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Lattice design for an ILC damping ring

with 3 km circumference

Abstract

We describe a simple lattice that meets the specifications for the damping
times and horizontal and longitudinal emittances for the International Linear
Collider (ILC) damping rings. The circumference of a little over 3 km leads
to a bunch spacing of around 3 ns, which will require advances in kicker tech-
nology for injection and extraction. We present the lattice design, and initial
results of studies of the acceptance and collective effects. With the high bunch
charge and close spacing, the ion and electron cloud effects are expected to be
severe; however, the simple structure of the lattice allows for easy variation
of the circumference and bunch spacing, which may make it useful for future
investigations.
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Abstract

We describe a simple lattice that meets the specifications for the damping times
and horizontal and longitudinal emittances for the International Linear Collider
(ILC) damping rings. The circumference of a little over 3 km leads to a bunch
spacing of around 3 ns, which will require advances in kicker technology for injec-
tion and extraction. We present the lattice design, and initial results of studies
of the acceptance and collective effects. With the high bunch charge and close
spacing, the ion and electron cloud effects are expected to be severe; however, the
simple structure of the lattice allows for easy variation of the circumference and
bunch spacing, which may make it useful for future investigations.
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1 Introduction

The basic requirements of the ILC damping rings are that they accept a large beam
from the particle sources, and produce a highly stable, low emittance beam for the
downstream systems, at the machine repetition rate of 5 Hz. In the design of the
lattice presented in this note, we use the specifications set out in the TESLA TDR [1].
The positron beam is expected to have a normalized emittance of 0.01 m (horizontal
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and vertical), and the specified normalized emittances of the extracted beam are 8
µm horizontally and 0.02 µm vertically. Each bunch train consists of 2820 bunches
with 2 × 1010 particles, and a nominal bunch separation of 337 ns in the main linac.
This train must be compressed if the damping rings are to be of a reasonable size.
The TESLA TDR specified damping rings of 17 km, with a bunch separation of 20
ns. Here, we explore the possibility of damping rings with a much lower circumference
(around 3 km). We describe a simple lattice design together with the main parameters,
and present the results of initial studies of the acceptance and some of the expected
collective effects that may limit the performance of the damping rings. A ring with a
6 km circumference has already been proposed by Mishra et al [2]. Future work will
compare the 17 km, 6 km and 3 km rings in more detail.

2 General Lattice Description

The main lattice parameters are given in Table 1, the synchrotron radiation integrals
are given in Table 2, and the beam parameters are given in Table 3.

Table 1: General lattice parameters.
Energy E 5.0 GeV
Circumference C 3043.124 m
Revolution frequency f0 98.514 kHz
RF voltage VRF 13.12 MV
RF frequency fRF 650.00 MHz
Harmonic number h 6598
Horizontal tune νx 51.280
Vertical tune νy 31.590
Synchrotron tune νs 0.0269
Momentum compaction αp 2.88× 10−4

Natural bunch length σz 6.00 mm
Natural energy spread σδ 1.16× 10−3

RF acceptance δmax 1.98%
Energy loss per turn U0 5.34 MeV
Horizontal damping time τx 19.0 ms
Vertical damping time τy 19.0 ms
Longitudinal damping time τε 9.50 ms
Natural Emittance ε0 0.616 nm
Horizontal natural chromaticity ξx -128
Vertical natural chromaticity ξy -70.2

The lattice consists of 28 double-bend achromat (DBA) cells. In general, the natu-
ral emittance of a DBA lattice will be higher than that of a lattice at the same energy
consisting of the same number of theoretical minimum emittance (TME) cells. Put
another way, a larger number of DBA cells are needed to achieve a natural emittance
below a given value, than if the lattice were constructed from TME cells. However,
with the large circumference set by the length of the bunch train, the number of cells
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Table 2: Synchrotron radiation integrals.
I1 0.87632 m
I2 0.60715 m−1

I3 0.044471 m−2

I4 2.0518× 10−4 m−1

I5 1.0198× 10−5 m−1

Table 3: Beam parameters.
Particles per bunch N0 2.0× 1010

Number of bunches nb 2820
Bunch spacing ∆τb 3.077 ns
Bunches per train ntrain 94
Bunches per gap 16
Number of bunch trains 30
Average current 〈I〉 890 mA
Injected normalized emittance γεinj 0.01 m
Equilibrium vertical emittance γεy 0.02 µm

is not an important issue, and the DBA cell has the advantage of simplicity, since
dispersion-free sections, necessary for the damping wiggler, occur naturally without
the need for matching sections. It is also often the case that harmonic sextupoles,
located outside the achromat, are helpful in improving the dynamic aperture. We did
not find this to be the case in the present lattice; this is further discussed below.

The lattice functions in one periodic section of the lattice are shown in Figure 1.
The lattice is tuned to give the optimum beta function in the dipole for minimum
emittance with zero dispersion outside the achromat.

The tunes have been chosen with the following considerations:

• The vertical tune should be close to the half integer, to minimize sensitivity to
quadrupole alignment errors. However, the tune should be sufficiently far from
the half integer that the lattice is not overly sensitive to focusing errors.

• The working point should be away from major coupling resonances, to reduce
sensitivity of the vertical emittance to sextupole misalignment and quadrupole
rotation errors.

• The working point should be sufficiently far from major nonlinear resonances,
to allow good dynamic aperture.

Ideally, in addition to the above considerations, the horizontal and vertical tunes should
also be below the half-integer. Above the half-integer, the coupled-bunch mode most
strongly driven by the resistive wall impedance is antidamped; below the half-integer,
it is damped. However, the additional requirements on the bunch-by-bunch feedback
system from operating slightly above the half-integer, compared to operating slightly
below, are not that great. In the present case, it was found that a significantly better
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Figure 1: Beta functions and dispersion in one periodic section of the lattice.

4



dynamic aperture could be obtained with the vertical tune slightly above the half-
integer.

2.1 Injection and Extraction Timing and RF System

The bunches are arranged in 30 trains of 94 bunches, with a gap of 16 “missing” bunches
between bunch trains. The gaps are intended to prevent ion trapping. Extraction
proceeds with the first bunch in each train; the gap after the last bunch train is one
bunch shorter than the others, so that after the first bunch has been extracted from
each train, extraction continues with the second bunch in each train with no delay in
the arrival of bunches at the linac. Thus, the harmonic number must be a multiple of
30× (94 + 16)− 1 = 3299. Choosing a harmonic number of 6598 with a circumference
of 3043.124 m gives an RF frequency of 650 MHz, which is exactly half the main linac
RF frequency of 1.3 GHz. The gap between bunches in the ring is 3.077 ns, and the
spacing between bunches in the downstream systems is then a factor of 94 + 16 = 110
times larger than this, or 338.47 ns.

The RF voltage of 13.12 MV has been chosen to give a bunch length of 6 mm.
The RF acceptance at this voltage is a little under 2%, which should be sufficient to
ensure good injection efficiency, but allows little margin for particles in the tails of the
energy distribution. The required voltage may be provided by 26 RF cavities. There
is sufficient room in the lattice to allow flexibility in the distribution of the cavities
around the ring.

The locations of the injection and extraction components (kickers and septa) have
not yet been specified.

2.2 Equilibrium and Extracted Emittance, and Alignment Sensitivity

The extracted emittance is given by:

γεext = e−2 t
τ γεinj +

(
1− e−2 t

τ

)
γεequ (1)

where γεinj , γεext, γεequ are respectively the injected, extracted and equilibrium nor-
malized emittances; t is the time after injection, and τ is the damping time. With an
injected emittance of 0.01 m, an equilibrium vertical emittance of 0.02 µm, a damping
time of 19.0 ms and a store time of 200 ms, the extracted vertical normalized emittance
will be a negligible amount over 0.02 µm. This suggests that from point of view of the
extracted emittance, the length (or field strength) of damping wiggler in the lattice
could be reduced. It may be helpful to reduce the field strength from the present 1.4 T
in order to increase the aperture; on the other hand, some ‘excess’ damping is desirable
for better beam stability.

Again neglecting collective limitations, the extracted horizontal emittance will be
essentially the equilibrium emittance, which at low coupling is close to the natural
emittance. The natural emittance in the lattice described here is a little below the
specified emittance of 8 µm for TESLA.

The minimum vertical emittance that can be achieved is determined by the vertical
opening angle of the synchrotron radiation [3]:

εy =
13
55

Cq

Jy

∮ βy

|ρ|3 ds∮
1
ρ2 ds

(2)
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For the present lattice, the minimum vertical emittance (not normalized) is 0.24 pm,
or 12% of the specified operating vertical emittance.

An equilibrium vertical normalized emittance of 0.02 µm is a challenging goal that
will require precise magnet alignment and correction of the vertical dispersion and
betatron coupling. The sensitivity of the vertical orbit, dispersion and coupling to
magnet motion are relevant quantities, which depend on the magnet strengths and
lattice functions. To quantify the sensitivities, it is convenient first to define the
following quantities:

Σ1O =
∑

quadrupoles

βy(k1L)2 (3)

Σ1D =
∑

quadrupoles

βyη
2
x(k1L)2 (4)

Σ1C =
∑

quadrupoles

βxβy(k1L)2 (5)

Σ2D =
∑

sextupoles

βyη
2
x(k2L)2 (6)

Σ2C =
∑

sextupoles

βxβy(k2L)2 (7)

The numeric subscript on the Σ∗∗ indicates whether the summation is performed over
the quadrupoles or the sextupoles, and the alphabetic subscript identifies the quantity
as relevant for the orbit, dispersion, or betatron coupling. The k1L are the integrated
normalized quadrupole strengths, and the k2L are the integrated normalized sextupole
strengths.

In terms of the above quantities, we can write the following approximate relation-
ships:

〈y2〉
〈σ2

y〉
'

〈∆Y 2
q 〉

8εy sin2 πνy
Σ1O (8)

εy

〈∆Θ2
q〉

' Jx

Jy

1− cos 2πνx cos 2πνy

(cos 2πνx − cos 2πνy)
2 εxΣ1C + Jε

σ2
δ

sin2 πνy
Σ1D (9)

εy

〈∆Y 2
s 〉

' Jx

Jy

1− cos 2πνx cos 2πνy

4 (cos 2πνx − cos 2πνy)
2 εxΣ2C + Jε

σ2
δ

4 sin2 πνy
Σ2D (10)

Here, 〈y2〉 is the mean square vertical orbit distortion; 〈∆Y 2
q 〉 is the mean square

vertical quadrupole misalignment; 〈∆Y 2
s 〉 is the mean square vertical sextupole mis-

alignment; 〈∆Θ2
q〉 is the mean square quadrupole rotation about the beam axis; Jx, Jy

and Jε are the damping partition numbers; νx and νy are the betatron tunes, and σδ

is the rms natural energy spread. These expressions assume that the misalignments
are random and uncorrelated, that the betatron coupling is dominated by the lowest-
order difference resonance, and that the dispersion in the dipoles and wigglers is not
correlated. These assumptions are not necessarily valid for the damping rings. In par-
ticular, when calculating the contribution of the vertical dispersion to the emittance,
it can be important to consider the dispersion in the wiggler separately from the rest
of the lattice. This is because the radiation from the wiggler typically dominates over
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the radiation from the dipoles. This emphasizes the need to study the emittance tun-
ing by detailed simulations; however, bearing these issues in mind, we can proceed to
estimate the sensitivities of the different lattices.

We define the following three measures of the lattice sensitivity:

Quadrupole jitter sensitivity is the rms quadrupole misalignment that will gener-
ate an orbit distortion equal to the beam size for a specified emittance. This is
found from (8).

Quadrupole rotation sensitivity is the rms quadrupole rotation that will generate
a specified vertical emittance. This is found from (9).

Sextupole alignment sensitivity is the rms sextupole vertical misalignment that
will generate a specified vertical emittance. This is found from (10).

The values of these sensitivities for the present lattice are given in Table 4. The values
are typical for a large storage ring operating with an emittance ratio of around 0.3%.

Table 4: Lattice sensitivities.
Quadrupole Jitter 226 nm
Quadrupole Rotation 349 µrad
Sextupole Alignment 67 µm

2.3 Dipoles, Quadrupoles, Sextupoles and Octupoles

One of the difficulties with large, low-emittance lattice designs is that the low dispersion
leads to a small momentum compaction, which in turn makes the beam sensitive to a
variety of collective effects. This can be compensated by using long, low-field dipoles.
In the present design, the dipoles are a little under 7.5 m long, with a field of 0.25 T.

The parameters of the dipoles and higher multipoles are shown in Table 5. We
have assumed a full aperture of 60 mm for all magnets, which will allow a vacuum
chamber inside radius of 25 mm. this gives a reasonable pole-tip field for all magnets.
There is sufficient room in the lattice to allow flexibility in the lengths of the magnets,
to increase the aperture while reducing the pole-tip field if necessary. Note that at
present, all magnets of a given type have the same length and aperture.

Table 5: Parameters of dipoles and strongest multipoles.
Type Length Field or Gradient Full Aperture Pole-tip field

[m] [m] [T]
Dipoles 7.485 0.250 T 0.06 0.250
Quadrupoles 0.30 20.7 T/m 0.06 0.621
Sextupoles 0.20 170 T/m2 0.06 0.0765
Octupoles 0.20 3580 T/m3 0.06 0.0161
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2.4 Damping Wiggler

The wiggler parameters are given in Table 6. Note that the ends of the wiggler are
designed so that the orbit is centered on the wiggler axis; the length of each wiggler
section is therefore not exactly the period length multiplied by the given number of
periods per section. It is desirable to have as large a physical aperture as possible in
the wiggler; this is constrained by the field strength requirements, and we have chosen
fairly conservative values for the peak field and the period. A hard-edged dipole model
is used at present in the lattice. A more realistic model, including focusing adjustments
and nonlinear terms, will need some magnet design work.

Table 6: Wiggler parameters.
Period λw 400 mm
Peak field B̂w 1.40 T
Periods per wiggler 6.5
Total number of wigglers 56
Total length of wiggler 138 m

2.5 Vacuum System

Some parameters of the vacuum system are needed for estimates of certain collective
effects. We assume the parameters given in Table 7. The circular cross-section is
an approximation for purposes of estimates of resistive-wall effects. The challenging
specification on the residual gas pressure (0.1 ntorr) is driven by the ion effects, and
will probably require an antechamber.

Table 7: Vacuum system parameters.
Vacuum chamber material aluminum
Beam pipe conductivity σc 3.8×107Ω−1m−1

Vacuum chamber cross-section circular
Beam-pipe radius (except wiggler) 25 mm
Beam-pipe radius (in wiggler) 15 mm
Mean beam-pipe radius 〈b〉 24.2 mm
Residual gas pressure p0 0.1 ntorr

3 Nonlinear Dynamics and Dynamic Aperture

3.1 Tune Shifts with Energy and Betatron Amplitude

The sextupoles are tuned to give zero linear chromaticity. Their locations have been
chosen to minimize the strengths required for this purpose, i.e. the sextupole locations
have large dispersion and good separation of the horizontal and vertical beta functions.
The remaining tune-shifts with energy are dominated by the second-order terms; this
is shown in Figure 2.
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Figure 2: Tune shifts with energy.

The sextupoles cause large variations in the tunes with betatron amplitude. Con-
ventionally, such nonlinear effects are compensated in a DBA lattice by the use of
harmonic or auxiliary sextupoles outside the achromat. In the present case, we found
that auxiliary sextupoles had little benefit for the dynamic aperture. Instead, we used
octupoles to control the tune shifts with amplitude. The horizontal and vertical tunes
for different values of the betatron actions are shown in Figure 3 (octupoles off) and
Figure 4 (octupoles on).

3.2 Transverse Phase Space

An indication of the strength of the nonlinear dynamics can be found from plotting
the phase-space portraits in the horizontal and vertical planes. The nonlinear elements
in the lattice distort the phase-space invariants from the ellipses that are expected in
a linear system. The phase-space portraits for the lattice with the octupoles off are
shown in Figure 5, and with the octupoles on in Figure 6. In each plot, the beta
functions at the observation point are βx = 5.45 m, βy = 41.1 m. Particles are initially
spaced at intervals corresponding to half the rms injected beam size (assuming an
injected emittance of 0.01 m normalized), and tracked for 500 turns.

The octupoles appear to have a detrimental effect on the stability of orbits at large
horizontal betatron amplitude; however, we found this to be limited to the case where
the vertical betatron amplitude was small. For large horizontal and vertical betatron
amplitudes, the octupoles do improve the stability. This is consistent with the large
cross-plane tune shifts seen in Figure 3.
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Figure 3: Tune shifts with betatron amplitude, with octupoles off.

Figure 4: Tune shifts with betatron amplitude, with octupoles on.
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Figure 5: Phase-space portraits, with octupoles off.

Figure 6: Phase-space portraits, with octupoles on.

11



3.3 Dynamic Aperture: Frequency Map Analysis

A more detailed picture of the nonlinear dynamics can be obtained using Frequency
Map Analysis. This technique has been used successfully to improve the acceptance
of the LBNL Advanced Light Source [4], [5], [6]. Briefly, we track particles at different
betatron amplitudes, and analyze the tracking data using an interpolated Fourier-
Hanning technique to determine the tunes with high precision. Corresponding points
are plotted in co-ordinate space and tune space. A “diffusion rate” in tune space is
determined by tracking for 2N turns, and comparing the difference in tune between
the first N turns and the last N turns. The diffusion rate is indicated by a color
scale on both the co-ordinate space and tune space plots. Strong resonances are often
characterized by rapid diffusion.

The dynamic aperture in co-ordinate space and the corresponding frequency map
are shown in Figure 7. Particles were tracked for 256 turns; all results in this section are
for the lattice with the octupoles turned on. The diffusion rate is given on a logarithmic
scale: a value of -6, for example, means that change in the horizontal and vertical tunes
between the first 128 and the last 128 turns, is 10−6 (note that the changes in the tune
are added in quadrature). As with the phase-space portraits, the beta functions at the
observation point are βx = 5.45 m, βy = 41.1 m. Assuming an injected normalized
emittance of 0.01 m, the corresponding rms beam sizes are σx = 2.36 mm and σy = 6.48
mm. The acceptance is of the order of four times the beam size horizontally, and
five times the beam size vertically. Magnet errors, including systematic and random
multipole components in the wiggler and other magnets, and tuning errors, can be
expected to reduce the dynamic aperture significantly, and the present acceptance of
the lattice is probably insufficient to ensure the necessary injection efficiency.

Figure 7: Dynamic aperture in co-ordinate space and frequency map. The nominal
injected beam sizes are σx = 2.36 mm and σy = 6.48 mm. The nominal fractional
tunes are (0.28,0.59). Resonance lines up to fifth order are shown.

Figure 8 shows the dynamic aperture and corresponding frequency map in δ − x
space. The dynamic energy acceptance is close to ±3%, and larger than the RF
acceptance.

Finally, we emphasize that the results presented here are preliminary. Further
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Figure 8: Dynamic aperture in δ − x space and frequency map. The nominal injected
beam sizes are σx = 2.36 mm and σy = 6.48 mm. The nominal fractional tunes are
(0.28,0.59). Resonance lines up to fifth order are shown.

optimization of the nonlinear dynamics is likely to be possible, and would likely involve
changes to sextupoles and octupoles. Also, the effects of errors, which are expected to
reduce the dynamic aperture significantly, need careful study.

4 Collective Effects

In this section, we present the results of initial estimates of the severity of a variety of
collective effects expected to be important. Many of the phenomena we consider need
a more careful analysis than we have carried out at the present time; the results here
should be interpreted only as general indications of the severity of the relevant effects.

4.1 Microwave and CSR Instability

The Keill-Schnell-Boussard criterion gives an impedance threshold for the longitudinal
microwave instability that may be written:

Z//

n
= Z0

√
π

2
γαpσ

2
δσz

N0re
(11)

where Z0 is the free-space impedance, γ the relativistic factor, and re the classical
electron radius. There is also a transverse coasting-beam instability associated with
the transverse impedance. Again applying the Keill-Schnell-Boussard criterion, the
threshold for this instability may be written:

Z⊥ = Z0
γαpσδνy

N0re

ω0σz

c
(12)

Although the relationship is strictly true only for the resistive wall impedance, the
transverse broad-band impedance is often assumed to be related to the longitudinal
broad-band impedance through:

Z⊥ =
2c

ω0〈b〉2
Z//

n
(13)
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where 〈b〉 is the mean vacuum chamber radius.
Coherent synchrotron radiation is also able to drive beam instabilities; the threshold

is given as a bunch charge above which, the CSR instability starts to have an effect
[7]:

N0,th = 3.6
C

4π〈b〉
γαpσ

2
δσz

re
(14)

Using appropriate values for the parameters, we can evaluate all the above thresh-
olds. The results are given in Table 8.

Table 8: Microwave and CSR instability thresholds.
Longitudinal broad-band impedance threshold Z//

n 191 mΩ
Transverse broad-band impedance threshold Z⊥ 4.3 MΩ/m
Longitudinal equivalent impedance threshold ω0〈b〉2

2c Z⊥ 2630 mΩ
CSR instability charge threshold N0,th 2.9×1011

4.2 Space-Charge Tune Shift

Space-charge forces lead to a significant vertical tune shift, because of the large cir-
cumference and small vertical beam size. The incoherent tune shift is given by:

∆νy =
N0re√
2π

3
γ3σz

∫ C

0

βy

σy (σx + σy)
ds (15)

Evaluating the integral gives an incoherent space-charge tune shift of 0.052 which,
while significant, should not in itself prevent operation of the damping rings with their
specificied parameters.

4.3 Resistive-Wall Instability

The resistive-wall impedance of the vacuum chamber will drive a transverse coupled-
bunch instability. The impedance is given by:

Z⊥(ω) = (1− sgn (ω) i) Z0
C

2π〈b〉3
δskin(ω) (16)

where the skin depth is:

δskin =
√

2
σcµcω

(17)

σc and µc are the conductivity and magnetic permeability of the vacuum chamber.
Assuming a uniform fill of nb bunches with average current 〈I〉, the growth rate of a
transverse mode with mode number m is given by:

1
τm

= − c〈I〉
4πνyE/e

Re
∞∑

p=−∞
Z⊥ ((νy + nbp + m) ω0) (18)

With the nominal operating conditions, the ring is not uniformly filled, but there are
gaps between bunch trains. We can still estimate the growth rates by assuming a
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uniform fill, but either using the same average current as in the case where there are
gaps between bunch trains, or using the same bunch charge. Using the same average
current will likely underestimate the growth rates; using the same bunch charge will
likely overestimate the growth rates. In the present case, the gaps account for roughly
16% of the circumference, so the difference between the two cases is not large.

Figure 9 shows the growth rates of the unstable modes in the vertical plane, as-
suming a uniform fill. The red (upper) points show the growth rates with the same
charge per bunch as the nominal case; the black (lower) points show the growth rates
with the same average current as the nominal case. The blue broken line shows the
vertical damping time.

Table 9 gives the growth time of the instability, and the range of unstable modes
with growth rates faster than the radiation damping rate. A bunch-by-bunch feedback
system will be needed to suppress the instability; a potential concern is the jitter
induced on the beam by the feedback system.

Figure 9: Growth rates of unstable resistive-wall modes.

Table 9: Resistive wall instability growth times, assuming uniform fill at nominal bunch
charge.

Shortest growth time 1.22 ms
Shortest growth time 120 turns
Lowest unstable mode number 3187
Highest unstable mode number 3267

We note that higher-order modes in the RF cavities can also drive coupled-bunch
instabilities. The RF cavity design is not known at the present time, so we have not
investigated these growth rates.
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4.4 Ion Effects

First, we consider ion trapping. Without gaps in the fill, ions with a relative molecular
mass greater than Ax(y) will be trapped horizontally (vertically), where

Ax(y) =
N0rpc∆τb

2σx(y) (σx + σy)
(19)

At the equilibrium beam size, all ions will be trapped horizontally, and ions with a
relative molecular mass greater than 11 will be trapped vertically. Other ions will be
trapped vertically as the beam damps from its injected size.

It is hoped that the gaps in the fill will be sufficient to clear ions accumulated during
the passage of a bunch train. However, we must then consider the fast-ion instability
arising from the ions accumulated during one bunch train [8]. The line density of ions
at the end of a bunch train is given by:

λion = N0ntrain
p0

kT
σion (20)

where σion is the ionization cross-section, assumed to be 2 Mb. The presence of the
ions causes coherent and incoherent tune shifts, with the incoherent tune shift twice
as large as the coherent. Because of the small vertical beam size, the effects are much
stronger in the vertical plane. The incoherent vertical tune shift is given by:

∆νy =
1
2π

∫ C

0
Kyβyds (21)

where the ion focusing is given by:

Ky =
λionre

γσy (σx + σy)
(22)

As well as the tune shifts, there is a growth in betatron oscillations of bunches towards
the rear of the bunch train, driven by oscillations of the ions in the potential of the
beam. The ion oscillation frequency is ωion, given by:

ω2
ion

c2
=

λ̄erp

Aσy (σx + σy)
(23)

where λ̄e = N0/c∆τb is the mean line density of electrons in the beam, A is the relative
molecular mass of the residual gas ions in the chamber, and rp is the classical radius
of the proton. The growth rate of betatron oscillations of bunches towards the rear of
the bunch train is given by:

1
τ

=
f0

4
√

2σω

∫ C

0
ωionKyβyds (24)

where f0 is the revolution frequency, and σω is the standard deviation of the ion
oscillation frequency around the ring, resulting from the variation in beam size.

Table 10 gives the parameters of the fast-ion instability, found by applying the
above expressions to the present lattice design. We assume that the dominant gas
species in the chamber is CO.
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Table 10: Parameters of the fast-ion instability.
Residual vacuum pressure p0 0.1 ntorr
Molecular mass of residual gas (species) A 28 (CO)
Ion density at end of bunch train λion 1.2× 103m−1

Mean ion frequency ωion/c 1.08 m−1

Standard deviation ion frequency σω/c 0.21 m−1

Incoherent vertical tune shift ∆νy 0.0046
Exponential growth time τ 360 µs

At 0.1 ntorr residual gas pressure, the incoherent tune shift is small enough not
to limit operational performance. The exponential growth time is fast, but it should
be possible to suppress the instability using a bunch-by-bunch feedback system; as
with the resistive wall instability, the concern is the jitter that such a feedback system
could induce on the beam. Emittance growth will be associated with the coherent
bunch oscillations driven by the accumulated ions. The simple estimates used here
indicate that ion effects are likely to be an issue in the damping ring. Further studies,
including simulations and experimental work, will be needed to predict the impact on
machine performance with more confidence.

4.5 Electron Cloud Effects

Electrons accumulating in the positron damping ring may have a multitude of dynam-
ical effects on the beam, including single bunch and coupled bunch instabilities. Here,
we consider only the single bunch effects. We treat the electron cloud as a broad-
band transverse impedance, with resonant frequency characteristic of the oscillation
frequency of the electrons in the potential of a single positron bunch. This frequency
ωecloud is given by:

ω2
cloud

c2
=

N0re√
2πσzσy (σx + σy)

(25)

In the present case, the oscillation frequency is large compared to the bunch length
(see Table 11), so it is appropriate to use a coasting-beam model for the instability.
Following Ohmi and Zimmermann [9], we estimate the transverse impedance from the
electron cloud as:

Z⊥ = Z0C
ρ̂cloud

2λbeam
(26)

where ρ̂cloud is the peak cloud density in the beam, and λbeam = N0/
√

2πσz is the
peak line density of charge in the beam. Using the Keill-Schnell-Boussard criterion,
the instability threshold is:

Z⊥,th = Z0
γαpσδνy

N0re

ωcloudσz

c
(27)

Combining equations (26) and (27) gives the electron cloud density threshold at which
instability occurs:

ρ̂cloud =

√
2
π

γαpσδνy

re

ωcloud

cC
(28)
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This may be compared with the mean density of electrons in the chamber expected
from the neutralization condition:

ρneut =
N0

π〈b〉2c∆τb
(29)

Values are given in Table 11. The instability threshold is nearly a factor of two higher
than neutralization density. However, the neutralization density is an average density
that does not include the enhancement that can occur during a bunch passage. Simu-
lations suggest that the density of the cloud in the bunch can be increased by an order
of magnitude during a bunch passage. In this case, an instability will occur. It appears
necessary to reduce the density of the cloud in the chamber at least by an order of
magnitude below the neutralization level to prevent an instability.

Table 11: Parameters of the electron-cloud instability.
Cloud oscillation frequency ωcloud/c 1920 m−1

Cloud oscillations per bunch ωcloudσz/c 11.5
Instability impedance threshold Z⊥ 7.97 MΩ/m
Instability cloud density threshold ρ̂cloud 1.85× 1013 m−3

Neutralization density ρneut 1.18× 1013 m−3

4.6 Touschek Lifetime

The beam store time is around 200 ms, which is much less than the Touschek lifetime.
However, a reasonable Touschek lifetime is desirable for commissioning and tuning.
For flat beams that are non-relativistic in the beam rest frame, and assuming that the
energy aperture is given by the RF acceptance δmax, the Touschek lifetime τ is given
by [10]:

1
τ

=
r2
ecN0

8πγ2δ3
maxσz

1
C

∫ C

0

D(ε)
σxσy

ds (30)

where the function D(ε) is defined by:

D(ε) =
√

ε

[
−3

2
e−ε +

ε

2

∫ ∞

ε

lnu

u
e−udu +

1
2

(3ε− ε ln ε + 2)
∫ ∞

ε

e−u

u
du

]
(31)

and the argument ε is given by:

ε =
(

δmaxβx

γσx

)2

(32)

With an energy acceptance of 1.98%, the Touschek lifetime is 155 minutes. This is
a reasonable beam lifetime for commissioning and tuning purposes; however, we note
that the lifetime drops rapidly with decreasing energy acceptance, so dynamic limits
on the energy acceptance could have a significant impact.
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4.7 Intrabeam Scattering

As well as the large-angle scattering leading to particle loss (Touschek effect), particles
within a bunch undergo small-angle scattering. The resulting increases in the beam
emittances are described by the theory of intrabeam scattering (IBS). To calculate the
emittance growth in the present lattice, we use the approximation of Bane [11] to the
theory of Bjorken and Mtingwa [12]. In Bane’s approximation, the growth rate of the
energy spread resulting from intrabeam scattering is given by:

1
Tp

=
r2
ecN0

16γ3 4

√
βxε3xβyε3yσzσ3

δ

ln

(√
βyεyγ

2εx

reβx

)
g

(√
βxεy

βyεx

)
σH (33)

where the auxiliary functions are defined:

σH =
(

1
σ2

δ

+
Hx

εx
+
Hy

εy

)− 1
2

(34)

and:

g(α) = α0.021−0.044 ln α α ≤ 1 (35)

g(α) = g(1/α) α > 1 (36)

Hx is the dispersion H-function:

Hx = γxη2
x + 2αηxη′x + βxη′2x (37)

In the limit in which the vertical emittance is generated entirely by vertical dispersion
(i.e. with no betatron coupling) the horizontal and vertical growth rates are given by:

1
Tx

= σ2
δ

Hx

εx

1
Tp

(38)

1
Ty

= σ2
δ

Hy

εy

1
Tp

(39)

The vertical dispersion arises from vertical steering errors. For our calculations, we use
an average value determined from the usual expression for the equilibrium emittance
in the presence of radiation damping and quantum excitation:

εy = Cqγ
2〈Hy〉

I3

I2
(40)

For an equilibrium vertical emittance of 2 pm, this gives 〈Hy〉 = 0.744 µm. Assuming
uncorrelated errors, we can write an approximate relationship between the dispersion
and the dispersion H-function:

〈Hy〉 ≈
〈η2

y〉
〈βy〉

(41)

With 〈βy〉 = 25.8 m, this gives an rms vertical dispersion of 4.3 mm. As mentioned
above, our treatment assumes that the vertical emittance is generated entirely by
vertical dispersion.
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The emittances εx,N and εy,N with a bunch charge N in the presence of intrabeam
scattering are found from: the zero-current emittances εx and εy; the IBS growth times
Tx and Ty; the synchrotron radiation damping times τx and τy. In the horizontal plane:

εx,N =
Tx

Tx − τx
εx (42)

A similar equation holds for the vertical plane. For the energy spread, we have:

σδ,N =
Tp

Tp − τp
σδ (43)

where τp is the longitudinal radiation damping time, and σδ,N is the energy spread
with a bunch charge N . A similar equation holds for the bunch length. Since the
growth rates depend on the beam emittances, the equilibrium emittances for a given
bunch charge need to be found by iteration. Also note that the growth rates need to
be averaged around the ring. Performing the calculations for the present lattice gives
the results shown in Table 12. Note that the proportional growth in the bunch length
is equal to the proportional growth in the energy spread.

Table 12: Intrabeam scattering growth rates and emittance growths.
Bunch charge N 2× 1010

Horizontal growth time Tx 0.109 s
Vertical growth time Ty 1.88 s
Longitudinal growth time Tp 0.483 s
Horizontal emittance growth εx,N/εx − 1 21%
Vertical emittance growth εy,N/εy − 1 1.9%
Energy spread growth σδ,N/σδ − 1 1.9%

The growth in the horizontal emittance at the nominal bunch charge is not negligi-
ble, but is still within the specified operating value of 8µm. The growths in the vertical
and longitudinal planes are much smaller. In the case that the vertical emittance is
generated entirely by betatron coupling (as opposed to vertical dispersion, as we have
assumed here), the proportional growth in the vertical emittance will be equal to the
proportional growth in the horizontal emittance. In practice, therefore, we expect the
proportional growth in the vertical emittance to lie somewhere between 2% and 21%.
An emittance growth at the upper end of the range could have some impact on machine
performance.

5 Summary and Conclusions

The lattice design we have discussed meets the principal specifications for damping
time and extracted emittance. With a circumference of a little over 3 km, the bunch
spacing is around 3 ns, which sets a challenging specification for the injection and
extraction kickers. Initial analysis of the single-particle and multi-particle beam dy-
namics suggests that the required performance could be achieved in this lattice, but
there are a number of issues which need to be addressed in more detail. Specifically:
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• The acceptance of the lattice will need to be improved to ensure close to 100%
injection efficiency. Presently, the dynamic aperture is four times the injected
rms beam size horizontally, and five times the injected rms beam size vertically.
The energy acceptance is close to 3%. When errors are included, the acceptance
can be expected to reduce significantly.

• The incoherent space-charge tune shift is expected to be around 0.05, which
should be tolerable. However, detailed tracking studies are needed to determine
if the tune shift leads to emittance growth or particle loss.

• The Keill-Schnell-Boussard criterion indicates that the longitudinal microwave
instability will occur if the longitudinal broad-band impedance is above 190 mΩ.
This sets a demanding specification on the design and construction of the vacuum
chamber. However, a more detailed analysis, using realistic functions for the wake
fields of individual components, will be required to specify the impedance limit
with more confidence. The threshold for the transverse instability is much higher
than for the longitudinal instability.

• A bunch-by-bunch feedback system will be needed to suppress the coupled-bunch
instability driven by the resistive-wall impedance. The expected growth times
are around 120 turns. The feedback system will induce jitter on the beam, and
a low-noise pickup will be needed to keep the jitter within tolerable limits.

• The high bunch charge, short bunch separation and long bunch trains means
that fast-ion effects will occur, with coupled-bunch growth times of around 35
turns, even with a residual gas pressure of 0.1 ntorr. Again, the instability can
be suppressed with a bunch-by-bunch feedback system, but there is a concern
with the jitter that the feedback system will induce on the beam.

• Measures will be needed to suppress the build-up of electron cloud in the positron
damping ring.

• The Touschek lifetime is 155 minutes with the nominal operating conditions.
This is long enough for commissioning and tuning purposes.

• Intrabeam scattering will give 20% growth in the horizontal emittance and be-
tween 2% and 20% growth in the vertical emittance (depending on the relative
contributions of vertical dispersion and betatron coupling to the vertical emit-
tance). A negligible amount of longitudinal emittance growth is expected. The
transverse emittance growth is tolerable, but may require that a low-current
vertical normalized emittance below 0.02 µm be achieved.

Future studies will compare the beam dynamics in the 3 km lattice presented here,
with the 17 km [1] and 6 km [2] lattices proposed elsewhere.
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