the Energy to Lead

DOE Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D

> November 20, 2008

WHO WE ARE

Gas Technology Institute

- >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets
 - An independent,
 501c (3)
 not-for-profit

Serving the Energy Industry Since 1941

- > Over 1,000 patents
- > Nearly 500 products commercialized

November 20, 2008

Super Boiler Background

- > U.S. industrial and commercial steam boilers
 - Consume over 6 quads of natural gas per year
 - Wide range of steam uses from process steam to space heating
- > Installed base of steam boilers
 - Largely over 30 years old
 - Average efficiency 76%
 - Typical NOx emissions 85 ppmv
 - Significant potential for improved technology

Project Origin & Goals

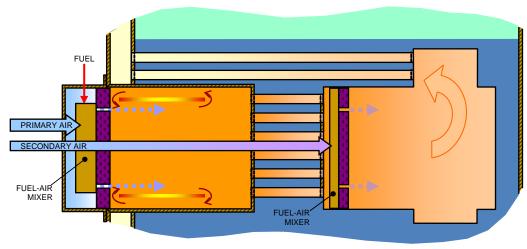
- > Super Boiler program
 - Started by DOE and gas industry in 1999
 - GTI team selected to carry out project
- > Goals:
 - Maximum efficiency
 - NOx and CO less than 5 ppmv
 - Reduced footprint and weight
 - Cost-effectiveness

COMBUSTION

- Natural gas combustion produces heat for steam generation, but also unwanted emissions (NOx, CO, VOC, PM)
- Combustion at lower excess air improves energy efficiency
- Minimizing NOx while achieving complete fuel burnout at low excess air was a huge challenge

Combustion: parallel approaches

- > Single-stage
 - Commercially available NatCom burner
 - Internal staging and FGR
- > Two-stage
 - Extension of GTI's FIR burner technology
 - Staged premixed combustion with inter-stage heat removal
 - No FGR required
 - Requires special boiler design


Combustion: single-stage controls

- > Operator interface via Hawk ICS touchscreen PLC control panel
- > PLC control
 - Fuel/air ratio control via individual drive motors with VFD trim
 - FGR damper control from individual controller
 - O_2 trim managed by in-situ O_2 sensor
 - Separate combustion setups for heat recovery and bypass modes

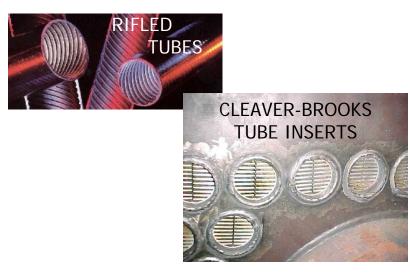
Combustion: two-stage version*

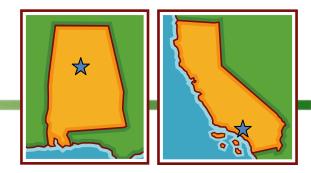
- > 80 HP lab boiler
 - Staged burner with internal recirculation
 - Interstage cooling pass
 - No FGR required
 - 3-5 ppmv NOx at 1-2% O₂

Combustion: two-stage field demo

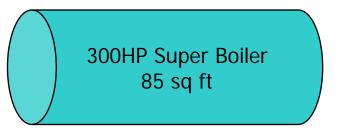
- 300 HP field demonstration >
 - Clement Pappas & Co. (Ontario CA)
 - Juice and beverage bottler
 - Steam used for pasteurization and cleaning
 - Steam demand = zero to 9,500 lb/h, highly variable
 - Scale-up included integral head design
 - Operates year-round 24/7
 - Started testing Feb 2008

Combustion: two-stage controls

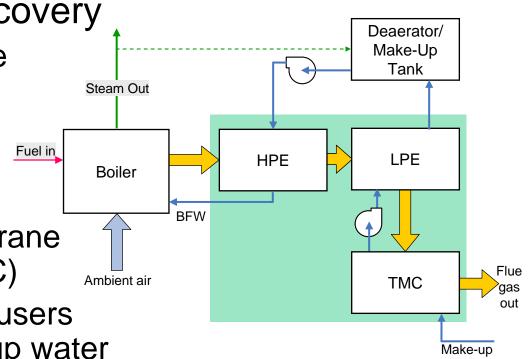

- > Operator interface via Hawk ICS touchscreen PLC control panel
- > PLC control
 - Critical first stage fuel/air ratio control via fuel delta-P and windbox air delta-P
 - Control implemented via parallel positioning (PP) controllers with VFD trim
 - O₂ trim integrated into air split management
 - Separate setups for heat recovery and bypass modes


Heat Transfer: convective pass


- > Enhanced firetube heat transfer
 - Fire-tubes with extruded aluminum inserts
 - Heat transfer 18X higher than conventional tubes
 - 2-pass boiler can deliver 4-pass performance with a smaller footprint



- > 300 HP field demonstration
 - Both AL and CA demos use finned firetube inserts in twopass design
 - Flue gas cooled to 35°F above steam temperature
 - California Super Boiler: 38% lighter & 31% smaller footprint than conventional 300 HP boiler



HEAT RECOVERY

- Natural gas combustion produces about 18% water from oxidation of H in fuel
- Water vapor up the stack accounts for 10% of fuel energy input, or 65% of stack loss
- Key to higher energy efficiency is to recover both <u>sensible</u> and <u>latent heat</u>

Heat Recovery: general approach

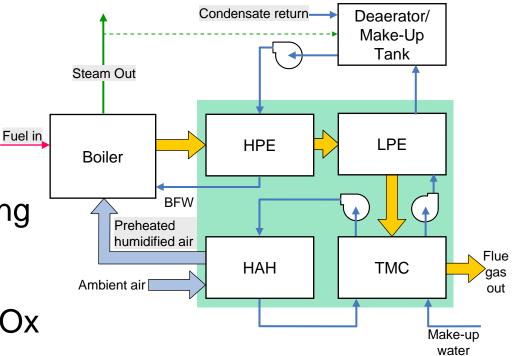
- > Flue gas heat recovery
 - Remove sensible heat with two economizers
 - Remove latent
 heat with
 Transport Membrane
 - Condenser (TMC)
 - Suitable for end users
 with <u>high make-up water</u>
 usage

gt

14

water

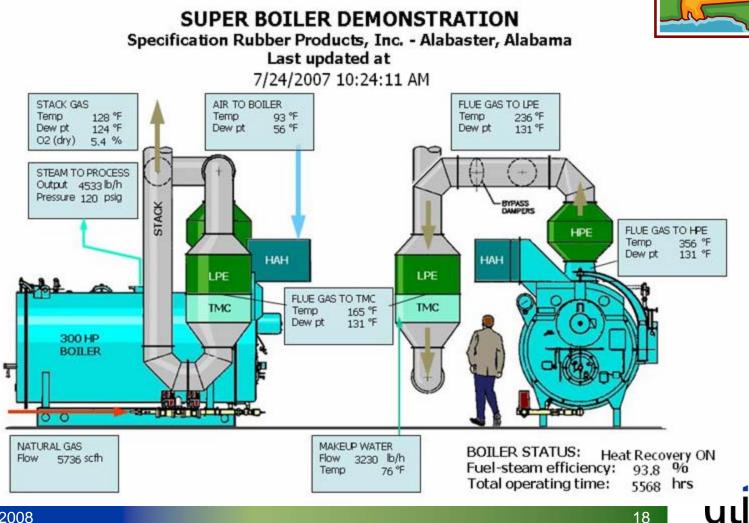
Heat Recovery: TMC concept*


- Transport Membrane Condenser (TMC)
 - Nanoporous ceramic membrane tubes
 - Water vapor permeation via capillary condensation
 - Partial vacuum on shell side
 - Counter-flow configuration

Heat Recovery: expanded system*

- > Applications with <u>high condensate</u> return
 Condensate re
 - Limited make-up water reduces TMC capacity
 - Recycle water through humidifying air heater (HAH)
 - Air humidification helps suppress NOx

Heat Recovery: Alabama field demo



November 20, 2008

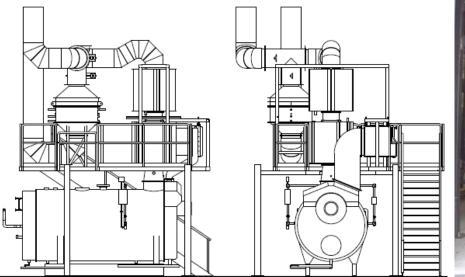
 $\stackrel{\frown}{\simeq}$

Heat Recovery: Alabama field demo

☆

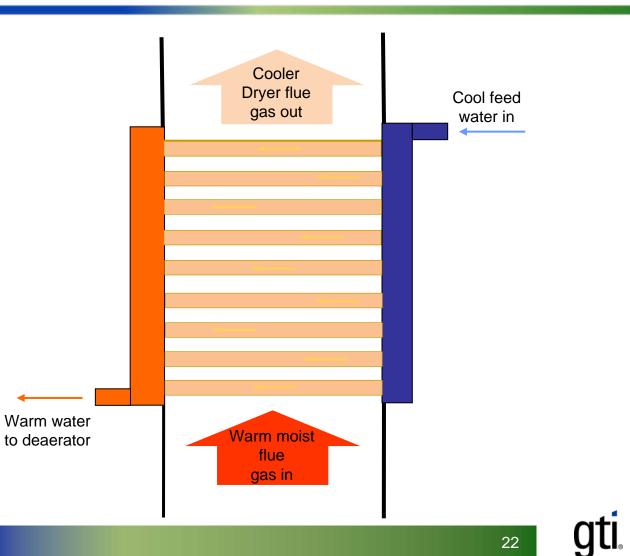
November 20, 2008

Heat Recovery: TMC hardware


- > Down-flow "Version 1.0"
 - Cylindrical shell design
 - Tube bundles (17" x 4"),
 99 tubes/bundle
 - Water on shell side with bottom inlet for natural counter-flow
 - Flue gas cooled to <160°F
 - Shell-side vacuum 3 psid
 - Flue gas pressure drop
 <4 in WC

Heat Recovery: California field demo

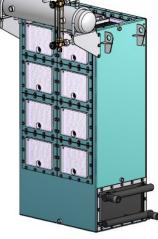
- > Clement Pappas & Co. in Ontario CA
 - Heat recovery system (HRS) similar to Alabama site
 - HRS mounted above boiler



1st and 2nd Generation Membrane **Bundles**

November 20, 2008

TMC Version 2.1 in Duct

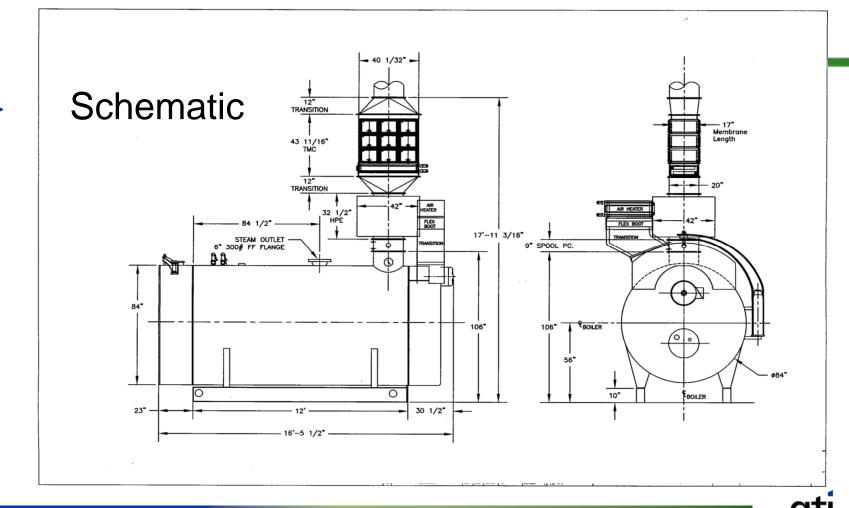

November 20, 2008

Heat Recovery: improved TMC design

- > Upflow "Version 2.0"
 - Modular design
 - 25-HP tube bundle modules
 - Water inside tubes with staged downward flow
 - Above-boiler mounting
 - Easier assembly and service
 - More compact
 - Less ductwork

Heat Recovery: Utah field demo

- Retrofit of Existing 200 hp >**150 Psig Firetube Boiler**
 - TMC "Version 2.0" retrofit to standard 200 HP CB boiler
 - No condensate return/ no HAH
 - Low-cost integrated LPE panel
 - Integrated boiler/HR controls


Latest Improvements

TMC Version 2.1 >

- CFD modeling and full-scale lab tests revealed ability to reduce passes from 4 to 3
- 25% savings in number of modules
- TMC module capacity increased to 33 HP
- > Air heater
 - Field data showed that HAH efficiency results could be achieved with non-humidifying air heater
 - 80% lower capital cost
 - Simpler controls

Proposed Heat Recovery Retrofit for 250 hp 150 psig CB Boiler

November 20, 2008

Required Support Equipment

- > Makeup tank/ deaerator
 - Receives hot water from LPE
 - Two-stage level control
 - Need stable inputs (MUW, condensate return)
- > Softened or de-mineralized water
- > Water filter for TMC
- Structural supports/access platforms as needed

Evaluation of TMC HRS Retrofit to 250 hp Boiler

Present Boiler

- > Fuel: 902,000 therms/yr.
- > Water: 2,000,000 gallons/yr
- > Stack Temperature: 407 F
- > Efficiency: 82 %

Retrofit with TMC HRS

- > Fuel: 786,500 therms/yr
- > Water: 1,600,000 gallons/yr
- > Stack Temperature: 130 F
- > Efficiency: 94 %
- > Savings: 115,500 therms/yr
- > Fuel Savings: \$138,600/yr based on \$1.20/therm
- > Water Savings: \$11,700/yr based on \$2.20/750 gal's

GTI Contact Information

>Dennis Chojnacki (847-768-0710)
>Dennis.chojnacki@gastechnology.org

>Curt Bermel (847-768-0649)
>Curt.Bermel@gastechnology.org