12,116	938	13,053
Mar	26,102	142	2,406	3,294	7,456	9,691	473	5,815	0	5,815	13,270	1,098	14,368
Apr	23,140	142	2,196	3,310	7,229	8,990	450	5,394	0	5,394	12,624	1,092	13,716
May	22,681	142	2,070	3,626	7,633	9,366	461	5,620	0	5,620	13,253	1,154	14,407
Jun	12,830	48	1,162	2,325	4,827	6,131	335	3,679	0	3,679	8,505	774	9,279
Jul	12,921	48	1,175	782	3,308	6,495	361	3,897	0	3,897	7,205	876	8,081
Aug	12,697	48	1,155	1,346	3,980	7,003	362	4,202	0	4,202	8,182	950	9,132
Sep	22,964	142	2,085	5,663	9,890	8,808	539	5,285	0	5,285	15,174	1,202	16,376
Oct	22,409	142	2,124	4,958	9,055	9,188	459	5,513	0	5,513	14,567	1,224	15,792
Nov	23,769	142	2,181	3,358	7,202	8,584	477	5,151	0	5,151	12,353	1,020	13,373
Dec	26,270	142	2,408	3,284	7,324	9,651	598	5,791	0	5,791	13,115	981	14,096
Tot.	256,075	1,421	23,607	38,492	82,383	103,007	5,523	61,804	0	61,804	144,187	12,368	156,556
Avr.	21,340	118	1,967	3,208	6,865	8,584	460	5,150	0	5,150	12,016	1,031	13,046
Max		142					598						

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

School, San Diego 110,000 sf **Generator Performance Details**

Alternative Configuration -System S	Supplemented with 615 kWe IC Generator with H	eat Recovery to Heating, DHW, and Abs. Chiller
-------------------------------------	---	--

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	96,257	6,637	96,257	11,804	5,394	5,182	96.1	260	28	260	34.9	27.8	71.7
Feb	85,264	6,443	85,264	10,517	4,806	4,592	95.5	236	27	236	35.1	27.7	71.3
Mar	99,826	7,403	99,632	12,309	5,625	5,275	93.8	276	31	275	37.1	27.7	70.5
Apr	99,274	3,564	92,998	12,243	5,595	5,154	92.1	275	15	246	38.2	27.7	69.8
May	104,919	48,975	97,180	12,994	5,938	5,575	93.9	296	132	260	39.8	27.5	70.5
Jun	70,333	32,476	66,346	8,988	4,108	3,681	89.6	229	105	210	31.8	26.7	67.7
Jul	79,633	36,719	74,946	9,897	4,523	3,788	83.8	231	105	210	31.0	27.5	65.7
Aug	86,403	41,144	81,544	10,768	4,921	4,063	82.6	253	115	230	34.0	27.4	65.1
Sep	109,241	53,136	100,647	13,067	5,971	4,582	76.7	265	114	227	36.8	28.5	63.6
Oct	111,281	5,008	103,316	13,627	6,228	5,251	84.3	300	21	263	40.3	27.9	66.4
Nov	92,767	7,676	92,366	11,442	5,229	4,806	91.9	257	32	255	35.7	27.7	69.7
Dec	89,209	6,863	89,209	10,971	5,014	4,693	93.6	244	29	244	32.8	27.7	70.5
Tot.	1,124,406	256,045	1,079,705	138,629	63,353	56,644		3,122	754	2,916			
Avr.	93,701	21,337	89,975	11,552	5,279	4,720	89.5	260	63	243	36	27.6	68.5
Max	J						96.1					28.5	71.7

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

School, San Diego 110,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric C	Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller	Electric Chiller			
	No Gen	eration	Gene	eration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	id Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	129,631	259	27,069	142	5,394	5,182	96.1	113.0	2,294.1	3,239.7	56.5	63.9	10,202	68
Feb	115,750	257	23,224	142	4,806	4,592	95.5	113.0	2,359.0	3,320.3	40.6	59.6	10,900	68
Mar	134,577	269	26,102	142	5,625	5,275	93.8	113.0	2,790.6	3,925.6	48.6	199.1	12,937	68
Apr	131,908	217	23,140	142	5,595	5,154	92.1	113.0	2,894.5	4,069.2	160.0	557.0	13,619	68
May	137,914	544	22,681	142	5,938	5,575	93.9	113.0	3,138.8	4,412.0	76.1	495.2	14,815	68
Jun	90,220	520	12,830	48	4,108	3,681	89.6	113.0	2,262.5	3,175.4	197.7	1,179.7	10,271	68
Jul	101,637	541	12,921	48	4,523	3,788	83.8	113.0	2,539.4	3,561.2	240.2	2,559.3	11,947	68
Aug	109,169	532	12,697	48	4,921	4,063	82.6	113.0	2,774.1	3,890.8	234.9	2,916.5	13,017	68
Sep	143,353	705	22,964	142	5,971	4,582	76.7	113.0	3,012.0	4,233.8	254.1	3,025.3	14,453	68
Oct	145,016	263	22,409	142	6,228	5,251	84.3	113.0	3,283.1	4,615.3	214.8	1,639.3	15,616	68
Nov	125,015	281	23,769	142	5,229	4,806	91.9	113.0	2,651.6	3,730.8	85.3	393.3	12,411	68
Dec	122,373	260	26,270	142	5,014	4,693	93.6	113.0	2,294.6	3,236.1	67.2	165.6	10,478	68
Tot.	1,486,562	4,648	256,075	1,421	63,353	56,644		1,355.7	32,294	45,410	1,676.2	13,254	150,666	
Avr.	123,880	387	21,340	118	5,279	4,720	89.5	113.0	2,691	3,784	139.7	1,104	12,555	68
Max		705		142										

Energy Rates:

Generator Type:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

School, San Diego 110,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

On Site (Generation
-----------	------------

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.152	0.600
Feb	0.157	0.600
Mar	0.149	0.600
Apr	0.160	0.600
May	0.176	0.600
Jun	0.209	0.600
Jul	0.201	0.600
Aug	0.195	0.600
Sep	0.194	0.600
Oct	0.158	0.600
Nov	0.157	0.600
Dec	0.156	0.600
Avr.	0.172	0.600
Total		

Grid	Utility	Gen	Rec.	Gen*	Avr.							
Elec.	Gas	Elec.	Heat	Elec.	Elec.							
Energy	Energy	Energy	Value	Energy	Energy							
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh							
0.277	0.600	0.085	3,109	0.052	0.0955							
0.301	0.600	0.085	2,755	0.053	0.0949							
0.286	0.600	0.085	3,165	0.053	0.0890							
0.312	0.600	0.085	3,093	0.054	0.0868							
0.336	0.600	0.085	3,345	0.053	0.0867							
0.376	0.600	0.088	2,209	0.056	0.0850							
0.256	0.600	0.086	2,273	0.057	0.0627							
0.313	0.600	0.086	2,438	0.058	0.0676							
0.430	0.600	0.083	2,749	0.058	0.1031							
0.404	0.600	0.084	3,151	0.056	0.0946							
0.303	0.600	0.085	2,884	0.054	0.0900							
0.279	0.600	0.085	2,816	0.053	0.0977							
0.323	0.600	0.085	2,832	0.055	0.088							
			\$33,986									

SDG&E AL-TOU DER + EECC > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) SDG&E AL-TOU DER + EECC > 500 kW + Energy Generation Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

* Cost of elctric generation including benefits of recoverable heat Note:

Electric

 Energy Rates
 Gen:
 VGF36GLD Engine Generator, 615 kWe

 With Gen SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges

 Without (SDG&E AL-TOU_DER + EECC > 500 kW

Natural Gas

Energy Rates

Energy Rates		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

Hospital, Boston 300,000 sf

Baseline Configuration - No electric generation

		Ele	ctric Ener	gy			Natural G	as Energy		Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural G	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	549122	971.9	6136	11216	18941	56193.9	2578.9	33716	33716	52,658
Feb	493772	940.9	5411	10858	17783	47838.2	2341.2	28703	28703	46,486
Mar	549887	1083.0	6018	12498	20186	47553.8	2460.0	28532	28532	48,718
Apr	539691	1155.3	5797	13333	20843	33637.5	1794.7	20182	20182	41,025
May	617853	1266.9	6866	14620	23365	27759.3	1423.0	16656	16656	40,021
Jun	652728	1276.3	9955	31550	44784	24383.2	1195.2	14630	14630	59,414
Jul	718670	1293.7	11047	31981	46415	28883.3	1291.3	17330	17330	63,745
Aug	704917	1269.4	11089	31378	45814	26414.6	1205.5	15849	15849	61,663
Sep	637745	1245.5	9665	30788	43659	23803.7	1070.9	14282	14282	57,941
Oct	585388	1167.3	6486	13471	21729	27593.0	1199.2	16556	16556	38,284
Nov	536488	1165.0	5958	13444	21136	37347.5	1931.6	22409	22409	43,544
Dec	548303	982.8	5845	11341	18764	47186.3	2535.6	28312	28312	47,076
Tot.	7,134,564	13,818	90,273	226,479	343,419	428,594	21,027	257,157	257,157	600,576
Avr.	594,547	1,152	7,523	18,873	28,618	35,716	1,752	21,430	21,430	50,048
Max		1,294					2,579			

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Hospital, Boston 300,000 sf

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas Ene	ergy		Total	Gen.	Total
	Elec. Grid	Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	369,168	383	2,852	4,426	8,161	65,436	2,972	39,262	0	39,262	47,423	2,023	49,446
Feb	337,534	347	2,560	4,008	7,402	55,905	2,734	33,543	0	33,543	40,945	1,759	42,704
Mar	378,891	414	2,897	4,783	8,592	56,771	2,460	34,063	0	34,063	42,654	1,935	44,589
Apr	376,283	487	2,815	5,617	9,397	43,927	2,188	26,356	0	26,356	35,753	1,847	37,600
May	429,517	598	3,429	6,905	11,432	38,840	1,824	23,304	0	23,304	34,736	2,023	36,759
Jun	529,467	608	6,194	15,023	23,076	30,846	1,475	18,507	0	18,507	41,584	1,279	42,862
Jul	586,318	625	7,009	15,454	24,410	35,144	1,578	21,087	0	21,087	45,497	1,339	46,836
Aug	566,761	601	6,874	14,851	23,621	33,044	1,494	19,826	0	19,826	43,447	1,400	44,847
Sep	518,103	577	6,015	14,261	22,070	29,551	1,360	17,731	0	17,731	39,801	1,218	41,018
Oct	402,426	499	3,147	5,756	9,900	39,432	1,635	23,659	0	23,659	33,560	2,023	35,583
Nov	365,487	496	2,838	5,729	9,541	47,768	2,325	28,660	0	28,661	38,202	1,935	40,136
Dec	385,103	394	2,867	4,550	8,311	56,432	2,929	33,859	0	33,859	42,170	1,847	44,017
Tot.	5,245,058	6,031	49,495	101,363	165,913	533,097	24,974	319,858	0	319,858	485,771	20,626	506,398
Avr.	437,088	503	4,125	8,447	13,826	44,425	2,081	26,655	0	26,655	40,481	1,719	42,200
Max		625					2,972						

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

Hospital, Boston 300,000 sf **Generator Performance Details**

Alternative Configuration -System S	Supplemented with 615 kWe IC Generator with Heat	Recovery to Heating, DHW, and Abs. Chiller
-------------------------------------	--	--

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	183,885	183,885	183,885	20,425	9,334	9,170	98.2	299	299	299	40.2	30.7	75.6
Feb	159,900	159,900	159,900	17,761	8,117	7,949	97.9	260	260	260	38.7	30.7	75.5
Mar	175,890	175,890	175,890	19,537	8,928	8,462	94.8	286	286	286	38.4	30.7	74.0
Apr	167,895	167,895	167,895	18,649	8,523	6,855	80.4	273	273	273	37.9	30.7	67.5
May	183,885	183,885	183,885	20,425	9,334	7,662	82.1	299	299	299	40.2	30.7	68.2
Jun	116,235	116,235	116,235	12,911	5,900	5,288	89.6	189	189	189	26.3	30.7	71.7
Jul	121,770	121,770	121,770	13,526	6,181	5,957	96.4	198	198	198	26.6	30.7	74.8
Aug	127,305	127,305	127,305	14,140	6,462	6,159	95.3	207	207	207	27.8	30.7	74.3
Sep	110,700	110,700	110,700	12,296	5,619	5,370	95.6	180	180	180	25.0	30.7	74.4
Oct	183,885	183,885	183,885	20,425	9,334	7,040	75.4	299	299	299	40.2	30.7	65.2
Nov	175,890	175,890	175,890	19,537	8,928	7,476	83.7	286	286	286	39.7	30.7	69.0
Dec	167,895	167,895	167,895	18,649	8,523	7,711	90.5	273	273	273	36.7	30.7	72.1
Tot.	1,875,135	1,875,135	1,875,135	208,281	95,184	85,098		3,049	3,049	3,049			
Avr.	156,261	156,261	156,261	17,357	7,932	7,091	90.0	254	254	254	35	30.7	71.8
Max							98.2					30.7	75.6

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Hospital, Boston 300,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

	Electric Grid Load				Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller		Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric	
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller	
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced	
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW	
Jan	549,122	972	369,168	383	9,334	9,170	98.2	18.4	6.0	9.6	6.1	0.7	-6	0	
Feb	493,772	941	337,534	347	8,117	7,949	97.9	0.0	0.0	0.0	0.0	0.0	0	0	
Mar	549,887	1,083	378,891	414	8,928	8,462	94.8	122.6	58.8	81.1	56.7	22.5	254	63	
Apr	539,691	1,155	376,283	487	8,523	6,855	80.4	122.6	433.5	601.6	143.0	266.7	1,765	63	
May	617,853	1,267	429,517	598	9,334	7,662	82.1	122.6	2,586.2	3,588.2	265.9	2,203.5	10,530	63	
Jun	652,728	1,276	529,467	608	5,900	5,288	89.6	122.6	2,389.3	3,304.1	282.4	2,904.2	10,023	63	
Jul	718,670	1,294	586,318	625	6,181	5,957	96.4	122.6	2,911.7	4,011.8	344.3	5,262.6	12,565	63	
Aug	704,917	1,269	566,761	601	6,462	6,159	95.3	122.6	3,045.1	4,195.7	371.8	4,810.2	13,142	63	
Sep	637,745	1,245	518,103	577	5,619	5,370	95.6	122.6	2,607.6	3,593.8	261.9	3,068.9	11,232	63	
Oct	585,388	1,167	402,426	499	9,334	7,040	75.4	122.6	1,500.4	2,085.4	165.5	808.5	6,043	63	
Nov	536,488	1,165	365,487	496	8,928	7,476	83.7	122.6	283.5	402.2	167.9	184.3	959	63	
Dec	548,303	983	385,103	394	8,523	7,711	90.5	122.6	25.2	37.1	12.5	18.6	42	63	
Tot.	7,134,564	13,818	5,245,058	6,031	95,184	85,098		1,244.3	15,847	21,910	2,078.2	19,551	66,549		
Avr.	594,547	1,152	437,088	503	7,932	7,091	90.0	103.7	1,321	1,826	173.2	1,629	5,546	53	
Max		1,294		625											

Energy Rates:

Generator Type:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Hospital, Boston 300,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.034	0.600
Feb	0.036	0.600
Mar	0.037	0.600
Apr	0.039	0.600
May	0.038	0.600
Jun	0.069	0.600
Jul	0.065	0.600
Aug	0.065	0.600
Sep	0.068	0.600
Oct	0.037	0.600
Nov	0.039	0.600
Dec	0.034	0.600
Avr.	0.047	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.022	0.600	0.078	5,502	0.048	0.0795
0.022	0.600	0.078	4,769	0.048	0.0763
0.023	0.600	0.078	5,077	0.049	0.0712
0.025	0.600	0.078	4,113	0.053	0.0615
0.027	0.600	0.078	4,597	0.053	0.0524
0.044	0.600	0.078	3,173	0.050	0.0615
0.042	0.600	0.078	3,574	0.048	0.0611
0.042	0.600	0.078	3,696	0.049	0.0593
0.043	0.600	0.078	3,222	0.049	0.0601
0.025	0.600	0.078	4,224	0.055	0.0535
0.026	0.600	0.078	4,486	0.052	0.0659
0.022	0.600	0.078	4,626	0.050	0.0712
0.030	0.600	0.078	4,255	0.050	0.064
			\$51,059		

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Hospital, Boston 300,000 sf

Electric

Energy RatesGen:VGF36GLD Engine Generator, 615 kWeWith Gen Boston Electric Rate T-2 TOU > 300 kW < 1000 kW</td>Without (Boston Electric Rate T-2 TOU > 300 kW < 1000 kW</td>

Hospital, Boston 300,000 sf

Natural Gas

Energy Rates

Linergy reales		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

Retail Store, Boston 125,000 sf

Baseline Configuration - No electric generation

		Ele	ctric Ener	gy			Natural Ga	as Energy		Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	186406	362.7	2353	4185	7162	15883.5	835.5	9530	9530	16,693
Feb	167798	359.1	2074	4145	6820	12905.1	737.2	7743	7743	14,563
Mar	187375	430.5	2298	4968	7941	11372.3	770.2	6823	6823	14,765
Apr	181046	468.1	2219	5402	8321	5970.7	436.6	3582	3582	11,903
May	210053	609.3	2684	7031	10562	1436.5	198.4	862	862	11,424
Jun	235700	604.2	3921	14936	20344	81.8	10.2	49	49	20,393
Jul	276606	629.4	4692	15560	21836	49.1	2.2	29	29	21,866
Aug	267772	629.7	4655	15567	21804	48.0	2.0	29	29	21,833
Sep	227436	589.4	3830	14570	19855	146.3	25.8	88	88	19,943
Oct	194857	484.8	2472	5594	8797	1916.7	168.3	1150	1150	9,947
Nov	179435	484.3	2262	5589	8568	7725.6	577.9	4635	4635	13,203
Dec	185329	363.0	2222	4189	7027	12251.0	900.3	7351	7351	14,378
Tot.	2,499,814	6,015	35,682	101,737	149,038	69,787	4,665	41,872	41,872	190,910
Avr.	208,318	501	2,974	8,478	12,420	5,816	389	3,489	3,489	15,909
Max		630				I	900			

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)
Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Energ	gy			Natura	al Gas Ene	ərgy		Total	Gen.	Total
	Elec. Grid	l Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	79,309	0	398	0	593	23,195	1,096	13,917	0	13,917	14,510	1,225	15,735
Feb	74,711	0	375	0	568	19,779	998	11,867	0	11,867	12,435	1,068	13,504
Mar	84,774	0	426	0	622	20,512	841	12,307	0	12,307	12,930	1,188	14,117
Apr	82,024	0	412	0	607	16,587	801	9,952	0	9,952	10,559	1,150	11,709
May	86,886	0	436	0	633	13,320	730	7,992	0	7,992	8,626	1,353	9,979
Jun	148,194	0	1,251	0	1,505	6,766	424	4,060	0	4,060	5,565	907	6,472
Jul	169,781	0	1,433	0	1,700	6,405	342	3,843	0	3,843	5,543	1,049	6,592
Aug	159,246	0	1,344	0	1,605	6,788	335	4,073	0	4,073	5,677	1,078	6,755
Sep	140,857	0	1,189	0	1,439	6,108	366	3,665	0	3,665	5,103	881	5,984
Oct	82,076	133	414	1,540	2,257	14,664	706	8,799	0	8,799	11,055	1,295	12,350
Nov	76,542	0	384	0	578	17,533	861	10,520	0	10,520	11,098	1,191	12,288
Dec	87,676	0	440	0	638	20,395	1,161	12,237	0	12,237	12,875	1,126	14,001
Tot.	1,272,076	133	8,501	1,540	12,744	172,053	8,662	103,232	0	103,232	115,976	13,510	129,487
Avr.	106,006	11	708	128	1,062	14,338	722	8,603	0	8,603	9,665	1,126	10,791
Max		133					1,161						

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

VGF36GLD Engine Generator, 615 kWe

Retail Store, Boston 125,000 sf **Generator Performance Details**

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	111,345	111,345	111,345	13,646	6,236	5,194	83.3	299	299	299	40.2	27.8	65.9
Feb	97,129	97,129	97,129	11,896	5,436	4,118	75.7	260	260	260	38.7	27.9	62.5
Mar	107,958	107,958	107,958	13,192	6,029	3,322	55.1	286	286	286	38.4	27.9	53.1
Apr	104,513	104,513	104,513	12,730	5,818	1,733	29.8	273	273	273	37.9	28.0	41.6
May	123,033	123,033	123,033	14,740	6,736	2,342	34.8	299	299	299	40.2	28.5	44.4
Jun	82,480	82,480	82,480	9,759	4,460	2,521	56.5	189	189	189	26.3	28.8	54.7
Jul	95,402	95,402	95,402	11,067	5,057	3,863	76.4	198	198	198	26.6	29.4	64.3
Aug	97,980	97,980	97,980	11,405	5,212	3,826	73.4	207	207	207	27.8	29.3	62.9
Sep	80,047	80,047	80,047	9,430	4,310	2,845	66.0	180	180	180	25.0	29.0	59.1
Oct	117,721	117,721	117,721	14,233	6,505	1,218	18.7	298	298	298	40.1	28.2	36.8
Nov	108,228	108,228	108,228	13,217	6,040	2,796	46.3	286	286	286	39.7	27.9	49.1
Dec	102,389	102,389	102,389	12,529	5,726	3,595	62.8	273	273	273	36.7	27.9	56.6
Tot.	1,228,224	1,228,224	1,228,224	147,844	67,565	37,374		3,048	3,048	3,048			
Avr.	102,352	102,352	102,352	12,320	5,630	3,114	56.6	254	254	254	35	28.4	54.2
Max							83.3					29.4	65.9

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Retail Store, Boston 125,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric (Grid Load		Gen. T	otal Heat Re	ecovery	Absorption Chiller			Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	186,406	363	79,309	0	6,236	5,194	83.3	0.0	0.0	0.0	0.0	0.0	0	0
Feb	167,798	359	74,711	0	5,436	4,118	75.7	0.0	0.0	0.0	0.0	0.0	0	0
Mar	187,375	431	84,774	0	6,029	3,322	55.1	40.6	13.9	20.8	0.0	0.0	36	18
Apr	181,046	468	82,024	0	5,818	1,733	29.8	111.0	165.0	229.5	7.4	1.6	733	67
May	210,053	609	86,886	0	6,736	2,342	34.8	122.6	1,501.0	2,086.1	148.9	369.2	7,004	76
Jun	235,700	604	148,194	0	4,460	2,521	56.5	122.6	1,816.5	2,505.7	141.1	565.7	8,797	76
Jul	276,606	629	169,781	0	5,057	3,863	76.4	122.6	2,795.7	3,848.0	179.0	1,769.3	14,237	76
Aug	267,772	630	159,246	0	5,212	3,826	73.4	122.6	2,766.8	3,810.6	181.2	1,410.2	13,889	76
Sep	227,436	589	140,857	0	4,310	2,845	66.0	122.6	2,051.4	2,831.5	111.8	566.5	9,958	76
Oct	194,857	485	82,076	133	6,505	1,218	18.7	112.8	617.3	871.9	28.8	12.6	2,584	68
Nov	179,435	484	76,542	0	6,040	2,796	46.3	112.7	92.9	129.8	29.0	9.1	417	68
Dec	185,329	363	87,676	0	5,726	3,595	62.8	0.0	0.0	0.0	0.0	0.0	0	0
Tot.	2,499,814	6,015	1,272,076	133	67,565	37,374		990.1	11,820	16,334	827.1	4,704	57,657	
Avr.	208,318	501	106,006	11	5,630	3,114	56.6	82.5	985	1,361	68.9	392	4,805	50
Max		630		133										

Energy Rates:

Generator Type:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Retail Store, Boston 125,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.038	0.600
Feb	0.041	0.600
Mar	0.042	0.600
Apr	0.046	0.600
May	0.050	0.600
Jun	0.086	0.600
Jul	0.079	0.600
Aug	0.081	0.600
Sep	0.087	0.600
Oct	0.045	0.600
Nov	0.048	0.600
Dec	0.038	0.600
Avr.	0.057	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.007	0.600	0.085	3,116	0.057	0.0662
0.008	0.600	0.084	2,471	0.059	0.0642
0.007	0.600	0.084	1,993	0.066	0.0629
0.007	0.600	0.084	1,040	0.074	0.0572
0.007	0.600	0.083	1,405	0.071	0.0408
0.010	0.600	0.082	1,513	0.064	0.0215
0.010	0.600	0.081	2,318	0.056	0.0161
0.010	0.600	0.081	2,296	0.057	0.0173
0.010	0.600	0.082	1,707	0.060	0.0194
0.027	0.600	0.084	731	0.077	0.0582
0.008	0.600	0.084	1,677	0.069	0.0574
0.007	0.600	0.084	2,157	0.063	0.0623
0.010	0.600	0.083	1,869	0.065	0.045
			\$22,424		

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Electric

Energy RatesGen:VGF36GLD Engine Generator, 615 kWeWith Gen Boston Electric Rate T-2 TOU > 300 kW < 1000 kW</td>Without (Boston Electric Rate T-2 TOU > 300 kW < 1000 kW</td>

Natural Gas

Energy Rates

With Gen:

Gen. Service, Natural Gas - \$0.6/therm (flat) Without Gen.: Gen. Service, Natural Gas - \$0.6/therm (flat) Gen: VGF36GLD Engine Generator, 615 kWe

Gen: VGF36GLD Engine Generator, 615 kWe

Baseline Configuration - No electric generation

		Ele	ctric Energ	gy			Natural Ga	as Energy		Total
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	187501	364.6	7888	4058	13145	16751.5	1035.3	10051	10051	23,196
Feb	168693	360.7	6988	4015	12110	13261.3	697.6	7957	7957	20,067
Mar	189250	428.3	7796	4766	13820	11264.2	637.4	6759	6759	20,579
Apr	183515	450.5	7452	5014	13715	4946.3	498.9	2968	2968	16,683
May	216520	621.0	9090	6912	17595	836.6	95.1	502	502	18,097
Jun	254399	695.9	10483	9910	22412	129.5	26.4	78	78	22,489
Jul	286752	694.2	11766	9886	23792	50.7	2.4	30	30	23,822
Aug	284695	694.2	11844	9886	23878	52.6	3.3	32	32	23,909
Sep	233317	606.6	9371	8638	19795	148.7	18.2	89	89	19,885
Oct	201575	522.1	8492	5811	15730	2331.9	238.0	1399	1399	17,129
Nov	181295	521.9	7616	5809	14767	7583.0	483.9	4550	4550	19,317
Dec	186370	365.0	7557	4062	12786	15047.9	1206.7	9029	9029	21,815
Tot.	2,573,881	6,325	106,344	78,766	203,545	72,404	4,943	43,442	43,442	246,988
Avr.	214,490	527	8,862	6,564	16,962	6,034	412	3,620	3,620	20,582
Max		696					1,207			

Energy Rates:

Chicago Rate 6 TOU < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas Ene	ergy		Total	Gen.	Total
	Elec. Grid	Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	80,260	0	1,883	0	4,221	24,546	1,214	14,727	0	14,727	18,949	1,229	20,178
Feb	75,542	0	1,773	0	4,100	20,130	959	12,078	0	12,078	16,178	1,069	17,247
Mar	85,957	0	2,012	0	4,363	20,244	861	12,146	0	12,146	16,509	1,194	17,703
Apr	86,660	0	2,029	0	4,381	15,911	798	9,547	0	9,547	13,927	1,133	15,061
May	93,079	0	2,179	0	4,545	12,210	665	7,326	0	7,326	11,872	1,349	13,220
Jun	115,527	36	2,708	509	5,684	9,373	541	5,624	0	5,624	11,308	1,421	12,728
Jul	131,930	32	3,098	455	6,052	9,753	539	5,852	0	5,852	11,904	1,563	13,467
Aug	125,887	30	2,953	433	5,869	10,180	557	6,108	0	6,108	11,977	1,610	13,587
Sep	113,466	0	2,660	0	5,074	8,924	586	5,355	0	5,355	10,428	1,250	11,679
Oct	85,884	0	2,015	0	4,365	14,293	732	8,576	0	8,576	12,941	1,306	14,247
Nov	78,082	0	1,837	0	4,170	17,549	803	10,529	0	10,529	14,700	1,192	15,892
Dec	88,471	0	2,076	0	4,432	22,314	1,471	13,388	0	13,388	17,820	1,123	18,943
Tot.	1,160,746	98	27,222	1,397	57,257	185,426	9,725	111,256	0	111,256	168,512	15,439	183,952
Avr.	96,729	8	2,269	116	4,771	15,452	810	9,271	0	9,271	14,043	1,287	15,329
Max		36					1.471						

Energy Rates:

Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

VGF36GLD Engine Generator, 615 kWe

Retail Store Chicago 125,000 sf **Generator Performance Details**

	T ()							0		-	<u> </u>		o "
	lotal	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	111,723	77,724	111,723	13,673	6,248	4,820	77.1	298	207	298	40.1	27.9	63.1
Feb	97,172	67,643	97,172	11,890	5,434	4,118	75.8	259	180	259	38.5	27.9	62.5
Mar	108,563	75,079	108,563	13,249	6,055	3,501	57.8	286	198	286	38.4	28.0	54.4
Apr	103,021	73,708	103,021	12,587	5,752	1,330	23.1	273	189	273	37.9	27.9	38.5
May	122,618	89,198	122,618	14,678	6,708	2,710	40.4	298	207	298	40.1	28.5	47.0
Jun	129,141	93,945	129,141	15,022	6,865	4,738	69.0	273	189	273	37.9	29.3	60.9
Jul	142,113	103,320	142,113	16,368	7,480	5,466	73.1	285	198	285	38.3	29.6	63.0
Aug	146,357	105,948	146,357	16,915	7,730	5,565	72.0	299	207	299	40.2	29.5	62.4
Sep	113,660	82,917	113,660	13,407	6,127	3,798	62.0	258	180	258	35.8	28.9	57.3
Oct	118,726	85,200	118,726	14,307	6,538	1,924	29.4	297	207	297	39.9	28.3	41.8
Nov	108,405	75,875	108,405	13,212	6,038	2,662	44.1	284	198	284	39.4	28.0	48.1
Dec	102,082	71,035	102,082	12,490	5,708	4,284	75.1	272	189	272	36.6	27.9	62.2
Tot.	1,403,581	1,001,591	1,403,581	167,798	76,684	44,916		3,382	2,349	3,382			
Avr.	116,965	83,466	116,965	13,983	6,390	3,743	58.2	282	196	282	39	28.5	55.1
Max							77.1					29.6	63.1

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

Energy Rates:

Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Retail Store Chicago 125,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric C	Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller	Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. G	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	187,501	365	80,260	0	6,248	4,820	77.1	0.0	0.0	0.0	0.0	0.0	0	0
Feb	168,693	361	75,542	0	5,434	4,118	75.8	0.0	0.0	0.0	0.0	0.0	0	0
Mar	189,250	428	85,957	0	6,055	3,501	57.8	39.4	24.3	35.9	0.0	0.0	57	13
Apr	183,515	451	86,660	0	5,752	1,330	23.1	80.4	116.0	169.7	11.9	6.5	275	35
May	216,520	621	93,079	0	6,708	2,710	40.4	122.6	1,913.5	2,651.5	158.6	393.9	7,521	63
Jun	254,399	696	115,527	36	6,865	4,738	69.0	122.6	3,423.9	4,719.2	273.1	1,921.7	14,285	63
Jul	286,752	694	131,930	32	7,480	5,466	73.1	122.6	3,954.1	5,447.8	264.0	2,986.8	16,775	63
Aug	284,695	694	125,887	30	7,730	5,565	72.0	122.6	4,026.5	5,547.0	265.0	2,717.5	17,012	63
Sep	233,317	607	113,466	0	6,127	3,798	62.0	122.6	2,743.7	3,782.4	131.0	823.4	11,218	63
Oct	201,575	522	85,884	0	6,538	1,924	29.4	121.4	1,132.6	1,581.7	63.5	85.1	4,107	63
Nov	181,295	522	78,082	0	6,038	2,662	44.1	121.4	154.3	212.4	63.3	41.1	642	63
Dec	186,370	365	88,471	0	5,708	4,284	75.1	0.0	0.0	0.0	0.0	0.0	0	0
Tot.	2,573,881	6,325	1,160,746	98	76,684	44,916		975.5	17,489	24,148	1,230.3	8,976	71,894	
Avr.	214,490	527	96,729	8	6,390	3,743	58.2	81.3	1,457	2,012	102.5	748	5,991	41
Max		696		36										

Energy Rates:

Generator Type:

Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Retail Store Chicago 125,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.070	0.600
Feb	0.072	0.600
Mar	0.073	0.600
Apr	0.075	0.600
May	0.081	0.600
Jun	0.088	0.600
Jul	0.083	0.600
Aug	0.084	0.600
Sep	0.085	0.600
Oct	0.078	0.600
Nov	0.081	0.600
Dec	0.069	0.600
Avr.	0.078	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.053	0.600	0.084	2,892	0.059	0.0900
0.054	0.600	0.084	2,471	0.059	0.0856
0.051	0.600	0.084	2,101	0.065	0.0802
0.051	0.600	0.084	798	0.077	0.0752
0.049	0.600	0.083	1,626	0.070	0.0538
0.049	0.600	0.081	2,843	0.059	0.0404
0.046	0.600	0.080	3,279	0.057	0.0372
0.047	0.600	0.080	3,339	0.058	0.0376
0.045	0.600	0.082	2,279	0.062	0.0414
0.051	0.600	0.083	1,154	0.074	0.0640
0.053	0.600	0.084	1,597	0.069	0.0767
0.050	0.600	0.084	2,570	0.059	0.0859
0.050	0.600	0.083	2,246	0.064	0.064
			\$26,950		

Chicago Rate 6 TOU < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Chicago Electric Rate 6 TOU - 18 Standby <1000 kW Without (Chicago Rate 6 TOU < 1000 kW

Natural Gas

Energy Rates

Energy Rates		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

Gen: VGF36GLD Engine Generator, 615 kWe

Gen: VGF36GLD Engine Generator, 615 kWe

Baseline Configuration - No electric generation

		Ele	ctric Energ	gy				Total		
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	274579	626.0	13722	8859	24200	199.0	62.6	119	119	24,319
Feb	250672	646.8	12516	9106	23173	67.1	12.4	40	40	23,213
Mar	286109	674.1	14265	9312	25266	100.0	38.6	60	60	25,326
Apr	295628	684.4	15147	5612	22251	39.3	2.0	24	24	22,274
May	345325	716.0	17793	5887	25376	38.4	1.3	23	23	25,399
Jun	348445	771.8	17796	6328	25851	36.4	1.3	22	22	25,873
Jul	374681	749.0	19115	6154	27076	35.7	1.2	21	21	27,098
Aug	374266	770.4	19205	6317	27347	35.9	1.2	22	22	27,369
Sep	350957	731.6	17774	5999	25475	33.9	1.2	20	20	25,496
Oct	337361	700.4	17374	5774	24807	36.1	1.2	22	22	24,829
Nov	287950	665.9	14410	9300	25408	37.5	1.9	22	22	25,431
Dec	267513	625.5	13291	8753	23625	48.1	4.8	29	29	23,654
Tot.	3,793,485	8,362	192,408	87,403	299,855	708	130	425	425	300,280
Avr.	316,124	697	16,034	7,284	24,988	59	11	35	35	25,023
Max	x 772				I	63				

Energy Rates:

Miami FPL Rate GSLDT-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Energ	gy			Natura	al Gas Ene		Total	Gen.	Total	
	Elec. Grid	l Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy Demand Tot. Gas			Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	189,581	171	8,313	2,590	13,332	6,660	382	3,996	0	3,996	17,328	880	18,208
Feb	173,510	0	7,605	1,591	11,505	5,585	342	3,351	0	3,351	14,855	790	15,645
Mar	199,053	1	8,725	1,607	12,720	6,333	369	3,800	0	3,800	16,520	891	17,411
Apr	185,103	11	8,113	1,695	12,160	7,092	397	4,255	0	4,255	16,415	1,103	17,518
May	212,330	43	9,330	1,975	13,761	8,798	407	5,279	0	5,279	19,040	1,332	20,373
Jun	223,229	105	9,827	2,383	14,730	8,391	413	5,034	0	5,034	19,764	1,257	21,021
Jul	242,670	78	10,714	2,254	15,541	8,847	407	5,308	0	5,308	20,849	1,326	22,175
Aug	235,988	104	10,405	2,331	15,293	9,266	410	5,560	0	5,560	20,853	1,388	22,241
Sep	231,844	60	10,193	2,069	14,786	7,958	406	4,775	0	4,775	19,561	1,195	20,756
Oct	207,120	27	9,086	1,862	13,380	8,542	406	5,125	0	5,125	18,505	1,303	19,808
Nov	197,874	129	8,678	2,371	13,488	5,811	334	3,487	0	3,487	16,975	901	17,876
Dec	188,491	0	8,262	1,568	12,183	5,492	326	3,295	0	3,295	15,478	804	16,282
Tot.	2,486,794	728	109,250	24,296	162,879	88,776	4,599	53,265	0	53,265	216,144	13,171	229,315
Avr.	207,233	61	9,104	2,025	13,573	7,398	383	4,439	0	4,439	18,012	1,098	19,110
Max		171					413						

Energy Rates:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

VGF36GLD Engine Generator, 615 kWe

Retail Store, Miami 125,000 sf **Generator Performance Details**

	Alternative Configuration -System Supplemented with 615 kwe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller												
	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	80,041	80,041	80,041	9,455	4,321	2,455	56.8	183	183	183	24.6	28.9	54.8
Feb	71,777	71,777	71,777	8,436	3,855	2,393	62.1	160	160	160	23.8	29.0	57.4
Mar	80,969	80,969	80,969	9,469	4,327	2,653	61.3	176	176	176	23.7	29.2	57.2
Apr	100,278	100,278	100,278	11,422	5,220	3,582	68.6	189	189	189	26.3	30.0	61.3
May	121,133	121,133	121,133	13,572	6,202	3,946	63.6	207	207	207	27.8	30.5	59.5
Jun	114,300	114,300	114,300	12,735	5,820	3,592	61.7	189	189	189	26.3	30.6	58.8
Jul	120,509	120,509	120,509	13,410	6,128	3,771	61.5	198	198	198	26.6	30.7	58.8
Aug	126,223	126,223	126,223	14,042	6,417	3,946	61.5	207	207	207	27.8	30.7	58.8
Sep	108,644	108,644	108,644	12,108	5,534	3,431	62.0	180	180	180	25.0	30.6	59.0
Oct	118,458	118,458	118,458	13,318	6,086	3,946	64.8	207	207	207	27.8	30.3	60.0
Nov	81,903	81,903	81,903	9,532	4,356	3,082	70.7	174	174	174	24.2	29.3	61.6
Dec	73,099	73,099	73,099	8,640	3,948	2,621	66.4	168	168	168	22.6	28.9	59.2
Tot.	1,197,333	1,197,333	1,197,333	136,139	62,216	39,418		2,238	2,238	2,238			
Avr.	99,778	99,778	99,778	11,345	5,185	3,285	63.4	187	187	187	26	29.9	58.9
Max							70.7					30.7	61.6

Energy Rates:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Retail Store, Miami 125,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric C	Grid Load		Gen. T	otal Heat Re	ecovery	Absorption Chiller				Electric	: Chiller	
	No Ger	eration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	id Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	274,579	626	189,581	171	4,321	2,455	56.8	113.0	1,719.5	2,415.2	134.1	989.0	8,432	68
Feb	250,672	647	173,510	0	3,855	2,393	62.1	113.0	1,696.4	2,382.4	160.6	927.6	8,263	68
Mar	286,109	674	199,053	1	4,327	2,653	61.3	113.0	1,871.0	2,628.5	215.4	1,259.0	9,218	68
Apr	295,628	684	185,103	11	5,220	3,582	68.6	113.0	2,545.5	3,572.4	235.2	2,551.5	12,790	68
May	345,325	716	212,330	43	6,202	3,946	63.6	113.0	2,803.9	3,935.7	274.3	4,439.1	14,111	68
Jun	348,445	772	223,229	105	5,820	3,592	61.7	113.0	2,548.4	3,583.2	341.6	4,713.9	12,809	68
Jul	374,681	749	242,670	78	6,128	3,771	61.5	113.0	2,678.9	3,761.9	311.5	5,489.3	13,478	68
Aug	374,266	770	235,988	104	6,417	3,946	61.5	113.0	2,803.6	3,936.5	353.3	5,556.8	14,109	68
Sep	350,957	732	231,844	60	5,534	3,431	62.0	113.0	2,438.5	3,422.9	296.7	4,462.3	12,273	68
Oct	337,361	700	207,120	27	6,086	3,946	64.8	113.0	2,804.2	3,935.9	251.3	4,006.2	14,113	68
Nov	287,950	666	197,874	129	4,356	3,082	70.7	113.0	2,191.0	3,075.5	198.1	1,564.4	10,855	68
Dec	267,513	626	188,491	0	3,948	2,621	66.4	113.0	1,861.8	2,614.6	133.0	710.9	9,058	68
Tot.	3,793,485	8,362	2,486,794	728	62,216	39,418		1,355.7	27,963	39,265	2,905.3	36,670	139,510	
Avr.	316,124	697	207,233	61	5,185	3,285	63.4	113.0	2,330	3,272	242.1	3,056	11,626	68
Max		772		171										

Energy Rates:

Generator Type:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Retail Store, Miami 125,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.088	0.600
Feb	0.092	0.600
Mar	0.088	0.600
Apr	0.075	0.600
May	0.073	0.600
Jun	0.074	0.600
Jul	0.072	0.600
Aug	0.073	0.600
Sep	0.073	0.600
Oct	0.074	0.600
Nov	0.088	0.600
Dec	0.088	0.600
Avr.	0.080	0.600
Total		

Grid	l Itility	Gen	Rec	Gen*	Δvr
Flec	Gas	Flec	Heat	Flec	Flec
Energy	Enorgy	Enoraly	Value	Enoraly	Energy
Energy	Energy	Energy	value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kVVh	\$/kWh
0.070	0.600	0.082	1,473	0.063	0.0621
0.066	0.600	0.082	1,436	0.062	0.0579
0.064	0.600	0.081	1,592	0.062	0.0565
0.066	0.600	0.079	2,149	0.058	0.0539
0.065	0.600	0.078	2,368	0.059	0.0540
0.066	0.600	0.078	2,155	0.059	0.0559
0.064	0.600	0.078	2,263	0.059	0.0548
0.065	0.600	0.078	2,368	0.059	0.0549
0.064	0.600	0.078	2,059	0.059	0.0549
0.065	0.600	0.078	2,367	0.058	0.0536
0.068	0.600	0.081	1,849	0.058	0.0573
0.065	0.600	0.082	1,572	0.060	0.0562
0.066	0.600	0.080	1,971	0.060	0.056
			\$23,651		

On Site Generation

Miami FPL Rate GSLDT-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Without (Miami FPL Rate GSLDT-1 TOU > 500 kW

Natural Gas

Energy Rates

 With Gen:
 Gen. Service, Natural Gas - \$0.6/therm (flat)

 Without Gen.:
 Gen. Service, Natural Gas - \$0.6/therm (flat)

Gen: VGF36GLD Engine Generator, 615 kWe

Gen: VGF36GLD Engine Generator, 615 kWe

Retail Store, San Diego 125,000 sf

Baseline Configuration - No electric generation

		Ele	ctric Ener	gy				Total		
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural G	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	192005	429.9	17465	6481	25818	527.1	61.3	316	316	26,134
Feb	182336	426.9	16566	6451	24824	161.2	18.8	97	97	24,920
Mar	204400	440.1	18580	6500	27032	145.6	26.4	87	87	27,119
Apr	207581	476.4	18859	7510	28410	77.2	11.7	46	46	28,456
May	213096	459.9	20541	7505	30205	59.8	3.8	36	36	30,241
Jun	235755	566.9	22580	9252	34256	44.4	1.9	27	27	34,283
Jul	261107	582.0	25015	9499	37125	42.6	1.5	26	26	37,151
Aug	270682	573.8	26038	9554	38280	43.0	1.4	26	26	38,306
Sep	248812	566.4	23734	9322	35566	40.5	1.4	24	24	35,590
Oct	240573	516.2	21879	7864	32020	48.3	3.3	29	29	32,049
Nov	206586	456.2	18813	6814	27617	101.6	12.9	61	61	27,678
Dec	196223	435.0	17786	6592	26280	471.7	99.8	283	283	26,563
Tot.	2,659,156	5,930	247,857	93,343	367,434	1,763	244	1,058	1,058	368,491
Avr.	221,596	494	20,655	7,779	30,619	147	20	88	88	30,708
Max		582				I	100			

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Retail Store, San Diego 125,000 sf

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas Ene		Total	Gen.	Total	
	Elec. Grid	Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy Demand Tot. Gas			Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	54,276	0	4,720	4,768	12,046	16,541	779	9,925	0	9,925	21,970	1,583	23,554
Feb	55,840	0	4,856	4,820	12,072	13,476	725	8,085	0	8,085	20,157	1,420	21,577
Mar	62,406	0	5,427	4,608	12,626	14,578	761	8,747	0	8,747	21,373	1,580	22,953
Apr	65,429	0	5,690	4,764	13,039	13,145	735	7,887	0	7,887	20,926	1,546	22,472
May	59,864	0	5,204	4,707	12,737	14,331	737	8,599	0	8,599	21,336	1,673	23,008
Jun	72,949	0	6,341	5,788	15,083	11,190	616	6,714	0	6,714	21,797	1,653	23,449
Jul	75,616	0	6,573	5,943	15,716	11,755	597	7,053	0	7,053	22,768	1,848	24,616
Aug	71,674	0	6,231	6,266	15,843	12,452	587	7,471	0	7,471	23,315	1,975	25,289
Sep	83,411	0	7,251	6,076	16,361	10,651	586	6,391	0	6,391	22,751	1,652	24,403
Oct	67,716	0	5,889	5,892	14,678	11,926	593	7,155	0	7,155	21,834	1,755	23,588
Nov	60,461	0	5,258	4,917	12,768	12,978	721	7,787	0	7,787	20,555	1,570	22,125
Dec	66,277	0	5,764	4,645	12,896	14,248	790	8,549	0	8,549	21,445	1,458	22,903
Tot.	795,918	0	69,204	63,195	165,865	157,271	8,228	94,363	0	94,363	260,227	19,711	279,939
Avr.	66,326	0	5,767	5,266	13,822	13,106	686	7,864	0	7,864	21,686	1,643	23,328
Max		0					790						

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

VGF36GLD Engine Generator, 615 kWe

Retail Store, San Diego 125,000 sf **Generator Performance Details**

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	143,943	26,186	138,549	17,655	8,068	1,345	16.7	388	69	366	52.2	27.8	35.4
Feb	129,097	23,617	124,297	15,717	7,182	1,970	27.4	337	60	318	50.1	28.0	40.6
Mar	143,608	26,460	137,801	17,473	7,985	2,493	31.2	374	66	352	50.3	28.0	42.3
Apr	140,543	25,815	135,221	17,002	7,770	3,225	41.5	357	63	336	49.6	28.2	47.2
May	152,074	66,150	146,620	18,418	8,417	3,400	40.4	388	161	366	52.2	28.2	46.6
Jun	150,231	64,740	141,679	18,035	8,242	5,650	68.5	370	147	336	51.4	28.4	59.7
Jul	167,986	71,088	155,422	20,031	9,154	6,822	74.5	402	154	351	54.0	28.6	62.7
Aug	179,533	77,133	164,846	21,411	9,785	7,382	75.4	431	161	368	57.9	28.6	63.1
Sep	150,150	64,789	139,113	17,971	8,213	6,036	73.5	366	140	319	50.8	28.5	62.1
Oct	159,505	28,414	150,990	19,249	8,797	6,044	68.7	402	69	367	54.0	28.3	59.7
Nov	142,732	26,745	137,420	17,329	7,919	3,650	46.1	368	66	348	51.1	28.1	49.2
Dec	132,541	24,226	127,642	16,223	7,414	2,006	27.1	354	63	334	47.6	27.9	40.2
Tot.	1,791,942	525,363	1,699,600	216,512	98,946	50,023		4,537	1,219	4,161			
Avr.	149,329	43,780	141,633	18,043	8,246	4,169	49.3	378	102	347	52	28.2	50.7
Max							75.4					28.6	63.1
	_					-							

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Retail Store, San Diego 125,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric C	Grid Load		Gen. T	otal Heat Re	ecovery	Absorption Chiller		ller		Electric	: Chiller	
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	192,005	430	54,276	0	8,068	1,345	16.7	106.5	834.6	1,195.2	12.9	3.6	3,455	63
Feb	182,336	427	55,840	0	7,182	1,970	27.4	106.3	1,342.1	1,921.4	3.6	0.4	5,524	63
Mar	204,400	440	62,406	0	7,985	2,493	31.2	106.8	1,724.1	2,456.5	9.6	3.7	7,248	63
Apr	207,581	476	65,429	0	7,770	3,225	41.5	113.0	2,252.2	3,201.5	74.8	101.1	9,657	68
May	213,096	460	59,864	0	8,417	3,400	40.4	106.9	2,373.0	3,377.4	15.4	16.1	10,060	63
Jun	235,755	567	72,949	0	8,242	5,650	68.5	113.0	4,006.7	5,629.6	125.7	995.6	19,107	68
Jul	261,107	582	75,616	0	9,154	6,822	74.5	113.0	4,848.1	6,802.7	145.6	2,206.0	23,700	68
Aug	270,682	574	71,674	0	9,785	7,382	75.4	113.0	5,248.8	7,362.6	135.6	2,471.0	25,797	68
Sep	248,812	566	83,411	0	8,213	6,036	73.5	113.0	4,289.4	6,018.4	124.8	1,682.3	20,923	68
Oct	240,573	516	67,716	0	8,797	6,044	68.7	113.0	4,291.0	6,023.5	101.7	740.0	20,512	68
Nov	206,586	456	60,461	0	7,919	3,650	46.1	109.9	2,561.4	3,615.9	35.9	73.2	11,531	66
Dec	196,223	435	66,277	0	7,414	2,006	27.1	107.6	1,304.0	1,844.2	22.5	30.0	5,769	64
Tot.	2,659,156	5,930	795,918	0	98,946	50,023		1,321.8	35,075	49,449	808.1	8,323	163,283	
Avr.	221,596	494	66,326	0	8,246	4,169	49.3	110.1	2,923	4,121	67.3	694	13,607	66
Max		582		0										

Energy Rates:

Generator Type:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Retail Store, San Diego 125,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.134	0.600
Feb	0.136	0.600
Mar	0.132	0.600
Apr	0.137	0.600
May	0.142	0.600
Jun	0.145	0.600
Jul	0.142	0.600
Aug	0.141	0.600
Sep	0.143	0.600
Oct	0.133	0.600
Nov	0.134	0.600
Dec	0.134	0.600
Avr.	0.138	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.222	0.600	0.085	807	0.079	0.1148
0.216	0.600	0.084	1,182	0.075	0.1103
0.202	0.600	0.084	1,496	0.074	0.1042
0.199	0.600	0.084	1,935	0.070	0.0997
0.213	0.600	0.084	2,040	0.070	0.0989
0.207	0.600	0.083	3,390	0.060	0.0899
0.208	0.600	0.083	4,093	0.058	0.0842
0.221	0.600	0.083	4,429	0.058	0.0830
0.196	0.600	0.083	3,621	0.059	0.0890
0.217	0.600	0.083	3,627	0.061	0.0879
0.211	0.600	0.084	2,190	0.068	0.0981
0.195	0.600	0.084	1,203	0.075	0.1091
0.209	0.600	0.084	2,501	0.067	0.097
			\$30,014		

SDG&E AL-TOU_DER + EECC > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Retail Store, San Diego 125,000 sf

Electric

 Energy Rates
 Gen:
 VGF36GLD Engine Generator, 615 kWe

 With Gen SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges
 Without (SDG&E AL-TOU_DER + EECC > 500 kW

Retail Store, San Diego 125,000 sf

Natural Gas

Energy Rates

With Gen:Gen. Service, Natural Gas - \$0.6/therm (flat)Without Gen:Gen. Service, Natural Gas - \$0.6/therm (flat)

Gen: VGF36GLD Engine Generator, 615 kWe

Gen: VGF36GLD Engine Generator, 615 kWe

		Ele	ctric Ener	gy			Natural Gas Energy				
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy	
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost	
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	
Jan	261060	629.6	2859	7265	11000	26988.8	1209.7	16193	16193	27,193	
Feb	241350	636.0	2598	7340	10800	22950.3	1120.1	13770	13770	24,570	
Mar	275087	653.9	2954	7546	11402	21671.7	1066.9	13003	13003	24,405	
Apr	281558	667.3	2992	7701	11608	15393.8	729.9	9236	9236	20,844	
May	311355	798.9	3403	9219	13672	8645.7	483.5	5187	5187	18,860	
Jun	323066	712.6	4590	17616	23927	5417.9	310.8	3251	3251	27,177	
Jul	363679	735.9	5283	18190	25283	4221.1	179.3	2533	2533	27,816	
Aug	351482	704.5	5193	17416	24358	4407.6	190.3	2645	2645	27,002	
Sep	311902	684.8	4395	16927	22982	5459.2	285.0	3275	3276	26,257	
Oct	298879	672.6	3249	7762	11948	10193.7	472.2	6116	6116	18,065	
Nov	268102	643.1	2892	7421	11202	16992.0	906.0	10195	10195	21,397	
Dec	266541	635.8	2791	7337	11004	23430.2	1370.1	14058	14058	25,062	
Tot.	3,554,061	8,175	43,198	131,742	189,186	165,772	8,324	99,463	99,463	288,649	
Avr.	296,172	681	3,600	10,979	15,766	13,814	694	8,289	8,289	24,054	
Max		799					1,370	l			

Large Hotel Building, Boston 220,000 sf

Baseline Configuration - No electric generation

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Large Hotel	Building,	Boston	220,000 sf
-------------	-----------	--------	------------

Alternative Configuration	n -System Supplemented with	615 kWe IC Generator with I	Heat Recovery to Heating,	DHW, and Abs. Chiller

	Electric Energy						Natura	Natural Gas Energy				Gen.	Total
	Elec. Grid	Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	144,206	30	727	348	1,316	33,857	1,470	20,314	0	20,314	21,630	1,326	22,956
Feb	137,047	40	694	461	1,403	29,089	1,397	17,453	0	17,453	18,856	1,183	20,040
Mar	156,845	42	796	485	1,537	28,871	1,145	17,323	0	17,323	18,860	1,334	20,194
Apr	162,885	43	826	492	1,577	22,684	1,033	13,610	0	13,610	15,187	1,310	16,497
May	173,161	130	881	1,504	2,719	17,290	837	10,374	0	10,374	13,092	1,462	14,554
Jun	238,766	44	2,018	1,089	3,491	10,405	557	6,243	0	6,243	9,734	866	10,599
Jul	277,905	706	2,666	17,450	21,690	9,042	426	5,425	0	5,425	27,115	859	27,974
Aug	250,852	36	2,123	889	3,389	10,152	422	6,091	0	6,091	9,480	1,011	10,491
Sep	232,057	16	1,959	400	2,691	10,210	506	6,126	0	6,126	8,817	815	9,632
Oct	167,112	23	844	265	1,354	19,067	858	11,440	0	11,440	12,794	1,431	14,225
Nov	151,670	39	767	449	1,468	24,791	1,211	14,875	0	14,875	16,343	1,318	17,661
Dec	157,204	39	796	453	1,503	30,334	1,654	18,200	0	18,200	19,703	1,244	20,947
Tot.	2,249,709	1,188	15,096	24,285	44,138	245,791	11,517	147,474	0	147,474	191,612	14,159	205,771
Avr.	187,476	99	1,258	2,024	3,678	20,483	960	12,290	0	12,290	15,968	1,180	17,148
Max		706					1,654						

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

VGF36GLD Engine Generator, 615 kWe

Large Hotel Building, Boston 220,000 sf **Generator Performance Details**

Total electricity electricity with kWh Energ Peak electricity with kWh Energ Peak electricity with kWh Energ Peak electricity with kWh Energy with therms Gen. Heat with therms Gen. Heat therms Gen. With Rec. with therms Demand Rec. With Hours Energy Peak Run Hours Gen. Peak Run Hours Gen. Peak Run Hours Gen. Peak Run Hours Gen. Peak Run Hours Gen. Feb Generation Feb Feb Feb Generation Feb Generation Feb Generation Feb Feb Feb Generation Feb Generation Feb Generation Feb Generation Feb Generation Feb Feb Feb Feb Feb Feb Generatio		1											ī .	r .
electricity Produced electricity Produced electricity Produced gas use Heat Avail. Heat Used Heat Rec. Total Run Peak Run Time Util Run Elec. Eff. Factor Overall. E HHV Jan 120,552 120,552 120,552 120,552 14,480 6,617 6,241 94.3 299 299 40.2 28.4 71.5 Feb 107,566 107,566 12,854 5,874 5,507 93.7 260 260 38.7 28.6 71.4 Mar 121,314 121,314 121,314 14,424 6,592 5,924 89.9 286 286 286 38.4 28.7 69.8 Apr 119,050 119,050 14,082 6,436 5,570 86.5 27.3 27.3 37.9 28.8 68.4 May 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 132,876 13		Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
Produced kWh Produced kWh Produced kWh Produced kWh use kWh Avail. therms Used therms Rec. % Run Hours Run		electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
kWh kWh kWh therms therms % Hours Hours Muss %		Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
Jan 120,552 120,552 120,552 14,480 6,617 6,241 94.3 299 299 299 40.2 28.4 71.5 Feb 107,566 107,566 107,566 107,566 107,566 12,854 5,874 5,507 93.7 260 260 260 38.7 28.6 71.4 Mar 121,314 121,314 121,314 14,424 6,592 5,924 89.9 286 286 286 286 38.4 28.7 69.8 Apr 119,050 119,050 14,082 6,436 5,570 86.5 273 273 37.9 28.8 68.4 May 132,876 132,876 132,876 15,657 7,155 5,750 80.4 299 299 299 40.2 29.0 65.7 Jun 78,708 78,708 9,405 4,298 3,623 84.3 189 189 189 26.3 28.6 67.1 Jul 78,079 78,079 9,152 4,182 3,552 84.9 171 171 </td <td></td> <td>kWh</td> <td>kWh</td> <td>kWh</td> <td>therms</td> <td>therms</td> <td>therms</td> <td>%</td> <td>Hours</td> <td>Hours</td> <td>Hours</td> <td>%</td> <td>%</td> <td>%</td>		kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Feb 107,566 107,566 12,854 5,874 5,507 93.7 260 260 280 38.7 28.6 71.4 Mar 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 121,314 14,424 6,592 5,924 89.9 286 286 286 38.4 28.7 69.8 Apr 119,050 119,050 14,082 6,436 5,570 86.5 273 273 37.9 28.8 68.4 May 132,876 132,876 132,876 15,657 7,155 5,750 80.4 299 299 299 40.2 29.0 65.7 Jun 78,708 78,708 78,708 9,405 4,298 3,623 84.3 189 189 189 26.3 28.6 67.1 Jul 78,079 78,079 9,152 4,182 3,552 84.9 171 171 171 171 171 171 171	Jan	120,552	120,552	120,552	14,480	6,617	6,241	94.3	299	299	299	40.2	28.4	71.5
Mar 121,314 121,314 121,314 14,424 6,592 5,924 89.9 286 286 286 286 38.4 28.7 69.8 Apr 119,050 119,050 119,050 14,082 6,436 5,570 86.5 273 273 273 37.9 28.8 68.4 May 132,876 132,876 132,876 15,657 7,155 5,750 80.4 299 299 299 40.2 29.0 65.7 Jun 78,708 78,708 78,708 9,405 4,298 3,623 84.3 189 189 189 26.3 28.6 67.1 Jul 78,079 78,079 78,079 9,152 4,182 3,552 84.9 171 171 171 23.0 29.1 67.9 Aug 91,912 91,912 10,832 4,950 4,172 84.3 207 207 207 27.8 29.0 67.5 Sep 74,073 74,073 74,073 8,874 4,056 3,381 83.4 180	Feb	107,566	107,566	107,566	12,854	5,874	5,507	93.7	260	260	260	38.7	28.6	71.4
Apr119,050119,05014,0826,4365,57086.527327327337.928.868.4May132,876132,876132,87615,6577,1555,75080.429929929940.229.065.7Jun78,70878,70878,7089,4054,2983,62384.318918918926.328.667.1Jul78,07978,07978,0799,1524,1823,55284.917117117123.029.167.9Aug91,91291,91291,91210,8324,9504,17284.320720720727.829.067.5Sep74,07374,0738,8744,0563,38183.418018018025.028.566.6Oct130,133130,13315,3997,0385,35176.029929929940.228.863.6Nov119,832119,83214,2846,5285,31781.528628639.728.665.9Dec113,052113,05213,5066,1725,41487.727.327.327.336.728.668.6Tot.1,287,1471,287,147152,94869,89759,8023,0223,0223,0223,02236.728.767.8Max107,262107,262107,26212,7465,8254,98485.6	Mar	121,314	121,314	121,314	14,424	6,592	5,924	89.9	286	286	286	38.4	28.7	69.8
May 132,876 132,876 132,876 15,657 7,155 5,750 80.4 299 299 299 40.2 29.0 65.7 Jun 78,708 78,708 78,708 9,405 4,298 3,623 84.3 189 189 189 26.3 28.6 67.1 Jul 78,079 78,079 78,079 9,152 4,182 3,552 84.9 171 171 171 23.0 29.1 67.9 Aug 91,912 91,912 91,912 10,832 4,950 4,172 84.3 207 207 207 27.8 29.0 67.5 Sep 74,073 74,073 8,874 4,056 3,381 83.4 180 180 180 25.0 28.5 66.6 Oct 130,133 130,133 15,399 7,038 5,351 76.0 299 299 299 40.2 28.8 63.6 Nov 119,832 119,832 14,284 6,528 5,317 81.5 286 286 39.7 28.6	Apr	119,050	119,050	119,050	14,082	6,436	5,570	86.5	273	273	273	37.9	28.8	68.4
Jun78,70878,70878,70878,7089,4054,2983,62384.318918918926.328.667.1Jul78,07978,07978,0799,1524,1823,55284.917117117123.029.167.9Aug91,91291,91291,91210,8324,9504,17284.320720720727.829.067.5Sep74,07374,07374,0738,8744,0563,38183.418018018025.028.566.6Oct130,133130,13315,3997,0385,35176.029929929940.228.863.6Nov119,832119,83214,2846,5285,31781.528628639.728.665.9Dec113,052113,05213,5066,1725,41487.727.327.327.336.728.668.6Tot.1,287,1471,287,147152,94869,89759,8023,0223,0223,0223,0223.0223.0223.0223.0223.0223528.767.8Max5,8254,98485.62522522523528.767.8	May	132,876	132,876	132,876	15,657	7,155	5,750	80.4	299	299	299	40.2	29.0	65.7
Jul 78,079 78,079 78,079 78,079 9,152 4,182 3,552 84.9 171 171 171 23.0 29.1 67.9 Aug 91,912 91,912 91,912 10,832 4,950 4,172 84.3 207 207 207 27.8 29.0 67.5 Sep 74,073 74,073 74,073 8,874 4,056 3,381 83.4 180 180 180 25.0 28.5 66.6 Oct 130,133 130,133 15,399 7,038 5,351 76.0 299 299 299 40.2 28.8 63.6 Nov 119,832 119,832 14,284 6,528 5,317 81.5 286 286 39.7 28.6 65.9 Dec 113,052 113,052 13,506 6,172 5,414 87.7 27.3 27.3 27.3 36.7 28.6 68.6 Tot. 1,287,147 1,287,147 152,948 69,897 59,802 3,022 3,022 3,022 3,022 3,022 <td< td=""><td>Jun</td><td>78,708</td><td>78,708</td><td>78,708</td><td>9,405</td><td>4,298</td><td>3,623</td><td>84.3</td><td>189</td><td>189</td><td>189</td><td>26.3</td><td>28.6</td><td>67.1</td></td<>	Jun	78,708	78,708	78,708	9,405	4,298	3,623	84.3	189	189	189	26.3	28.6	67.1
Aug 91,912 91,912 91,912 10,832 4,950 4,172 84.3 207 207 207 27.8 29.0 67.5 Sep 74,073 74,073 74,073 8,874 4,056 3,381 83.4 180 180 180 25.0 28.5 66.6 Oct 130,133 130,133 15,399 7,038 5,351 76.0 299 299 299 40.2 28.8 63.6 Nov 119,832 119,832 14,284 6,528 5,317 81.5 286 286 286 39.7 28.6 65.9 Dec 113,052 113,052 13,506 6,172 5,414 87.7 27.3 27.3 36.7 28.6 68.6 Tot. 1,287,147 1,287,147 152,948 69,897 59,802 3,022	Jul	78,079	78,079	78,079	9,152	4,182	3,552	84.9	171	171	171	23.0	29.1	67.9
Sep 74,073 74,073 74,073 8,874 4,056 3,381 83.4 180 180 180 25.0 28.5 66.6 Oct 130,133 130,133 15,399 7,038 5,351 76.0 299 299 299 40.2 28.8 63.6 Nov 119,832 119,832 119,832 14,284 6,528 5,317 81.5 286 286 286 39.7 28.6 65.9 Dec 113,052 113,052 13,506 6,172 5,414 87.7 273 273 36.7 28.6 68.6 Tot. 1,287,147 1,287,147 152,948 69,897 59,802 3,022 3	Aug	91,912	91,912	91,912	10,832	4,950	4,172	84.3	207	207	207	27.8	29.0	67.5
Oct 130,133 130,133 15,399 7,038 5,351 76.0 299 299 299 40.2 28.8 63.6 Nov 119,832 119,832 119,832 119,832 14,284 6,528 5,317 81.5 286 286 286 39.7 28.6 65.9 Dec 113,052 113,052 13,506 6,172 5,414 87.7 273 273 273 36.7 28.6 68.6 Tot. 1,287,147 1,287,147 152,948 69,897 59,802 3,023	Sep	74,073	74,073	74,073	8,874	4,056	3,381	83.4	180	180	180	25.0	28.5	66.6
Nov 119,832 119,832 119,832 14,284 6,528 5,317 81.5 286 286 286 39.7 28.6 65.9 Dec 113,052 113,052 113,052 13,506 6,172 5,414 87.7 273 273 273 36.7 28.6 68.6 Tot. 1,287,147 1,287,147 152,948 69,897 59,802 3,022<	Oct	130,133	130,133	130,133	15,399	7,038	5,351	76.0	299	299	299	40.2	28.8	63.6
Dec 113,052 113,052 113,052 13,506 6,172 5,414 87.7 273 273 273 36.7 28.6 68.6 Tot. 1,287,147 1,287,147 1,287,147 152,948 69,897 59,802 3,023 3,023 2,035	Nov	119,832	119,832	119,832	14,284	6,528	5,317	81.5	286	286	286	39.7	28.6	65.9
Tot. 1,287,147 1,287,147 1,287,147 152,948 69,897 59,802 3,022 2,023 3,023 2,023 2,023 2,023 2,023 2,023 2,021 7,15 Max 94.3 94.3	Dec	113,052	113,052	113,052	13,506	6,172	5,414	87.7	273	273	273	36.7	28.6	68.6
Avr. 107,262 107,262 107,262 12,746 5,825 4,984 85.6 252 252 35 28.7 67.8 Max 94.3 94.3 29.1 71.5	Tot.	1,287,147	1,287,147	1,287,147	152,948	69,897	59,802		3,022	3,022	3,022			
Max 94.3 29.1 71.5	Avr.	107,262	107,262	107,262	12,746	5,825	4,984	85.6	252	252	252	35	28.7	67.8
	Max							94.3					29.1	71.5

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Large Hotel Building, Boston 220,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric (Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller		Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric	
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller	
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced	
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW	
Jan	261,060	630	144,206	30	6,617	6,241	94.3	31.0	17.9	28.4	12.0	137.0	-19	8	
Feb	241,350	636	137,047	40	5,874	5,507	93.7	43.3	128.8	197.3	12.0	124.2	112	16	
Mar	275,087	654	156,845	42	6,592	5,924	89.9	97.8	571.6	834.4	12.1	86.0	1,315	47	
Apr	281,558	667	162,885	43	6,436	5,570	86.5	122.6	1,433.5	2,040.4	47.7	59.2	4,368	63	
May	311,355	799	173,161	130	7,155	5,750	80.4	122.6	2,849.3	3,954.2	204.5	764.4	10,810	63	
Jun	323,066	713	238,766	44	4,298	3,623	84.3	122.6	2,162.0	2,982.0	201.0	989.6	8,637	63	
Jul	363,679	736	277,905	706	4,182	3,552	84.9	122.6	2,335.4	3,214.4	239.1	2,295.4	9,835	63	
Aug	351,482	705	250,852	36	4,950	4,172	84.3	122.6	2,751.1	3,785.4	202.8	2,183.4	11,476	63	
Sep	311,902	685	232,057	16	4,056	3,381	83.4	122.6	2,158.2	2,971.0	171.3	906.1	8,659	63	
Oct	298,879	673	167,112	23	7,038	5,351	76.0	122.6	2,217.0	3,104.0	43.6	29.6	7,563	63	
Nov	268,102	643	151,670	39	6,528	5,317	81.5	102.7	606.4	888.1	38.5	92.6	1,417	50	
Dec	266,541	636	157,204	39	6,172	5,414	87.7	61.0	218.6	333.0	12.2	112.2	197	27	
Tot.	3,554,061	8,175	2,249,709	1,188	69,897	59,802		1,193.9	17,450	24,332	1,196.9	7,780	64,368		
Avr.	296,172	681	187,476	99	5,825	4,984	85.6	99.5	1,454	2,028	99.7	648	5,364	49	
Max		799		706											

Energy Rates:

Generator Type:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Large Hotel Building, Boston 220,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.042	0.600
Feb	0.045	0.600
Mar	0.041	0.600
Apr	0.041	0.600
May	0.044	0.600
Jun	0.074	0.600
Jul	0.070	0.600
Aug	0.069	0.600
Sep	0.074	0.600
Oct	0.040	0.600
Nov	0.042	0.600
Dec	0.041	0.600
Avr.	0.052	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.009	0.600	0.083	3,745	0.052	0.0726
0.010	0.600	0.083	3,304	0.052	0.0684
0.010	0.600	0.082	3,554	0.053	0.0598
0.010	0.600	0.082	3,342	0.054	0.0467
0.016	0.600	0.082	3,450	0.056	0.0363
0.015	0.600	0.083	2,174	0.055	0.0265
0.078	0.600	0.081	2,131	0.054	0.0726
0.014	0.600	0.082	2,503	0.054	0.0233
0.012	0.600	0.083	2,029	0.055	0.0248
0.008	0.600	0.082	3,211	0.057	0.0371
0.010	0.600	0.083	3,190	0.056	0.0533
0.010	0.600	0.083	3,248	0.054	0.0655
0.017	0.600	0.082	2,990	0.054	0.049
			\$35,881		

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat
Large Hotel Building, Boston 220,000 sf

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Without (Boston Electric Rate T-2 TOU > 300 kW < 1000 kW

Large Hotel Building, Boston 220,000 sf

Natural Gas

Energy Rate

Energy Rates		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

Baseline Configuration - No	electric generation
-----------------------------	---------------------

		Ele	ctric Energ	gy		Natural Gas Energy				Total
	Elec. Grid Load		Electr. Costs			Gas Utility Load		Natural Gas Costs		Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	260384	434.6	9890	4837	16196	30308.4	1600.2	18185	18185	34,381
Feb	238765	443.1	8963	4931	15282	24412.7	1175.8	14648	14648	29,930
Mar	276004	449.4	10329	5002	16857	22121.6	990.6	13273	13273	30,130
Apr	284344	553.9	10581	6165	18411	14061.3	735.4	8437	8437	26,848
May	316145	682.0	12048	7590	21583	8553.3	449.5	5132	5132	26,715
Jun	339607	739.3	12819	10527	25651	4984.9	288.5	2991	2991	28,642
Jul	374997	775.1	14125	11038	27643	4272.2	162.6	2563	2563	30,207
Aug	368794	814.2	14105	11595	28232	4388.6	199.2	2633	2633	30,865
Sep	317529	708.1	11652	10083	23883	5674.8	305.2	3405	3405	27,288
Oct	301009	570.6	11464	6351	19583	10866.6	592.2	6520	6520	26,103
Nov	270520	495.9	10170	5520	17251	17980.4	813.4	10788	10788	28,039
Dec	257296	425.6	9475	4737	15630	27551.2	1676.2	16531	16531	32,161
Tot.	3,605,394	7,092	135,621	88,375	246,202	175,176	8,989	105,106	105,106	351,308
Avr.	300,450	591	11,302	7,365	20,517	14,598	749	8,759	8,759	29,276
Max		814					1,676			

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Large Hote	l Building,	Boston	220,000 sf
------------	-------------	--------	------------

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

	Electric Energy						Natura	al Gas Ene	Total	Gen.	Total		
	Elec. Grid	Load		Electr. Cost	S	Gas Utility		Natural Gas Costs			Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	144,226	0	3,387	0	5,870	37,042	1,664	22,225	0	22,225	28,096	1,317	29,413
Feb	135,612	0	3,188	0	5,652	30,541	1,465	18,325	0	18,325	23,977	1,170	25,147
Mar	158,089	0	3,727	0	6,243	29,295	1,246	17,577	0	17,577	23,820	1,334	25,154
Apr	164,463	0	3,869	0	6,400	21,860	1,037	13,116	0	13,116	19,516	1,323	20,839
May	174,154	13	4,098	149	6,814	17,005	796	10,203	0	10,203	17,017	1,480	18,497
Jun	193,332	71	4,629	1,018	8,350	13,408	618	8,045	0	8,045	16,395	1,477	17,872
Jul	215,745	108	5,208	1,539	9,556	13,519	641	8,111	0	8,111	17,668	1,602	19,269
Aug	205,474	151	4,961	2,145	9,950	13,862	648	8,317	0	8,317	18,267	1,645	19,912
Sep	189,373	40	4,476	562	7,683	13,362	722	8,017	0	8,017	15,700	1,314	17,014
Oct	166,062	0	3,909	0	6,443	19,764	961	11,858	0	11,859	18,302	1,455	19,756
Nov	153,421	0	3,613	0	6,119	25,692	1,120	15,415	0	15,415	21,534	1,326	22,861
Dec	151,611	0	3,557	0	6,058	34,016	1,944	20,409	0	20,409	26,467	1,201	27,668
Tot.	2,051,563	383	48,622	5,413	85,138	269,367	12,863	161,620	0	161,620	246,758	16,644	263,403
Avr.	170,964	32	4,052	451	7,095	22,447	1,072	13,468	0	13,468	20,563	1,387	21,950
Max		151					1,944						

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

Large Hotel Building, Boston 220,000 sf Generator Performance Details

1						-							
	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	119,723	71,424	119,723	14,394	6,578	6,281	95.5	299	207	299	40.2	28.4	72.0
Feb	106,397	63,800	106,397	12,738	5,821	5,420	93.1	260	180	260	38.7	28.5	71.0
Mar	121,284	72,864	121,284	14,419	6,589	5,942	90.2	286	198	286	38.4	28.7	69.9
Apr	120,291	74,317	120,291	14,199	6,489	5,248	80.9	273	189	273	37.9	28.9	65.9
May	134,534	84,481	134,534	15,816	7,228	6,039	83.5	299	207	299	40.2	29.0	67.2
Jun	134,308	87,187	134,308	15,514	7,090	5,815	82.0	273	189	273	37.9	29.5	67.0
Jul	145,600	95,309	145,600	16,712	7,638	6,122	80.2	286	198	286	38.4	29.7	66.4
Aug	149,569	97,133	149,569	17,223	7,871	6,354	80.7	299	207	299	40.2	29.6	66.5
Sep	119,438	75,448	119,438	13,981	6,389	5,160	80.8	260	180	260	36.1	29.1	66.1
Oct	132,265	81,977	132,265	15,603	7,131	5,498	77.1	299	207	299	40.2	28.9	64.2
Nov	120,574	73,389	120,574	14,355	6,560	5,447	83.0	286	198	286	39.7	28.7	66.6
Dec	109,145	65,292	109,145	13,128	5,999	5,464	91.1	273	189	273	36.7	28.4	70.0
Tot.	1,513,127	942,621	1,513,127	178,082	81,384	68,791		3,393	2,349	3,393			
Avr.	126,094	78,552	126,094	14,840	6,782	5,733	84.8	283	196	283	39	29.0	67.7
Max							95.5					29.7	72.0

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

Energy Rates:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Large Hotel Building, Boston 220,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric (Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller	Electric Chiller			
	No Ger	neration	Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	260,384	435	144,226	0	6,578	6,281	95.5	53.4	106.5	162.4	11.7	96.1	93	23
Feb	238,765	443	135,612	0	5,821	5,420	93.1	58.2	164.5	252.4	12.1	98.4	125	26
Mar	276,004	449	158,089	0	6,589	5,942	90.2	101.5	454.0	673.1	12.2	96.0	841	49
Apr	284,344	554	164,463	0	6,489	5,248	80.9	105.2	1,531.4	2,170.8	11.4	11.2	4,773	52
May	316,145	682	174,154	13	7,228	6,039	83.5	122.6	3,260.1	4,502.9	203.3	902.5	12,795	63
Jun	339,607	739	193,332	71	7,090	5,815	82.0	122.6	3,733.6	5,142.3	349.9	3,329.6	15,738	63
Jul	374,997	775	215,745	108	7,638	6,122	80.2	122.6	4,024.1	5,544.6	329.9	4,788.8	17,119	63
Aug	368,794	814	205,474	151	7,871	6,354	80.7	122.6	4,159.1	5,729.2	349.3	4,286.7	17,626	63
Sep	317,529	708	189,373	40	6,389	5,160	80.8	122.6	3,192.5	4,399.6	185.9	1,515.7	13,033	63
Oct	301,009	571	166,062	0	7,131	5,498	77.1	122.6	2,406.2	3,359.7	86.5	206.1	8,513	63
Nov	270,520	496	153,421	0	6,560	5,447	83.0	122.6	525.3	769.1	90.9	172.9	1,213	63
Dec	257,296	426	151,611	0	5,999	5,464	91.1	45.7	50.6	76.8	12.0	97.6	72	18
Tot.	3,605,394	7,092	2,051,563	383	81,384	68,791		1,222.1	23,608	32,783	1,655.1	15,602	91,942	
Avr.	300,450	591	170,964	32	6,782	5,733	84.8	101.8	1,967	2,732	137.9	1,300	7,662	51
Max		814		151										

Energy Rates:

Generator Type:

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Hotel_Chicago_Sby.xls

Large Hotel Building, Boston 220,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

Grid	Utilit
Elec.	Gas
Enoray	Enor

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.062	0.600
Feb	0.064	0.600
Mar	0.061	0.600
Apr	0.065	0.600
May	0.068	0.600
Jun	0.076	0.600
Jul	0.074	0.600
Aug	0.077	0.600
Sep	0.075	0.600
Oct	0.065	0.600
Nov	0.064	0.600
Dec	0.061	0.600
Avr.	0.068	0.600
Total		

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.041	0.600	0.083	3,769	0.052	0.0972
0.042	0.600	0.083	3,252	0.052	0.0905
0.039	0.600	0.082	3,565	0.053	0.0773
0.039	0.600	0.082	3,149	0.056	0.0621
0.039	0.600	0.082	3,623	0.055	0.0482
0.043	0.600	0.080	3,489	0.054	0.0439
0.044	0.600	0.080	3,673	0.055	0.0432
0.048	0.600	0.080	3,813	0.055	0.0453
0.041	0.600	0.081	3,096	0.055	0.0451
0.039	0.600	0.082	3,299	0.057	0.0552
0.040	0.600	0.082	3,268	0.055	0.0715
0.040	0.600	0.083	3,278	0.053	0.0935
0.041	0.600	0.082	3,440	0.054	0.064
			\$41,275		

On Site Generation

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Large Hotel Building, Boston 220,000 sf

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Boston Electric Rate T-2 TOU > 300 kW < 1000 kW Without (Boston Electric Rate T-2 TOU > 300 kW < 1000 kW

Large Hotel Building, Boston 220,000 sf

Natural Gas

Energy Rates

Energy reaces		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

Hotel,	Miami	220,000) sf
--------	-------	---------	------

Baseline Configuration - No electric generation

		Ele	lectric Energy Natural Gas Energy							
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$
Jan	359280	837.6	17909	10598	30540	4970.5	353.3	2982	2982	33,523
Feb	328596	849.9	16316	10958	29221	4109.7	275.4	2466	2466	31,686
Mar	371105	862.1	18422	11226	31761	4292.4	281.1	2575	2575	34,337
Apr	380601	879.8	18975	7215	28061	3531.4	149.8	2119	2119	30,180
May	445179	930.3	22290	7629	32051	3476.4	117.5	2086	2086	34,137
Jun	450095	955.9	22394	7839	32387	3288.9	110.0	1973	1973	34,360
Jul	489169	947.7	24284	7771	34337	3358.1	108.8	2015	2015	36,352
Aug	483610	935.8	24147	7673	34086	3335.6	107.9	2001	2001	36,087
Sep	457730	925.1	22578	7586	32313	3221.5	107.9	1933	1933	34,246
Oct	433920	906.9	21719	7436	31234	3415.2	127.2	2049	2049	33,283
Nov	368672	878.3	18337	11491	31953	3555.5	147.8	2133	2133	34,087
Dec	348230	822.4	17207	10417	29597	4244.6	203.2	2547	2547	32,143
Tot.	4,916,187	10,732	244,578	107,838	377,542	44,800	2,090	26,880	26,880	404,422
Avr.	409,682	894	20,382	8,986	31,462	3,733	174	2,240	2,240	33,702
Max		956					353			

Energy Rates:

Miami FPL Rate GSLDT-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	Electric Energy				Natura	al Gas Ene	ergy		Total	Gen.	Total
	Elec. Grid	l Load		Electr. Cost	S	Gas Uti	lity Load	Nati	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	253,794	164	11,196	2,631	16,460	11,506	609	6,904	0	6,904	23,364	1,077	24,441
Feb	235,015	177	10,360	2,935	15,892	9,859	507	5,915	0	5,915	21,807	948	22,754
Mar	266,345	189	11,755	3,203	17,671	10,759	543	6,455	0	6,455	24,126	1,061	25,187
Apr	270,628	207	11,977	3,139	17,839	10,187	471	6,112	0	6,112	23,952	1,094	25,046
May	315,496	257	14,037	3,503	20,433	11,542	491	6,925	0	6,925	27,358	1,294	28,653
Jun	327,949	285	14,621	3,627	21,191	11,026	506	6,616	0	6,616	27,806	1,223	29,029
Jul	359,199	274	16,013	3,661	22,716	11,642	497	6,985	0	6,985	29,702	1,303	31,004
Aug	348,814	262	15,569	3,565	22,138	11,899	500	7,140	0	7,140	29,278	1,350	30,628
Sep	341,437	252	15,177	3,490	21,639	10,581	490	6,349	0	6,349	27,987	1,164	29,151
Oct	306,741	234	13,625	3,326	19,802	11,306	481	6,784	0	6,784	26,586	1,269	27,855
Nov	263,388	205	11,636	3,373	17,725	10,012	452	6,007	0	6,007	23,732	1,057	24,789
Dec	252,295	149	11,102	2,658	16,389	10,052	479	6,031	0	6,031	22,420	969	23,389
Tot.	3,541,101	2,654	157,068	39,110	229,895	130,372	6,026	78,223	0	78,223	308,118	13,808	321,926
Avr.	295,092	221	13,089	3,259	19,158	10,864	502	6,519	0	6,519	25,676	1,151	26,827
Max		285					609						

Energy Rates:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

Hotel, Miami 220,000 sf Generator Performance Details

Alte	ernative Config	uration -Syste	em Suppleme	nted with 615	kWe IC Gene	rator with Hea	t Recovery to	Heating, DH	N, and Abs. C	hiller
	E D 1					0		-	-	o "

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	97,879	97,879	97,879	11,141	5,091	3,776	74.2	184	184	184	24.7	30.0	63.9
Feb	86,165	86,165	86,165	9,785	4,472	3,310	74.0	160	160	160	23.8	30.0	63.9
Mar	96,425	96,425	96,425	10,919	4,990	3,652	73.2	176	176	176	23.7	30.1	63.6
Apr	99,478	99,478	99,478	11,349	5,187	3,849	74.2	189	189	189	26.3	29.9	63.8
May	117,662	117,662	117,662	13,247	6,054	4,248	70.2	207	207	207	27.8	30.3	62.4
Jun	111,214	111,214	111,214	12,450	5,690	3,865	67.9	189	189	189	26.3	30.5	61.5
Jul	118,447	118,447	118,447	13,222	6,043	4,049	67.0	198	198	198	26.6	30.6	61.2
Aug	122,742	122,742	122,742	13,723	6,271	4,230	67.5	207	207	207	27.8	30.5	61.3
Sep	105,799	105,799	105,799	11,846	5,414	3,679	68.0	180	180	180	25.0	30.5	61.5
Oct	115,334	115,334	115,334	13,030	5,955	4,214	70.8	207	207	207	27.8	30.2	62.5
Nov	96,083	96,083	96,083	10,888	4,976	3,634	73.0	176	176	176	24.4	30.1	63.5
Dec	88,065	88,065	88,065	10,049	4,592	3,478	75.7	168	168	168	22.6	29.9	64.5
Tot.	1,255,294	1,255,294	1,255,294	141,650	64,734	45,984		2,241	2,241	2,241			
Avr.	104,608	104,608	104,608	11,804	5,395	3,832	71.3	187	187	187	26	30.2	62.8
Max							75.7					30.6	64.5

Energy Rates:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Hotel, Miami 220,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Electric (Grid Load		Gen. T	otal Heat Re	ecovery	Ab	sorption Chi	ller		Electric	Chiller	
	No Ger	neration	Gene	eration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gr	rid Load	Elec. G	rid Load	Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	359,280	838	253,794	164	5,091	3,776	74.2	113.0	2,162.6	3,042.2	222.1	1,686.1	10,574	68
Feb	328,596	850	235,015	177	4,472	3,310	74.0	113.0	2,009.3	2,822.3	238.9	1,626.1	9,951	68
Mar	371,105	862	266,345	189	4,990	3,652	73.2	113.0	2,220.4	3,119.0	259.8	2,142.1	11,012	68
Apr	380,601	880	270,628	207	5,187	3,849	74.2	113.0	2,527.2	3,545.5	286.6	3,768.5	12,671	68
May	445,179	930	315,496	257	6,054	4,248	70.2	113.0	2,800.7	3,930.9	355.6	6,099.8	14,091	68
Jun	450,095	956	327,949	285	5,690	3,865	67.9	113.0	2,548.4	3,583.2	437.2	6,511.8	12,809	68
Jul	489,169	948	359,199	274	6,043	4,049	67.0	113.0	2,680.4	3,764.1	381.0	7,432.2	13,488	68
Aug	483,610	936	348,814	262	6,271	4,230	67.5	113.0	2,803.6	3,936.5	408.4	7,448.6	14,109	68
Sep	457,730	925	341,437	252	5,414	3,679	68.0	113.0	2,439.8	3,424.7	362.0	6,119.2	12,281	68
Oct	433,920	907	306,741	234	5,955	4,214	70.8	113.0	2,791.3	3,917.2	320.7	5,578.0	14,030	68
Nov	368,672	878	263,388	205	4,976	3,634	73.0	113.0	2,328.8	3,268.6	276.1	2,515.4	11,646	68
Dec	348,230	822	252,295	149	4,592	3,478	75.7	113.0	2,153.6	3,023.1	213.3	1,290.2	10,686	68
Tot.	4,916,187	10,732	3,541,101	2,654	64,734	45,984		1,355.7	29,466	41,377	3,761.8	52,218	147,347	
Avr.	409,682	894	295,092	221	5,395	3,832	71.3	113.0	2,456	3,448	313.5	4,351	12,279	68
Max		956		285										

Energy Rates:

Generator Type:

Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Hotel, Miami 220,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

....

	Baseline	
	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.085	0.600
Feb	0.089	0.600
Mar	0.086	0.600
Apr	0.074	0.600
May	0.072	0.600
Jun	0.072	0.600
Jul	0.070	0.600
Aug	0.070	0.600
Sep	0.071	0.600
Oct	0.072	0.600
Nov	0.087	0.600
Dec	0.085	0.600
Avr.	0.078	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.065	0.600	0.079	2,265	0.056	0.0631
0.068	0.600	0.079	1,986	0.056	0.0647
0.066	0.600	0.079	2,191	0.056	0.0634
0.066	0.600	0.079	2,309	0.056	0.0614
0.065	0.600	0.079	2,549	0.057	0.0603
0.065	0.600	0.078	2,319	0.057	0.0608
0.063	0.600	0.078	2,430	0.057	0.0598
0.063	0.600	0.078	2,538	0.057	0.0596
0.063	0.600	0.078	2,207	0.057	0.0602
0.065	0.600	0.079	2,528	0.057	0.0600
0.067	0.600	0.079	2,181	0.056	0.0629
0.065	0.600	0.079	2,087	0.056	0.0626
0.065	0.600	0.079	2,299	0.057	0.062
			\$27,590		

Miami FPL Rate GSLDT-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

* Cost of elctric generation including benefits of recoverable heat Note:

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen Miami FPL Rate GSLDT-1 & SST-1 TOU > 500 kW Without (Miami FPL Rate GSLDT-1 TOU > 500 kW

Natural Gas

Energy Rates

Energy Rates		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

Baseline Configuration - No electric generation

		Ele	ectric Energy Natural Gas Energy								
	Elec. Grid	Load		Electr. Cos	ts	Gas Uti	lity Load	Natural C	Gas Costs	Energy	
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Tot. Gas	Cost	
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	
Jan	294474	634.1	26656	9286	38654	9073.3	382.6	5444	5444	44,098	
Feb	268672	636.6	24287	9385	36225	6719.1	293.1	4031	4031	40,256	
Mar	299010	649.3	27039	9572	39370	6996.3	280.8	4198	4198	43,567	
Apr	293785	718.7	26703	10356	39849	5881.8	242.3	3529	3529	43,378	
May	302125	572.2	28204	10548	41661	6085.6	240.7	3651	3651	45,312	
Jun	314080	670.8	29275	12090	44456	4569.1	176.0	2741	2741	47,198	
Jul	346239	671.7	32292	12123	47720	4055.0	157.2	2433	2433	50,153	
Aug	354311	667.9	33159	11946	48458	3978.2	138.9	2387	2387	50,845	
Sep	328713	683.6	30555	12208	45952	3898.0	152.4	2339	2339	48,291	
Oct	321542	736.1	29244	10608	42837	4694.5	186.5	2817	2817	45,654	
Nov	292706	672.9	26478	9746	38955	6206.9	286.0	3724	3724	42,679	
Dec	294998	634.8	26618	9349	38680	8636.0	434.7	5182	5182	43,862	
Tot.	3,710,656	7,949	340,510	127,215	502,816	70,794	2,971	42,476	42,476	545,293	
Avr.	309,221	662	28,376	10,601	41,901	5,899	248	3,540	3,540	45,441	
Max		736				I	435	l			

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat)

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

		Ele	ctric Ener	gy			Natura	al Gas Ene	ergy		Total	Gen.	Total
	Elec. Grid	Load		Electr. Cost	S	Gas Uti	lity Load	Natu	ural Gas (Costs	Utility	Gen.	Energy
	Energy	Demand	Energy	Demand	Tot. Elec.	Energy	Demand	Energy	Demand	Tot. Gas	Cost	O&M	Cost
	kWh	kW	\$	\$	\$	therms	therms/day	\$	\$	\$	\$	\$	\$
Jan	73,607	0	6,401	6,073	16,055	23,658	1,062	14,195	0	14,195	30,250	2,394	32,644
Feb	74,079	0	6,442	6,134	15,832	19,179	924	11,507	0	11,507	27,339	2,078	29,417
Mar	83,158	0	7,232	6,136	16,905	20,788	988	12,473	0	12,473	29,378	2,292	31,670
Apr	84,947	68	7,396	6,598	17,488	19,042	936	11,425	0	11,425	28,914	2,200	31,114
May	75,379	0	6,553	6,257	16,534	20,474	918	12,284	0	12,284	28,818	2,394	31,212
Jun	90,657	9	7,883	7,119	18,772	17,780	852	10,668	0	10,668	29,440	2,290	31,731
Jul	98,096	10	8,531	7,138	19,741	18,773	879	11,264	0	11,264	31,005	2,521	33,526
Aug	93,422	6	8,125	7,485	19,821	19,312	863	11,587	0	11,587	31,408	2,645	34,053
Sep	108,376	22	9,424	7,521	20,802	16,959	854	10,176	0	10,176	30,978	2,242	33,220
Oct	82,724	80	7,223	7,548	18,589	18,962	803	11,377	0	11,377	29,966	2,457	32,423
Nov	75,846	22	6,597	6,460	16,566	19,814	916	11,888	0	11,888	28,454	2,287	30,742
Dec	91,612	0	7,967	6,032	17,466	21,498	1,043	12,899	0	12,899	30,364	2,184	32,549
Tot.	1,031,903	215	89,773	80,500	214,572	236,240	11,039	141,744	0	141,744	356,316	27,984	384,299
Avr.	85,992	18	7,481	6,708	17,881	19,687	920	11,812	0	11,812	29,693	2,332	32,025
Max		80					1,062						

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat)

Generator Type:

Hotel, San Diego 220,000 sf **Generator Performance Details**

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

	Total	Dem peak	Energ Peak	generator				Gen	Demand	Energy	Gen.	Generation	Generation
	electricity	electricity	electricity	gas	Heat	Heat	Heat	Total	Peak	Peak	Time Util	Elec. Eff.	Overall. Eff.
	Produced	Produced	Produced	use	Avail.	Used	Rec.	Run	Run	Run	Factor	HHV	HHV
	kWh	kWh	kWh	therms	therms	therms	%	Hours	Hours	Hours	%	%	%
Jan	217,619	33,741	159,072	26,282	12,011	9,592	79.9	552	69	368	74.2	28.3	64.7
Feb	188,877	29,234	138,001	22,821	10,429	8,496	81.5	480	60	320	71.4	28.2	65.5
Mar	208,365	32,663	152,725	25,160	11,498	9,322	81.1	528	66	352	71.0	28.3	65.3
Apr	199,998	36,589	147,587	24,120	11,023	8,987	81.5	504	63	336	70.0	28.3	65.5
May	217,610	61,805	160,134	26,282	12,011	9,753	81.2	552	161	368	74.2	28.3	65.4
Jun	208,219	61,172	154,156	24,889	11,374	9,577	84.2	504	147	336	70.0	28.5	67.0
Jul	229,174	67,624	168,927	27,110	12,389	10,162	82.0	528	154	352	71.0	28.8	66.3
Aug	240,438	72,638	178,345	28,417	12,986	10,728	82.6	552	161	368	74.2	28.9	66.6
Sep	203,809	61,076	150,758	24,217	11,067	9,148	82.7	480	140	320	66.7	28.7	66.5
Oct	223,353	39,365	164,634	26,824	12,258	10,296	84.0	552	69	368	74.2	28.4	66.8
Nov	207,941	31,967	151,771	25,120	11,480	9,441	82.2	528	66	352	73.3	28.2	65.8
Dec	198,561	30,741	145,105	23,984	10,961	9,120	83.2	504	63	336	67.7	28.2	66.3
Tot.	2,543,964	558,615	1,871,216	305,226	139,488	114,620		6,264	1,219	4,176			
Avr.	211,997	46,551	155,935	25,436	11,624	9,552	82.2	522	102	348	71	28.4	66.0
Max	J						84.2					28.9	67.0

Energy Rates:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Generator Type:

Hotel, San Diego 220,000 sf Absorber Heat Recovery Details

Alternative Configuration -System Supplemented with 615 kWe IC Generator with Heat Recovery to Heating, DHW, and Abs. Chiller

	Electric Grid Load				Gen. Total Heat Recovery		Absorption Chiller			Electric Chiller				
	No Generation		Gene	ration				Absorb	Absorb	Absorber	Electric	Electric	Electric	Electric
	Elec. Gri		d Load Elec. G		Heat	Heat	Heat	Max	Cooling	Heat	Cooling	Cooling	Chiller	Chiller
	Energy	Demand	Energy	Demand	Avail.	Used	Rec.	Capacity	Load	In	Max	Load	Reduced	Reduced
	kWh	kW	kWh	kW	therms	therms	%	RT	therms	therms	RT	therms	kWh	kW
Jan	294,474	634	73,607	0	12,011	9,592	79.9	113.0	3,993.6	5,684.6	36.4	29.2	13,564	57
Feb	268,672	637	74,079	0	10,429	8,496	81.5	113.0	4,106.6	5,799.0	21.8	24.7	14,748	57
Mar	299,010	649	83,158	0	11,498	9,322	81.1	113.0	4,749.7	6,699.0	35.6	110.5	17,425	57
Apr	293,785	719	84,947	68	11,023	8,987	81.5	113.0	4,875.8	6,861.7	122.8	372.9	18,218	57
May	302,125	572	75,379	0	12,011	9,753	81.2	113.0	5,291.4	7,442.4	54.6	139.1	19,574	57
Jun	314,080	671	90,657	9	11,374	9,577	84.2	113.0	5,886.1	8,254.9	175.4	2,313.6	23,370	57
Jul	346,239	672	98,096	10	12,389	10,162	82.0	113.0	6,520.8	9,145.0	188.0	4,606.7	26,458	57
Aug	354,311	668	93,422	6	12,986	10,728	82.6	113.0	6,900.2	9,677.2	174.1	4,962.8	28,131	57
Sep	328,713	684	108,376	22	11,067	9,148	82.7	113.0	5,856.5	8,212.3	184.4	3,395.3	23,661	57
Oct	321,542	736	82,724	80	12,258	10,296	84.0	113.0	6,302.3	8,840.2	133.7	1,805.2	24,852	57
Nov	292,706	673	75,846	22	11,480	9,441	82.2	113.0	4,991.2	7,030.0	60.8	289.9	18,620	57
Dec	294,998	635	91,612	0	10,961	9,120	83.2	113.0	3,974.1	5,631.3	45.6	117.5	13,922	57
Tot.	3,710,656	7,949	1,031,903	215	139,488	114,620		1,355.7	63,448	89,278	1,233.3	18,168	242,543	
Avr.	309,221	662	85,992	18	11,624	9,552	82.2	113.0	5,287	7,440	102.8	1,514	20,212	57
Max		736		80										

Energy Rates:

Generator Type:

SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Gen. Service, Natural Gas - \$0.6/therm (flat) VGF36GLD Engine Generator, 615 kWe

Hotel, San Diego 220,000 sf Basline/Alt. Config. Energy Cost Comparison

Specific Energy Costs

Baseline

	Grid	Utility
	Elec.	Gas
	Energy	Energy
	\$/kWh	\$/therm
Jan	0.131	0.600
Feb	0.135	0.600
Mar	0.132	0.600
Apr	0.136	0.600
May	0.138	0.600
Jun	0.142	0.600
Jul	0.138	0.600
Aug	0.137	0.600
Sep	0.140	0.600
Oct	0.133	0.600
Nov	0.133	0.600
Dec	0.131	0.600
Avr.	0.135	0.600
Total		

On Site Generation

Grid	Utility	Gen	Rec.	Gen*	Avr.
Elec.	Gas	Elec.	Heat	Elec.	Elec.
Energy	Energy	Energy	Value	Energy	Energy
\$/kWh	\$/therm	\$/kWh	\$	\$/kWh	\$/kWh
0.218	0.600	0.083	5,755	0.057	0.0923
0.214	0.600	0.083	5,098	0.057	0.0925
0.203	0.600	0.083	5,593	0.057	0.0895
0.206	0.600	0.083	5,392	0.056	0.0903
0.219	0.600	0.083	5,852	0.057	0.0866
0.207	0.600	0.083	5,746	0.055	0.0869
0.201	0.600	0.082	6,097	0.055	0.0838
0.212	0.600	0.082	6,437	0.055	0.0827
0.192	0.600	0.082	5,489	0.055	0.0888
0.225	0.600	0.083	6,178	0.055	0.0857
0.218	0.600	0.083	5,664	0.056	0.0884
0.191	0.600	0.083	5,472	0.056	0.0933
0.209	0.600	0.083	5,731	0.056	0.088
			\$68,772		

SDG&E AL-TOU_DER + EECC > 500 kW Gen. Service, Natural Gas - \$0.6/therm (flat) SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Gen. Service, Natural Gas - \$0.6/therm (flat)

VGF36GLD Engine Generator, 615 kWe

Note: * Cost of elctric generation including benefits of recoverable heat

Electric

Energy Rates Gen: VGF36GLD Engine Generator, 615 kWe With Gen SDG&E AL-TOU_DER + EECC > 500 kW + Energy Generation Charges Without (SDG&E AL-TOU_DER + EECC > 500 kW

Natural Gas

Energy Rates

Linergy reales		
With Gen:	Gen. Service,	Natural Gas - \$0.6/therm (flat)
Without Gen.:	Gen. Service,	Natural Gas - \$0.6/therm (flat)

