

Nov. 16-18, 1998 Port Jefferson, NY

CHARGE:

- Guided by the Snowmass '96 parameter sets, explore and develop innovative concepts that will result in significant cost reductions.
- Coordinate parameter sets, infrastructure requirements for the various options, and designs with the other working groups.
- Review progress in magnet R&D (including materials and may include cryogenics, vacuum).
- Develop bases including costs for comparing different magnet designs.
 - Monitor, encourage, and coordinate progress in materials development both in academe and industry.

VLHC MAGNET WORKSHOP REVIEW OF SNOWMASS '96 PARAMETERS

G. Dugan Cornell University

General Features of the vlhc

Snowmass '96 Machines

Parameter list

Lattice features

Interaction region

Vacuum

Cryogenics

Summary

General Features

of third-generation ($E_{CM} = 100 \text{ TeV}$) hadron colliders

1. Physics at the energy frontier: a discovery machine

2. Luminosity $> 10^{34}$ cm⁻² sec⁻¹ at two detectors

3. Based on superconducting magnet technology

4. Large scale (circumference >100 km, numbers of magnets >1000)

5. Must be as cost-effective as possible

6. Requires a conservative design approach that insures reliability at the design goals

7. Will be an internationally supported effort

Snowmass '96 Machines

Motivation: For any vlhc, the magnets are the system cost driver. New approaches are needed since a scaleup of the existing NbTi technology would be prohibitively expensive.

> Three examples were considered, all with $E_{CM}=100$ TeV, Peak luminosity= 10^{34} cm⁻²sec⁻¹

> Principal distinguishing features:

-the choice of superconducting magnet technology;
-the size of the ring;
-the role of synchrotron radiation damping;

(a) High-field-new technology:

Dipole field >12 T Circumference 100 km Synchrotron-radiation damped emittance 1.3 hr emittance damping time *The key is the conductor*

>12 T magnet requires either Nb₃Sn @4^oK or (preferably) the use of high temperature superconductor (HTS) (b) High-field-current technology:

Dipole field >9-10 T Circumference 140 km Synchrotron-radiation damped emittance 2.3 hr emittance damping time

9.5 T magnet could be implemented with NbTi @ 1.80 K. The engineering challenge is to bring down the cost and complexity of a known technology

(c) Low field (Pipetron)

Dipole field <2 T Circumference 650 km No damping

Simple, low cost superferric (1.8T) combined function "Double-C transmission line" magnet from Fermilab

Goal: 10x lower magnet cost per TeV than conventional SC Magnets

	vlhc Machine parameters								
Parameter	High field-new technology	Low Field	Units						
CM Energy	100	100	TeV						
Dipole field	12.6	1.8	Т						
Circumference	104	646	km						
Revolution frequency	2.89	.46	kHz						
Injection energy	3	3	TeV						
Synchrotron radiation damping time (horizontal amplitude)	2.6	antidamped	hr						
Equilibrium rms emittance	144.2		π nm						
Energy loss/turn	3678	526	keV						
Synchrotron radiation	189	48	kW						
power/ring									
Initial/peak luminosity	.35/1.2	1./1.	$10^{34} \text{ cm}^{-2} \text{sec}^{-1}$						
Protons/bunch	0.5	0.94	1010						
Bunch spacing	16.7	16.7	nsec						
Number of bunches	20794	129240							
Total protons/ring	1.1	12.2	10 ¹⁴						
Beam stored energy	.89	9.73	GJ						
Injected rms normalized	1.	1.	$\pi\mu\mathrm{m}$						
β*	20	20	cm						
Rms relative energy spread(collision)	15.6 (50)	39.0	10 ⁻⁶						
Total current	.05	.09	Amp						
Peak current(injection)	3.6	4.2	Amp						
<\$>	255	382	m						
Tune	65	269							
Half cell length (assumed	200	300	m						
90° cells)	200	200	***						
Beam pipe radius	1.65	1.0	cm						
Beam pipe	Cold, Cu	Warm, Al							

Arc lattice features

Cell parameters:

Phase advance: 90° Cell length: 400-500 m

e.g, n=10=>40-50 m long dipoles

Number of cells: Low field ~1300=>13000 dipoles (per ring) High field ~260=>2600 dipoles (per ring)

Beam pipe physical aperture: High field: round, 33 mm diameter Low field: oval, 20 mm diameter (short axis)

Maximum beam size at 3 TeV injection: 1.2 mm (95%)

The cell length/aperture tradeoff:

Cell length L:

 $L \propto \frac{\gamma_I}{\mathcal{E}_n} r_{GF}^2, r_{GF} \propto d_c^2$

 $r_{GF}^{="\text{good-field" radius}}$ d_c =coil diameter γ_I =injection gamma=3000 \mathcal{E}_n =normalized emittance at injection

Longer cells are cheaper: fewer correctors, quadrupoles, spools; larger dispersion, so reduced strength chromatic sextupoles, for increased dynamic aperture

BUT

requires larger $r_{GF} =$ larger coil diameter, more expensive magnets

Additional constraints:

Low field: smaller apertures run into beam stability problems very rapidly

High field: cells longer than about 600 m have equilibrium emittance

$\mathcal{E}_{x} \propto B^{3}L^{3}$

larger than $1\pi \mu m$.

Interaction Region

Snowmass example design (Wei, Peggs, Goderre)

β^{max}=64 km

Triplet field quality required:

0.5 units of b5 @ 10 mm, without correction, end and body separate need shimming and/or lumped correctors C1,C2,C3

May need local chromatic correction

Synchrotron radiation power: 100 W Radiation from the IP: 6 kW

 β^* limited by the crossing angle To go below 10 cm: Need crab crossing system and local chromatic correction

Interaction Region

FLAT BEAMS

(Peggs, Harrison, Pilat, Syphers)

If the vertical dispersion and the linear coupling are well-controlled in the arcs, the vertical emittance will damp to a value much smaller than the horizontal emittance, resulting *in flat beams* as in an electron storage ring. Such beams have several advantages in IR design over round beams.

The final focus optics can be a doublet, rather than a triplet

The peak beta function is typically x10 smaller, for the same β^* , than with round beam triplet optics=> field quality demands in the final focus quads are relaxed

Long-range tune shifts (mostly vertical) occuring before the beams separate tend to be smaller

Vacuum

(W. Turner)

High Field

Synchrotron radiation power: 190 kW Beam lifetime ($\tau_{pp} = 32$ hrs)

Ringwide average vacuum requirement for τ_{gas}~5τ_{pp}: 1.8 nTorr RTE CO

Needs a liner with distributed cryosorber at 10-15° K to intercept synchrotron radiation and pump photodesorbed gases

Design simplifies if magnets use HTS at ~10-15°K liner can be integrated to magnet bore tube

Magnets above~15° K: H₂ is no longer cryosorbed, liner must be cooled separately from the magnet Magnets at ~1.8° K: no cryosorber needed

Vacuum

Requires the use of a distributed pumping system integrated with the magnets-as in an electron synchrotron.

Lumped pumps for nonreactive CH₄ also required every 20 m

Cryogenics (MacAshan, Mazur)

Table III: Comparison of Cryogenic Systems for Different RLHC Magnets										
Collider Magnet	Ring	Nº of	Total Heat Load					Ideal	Wall-	
Operating	Size	Station	at nominal temperature					Pwr	Plug	
Temperature		(inc. 1	(kilowatts)						Power	
		IR)								
	km		1.8 K	4.5 K	20 K	50 K	Lead	MW	MW	
							S			
Low Field							(g/s)			
NbTi, 4.5-5.0	646	9	0	247	0	0	200	17.2	66	
Nb3Sn, 4.5-6.5	646	9	0	242	0	0	200	12.3	47	
HTS, 20-25 K	646	9	0	0	242	0	200	3.7	14	
High Field										
NbTi, 1.8 K	138	20	115	413	0	1644	920	45	180	
Nb3Sn, 4.5 K	104	18	0	66	420	1080	940	18	72	
HTS, 25 K	104	18	0	15	590	1080	940	14	54	

Summary

Snowmass vlhc parameters:

100 TeV CM Peak luminosity>10³⁴ cm⁻²sec⁻¹

High field machine:

~100 km circumference radiation damped beam dynamics 12.5 T cold bore magnets 190 kW synchrotron radiation power Flat beam collisions: doublet IR optics

Low field machine:

~650 km circumference conventional (proton) beam dynamics 2 T warm bore magnets 50 kW synchrotron radiation power Round beam collisions: triplet IR optics